Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = coral–macroalgal interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1276 KiB  
Article
Chemically Mediated Interactions with Macroalgae Negatively Affect Coral Health but Induce Limited Changes in Coral Microbiomes
by Jenny Fong, Peggy P. Y. Tang, Lindsey K. Deignan, Jovena C. L. Seah, Diane McDougald, Scott A. Rice and Peter A. Todd
Microorganisms 2023, 11(9), 2261; https://doi.org/10.3390/microorganisms11092261 - 9 Sep 2023
Cited by 1 | Viewed by 2811
Abstract
Allelopathic chemicals facilitated by the direct contact of macroalgae with corals are potentially an important mechanism mediating coral–macroalgal interactions, but only a few studies have explored their impacts on coral health and microbiomes and the coral’s ability to recover. We conducted a field [...] Read more.
Allelopathic chemicals facilitated by the direct contact of macroalgae with corals are potentially an important mechanism mediating coral–macroalgal interactions, but only a few studies have explored their impacts on coral health and microbiomes and the coral’s ability to recover. We conducted a field experiment on an equatorial urbanized reef to assess the allelopathic effects of four macroalgal species (Bryopsis sp., Endosiphonia horrida, Hypnea pannosa and Lobophora challengeriae) on the health and microbiomes of three coral species (Merulina ampliata, Montipora stellata and Pocillopora acuta). Following 24 h of exposure, crude extracts of all four macroalgal species caused significant coral tissue bleaching and reduction in effective quantum yield. The corals were able to recover within 72 h of the removal of extracts, except those that were exposed to L. challengeriae. While some macroalgal extracts caused an increase in the alpha diversity of coral microbiomes, there were no significant differences in the composition and variability of coral microbiomes between controls and macroalgal extracts at each sampling time point. Nevertheless, DESeq2 differential abundance analyses showed species-specific responses of coral microbiomes. Overall, our findings provide insights on the limited effect of chemically mediated interactions with macroalgae on coral microbiomes and the capacity of corals to recover quickly from the macroalgal chemicals. Full article
(This article belongs to the Special Issue Marine Microbial Diversity: Focus on Corals)
Show Figures

Figure 1

12 pages, 2377 KiB  
Article
Diversity and Ecology of Lobophora Species Associated with Coral Reef Systems in the Western Gulf of Thailand, including the Description of Two New Species
by Anirut Klomjit, Christophe Vieira, Felipe M. G. Mattos, Makamas Sutthacheep, Suttikarn Sutti, Myung-Sook Kim and Thamasak Yeemin
Plants 2022, 11(23), 3349; https://doi.org/10.3390/plants11233349 - 2 Dec 2022
Cited by 4 | Viewed by 2243
Abstract
The brown macroalgal genus Lobophora plays important ecological roles in many marine ecosystems. This group has received much attention over the past decade, and a considerable number of new species have been identified globally. However, our knowledge of the genus diversity and ecology [...] Read more.
The brown macroalgal genus Lobophora plays important ecological roles in many marine ecosystems. This group has received much attention over the past decade, and a considerable number of new species have been identified globally. However, our knowledge of the genus diversity and ecology along south-east Asian coasts are still limited. Given the growing body of research that uses a combination of molecular and morphological data to identify cryptic species, this study investigates the diversity of Lobophora in the western Gulf of Thailand using morphological and molecular data, as well as their interactions with scleractinian corals. A total of 36 Lobophora specimens were collected from 15 sites in the western Gulf of Thailand and used for molecular and morphological analyses. One mitochondrial (cox3) and two chloroplast (psbA and rbcL) genes were amplified and sequenced for molecular phylogenetic analyses. Based primarily on phylogenetic evidence, two new species were formally described, L. chumphonensis sp. nov. and L. thailandensis sp. nov. Additionally, L. lamourouxii was newly recorded from Thailand. Two new lineages of Lobophora obscura were identified, L. obscura12 and L. obscura13. Among the Lobophora species identified, three were found in interaction with corals, the most notable of which was the massive coral Porites. Lobophora chumphonensis sp. nov. only interacted with Porites by growing on bare coral skeleton between Porites colonies. Furthermore, L. obscura13 was observed under the branching coral Pocillopora. Our findings revealed that Lobophora presented both effects and absence of effects on coral. A thorough understanding of Lobophora diversity and ecology is essential for ongoing and future research on coral–macroalgal ecological relationships. Full article
(This article belongs to the Special Issue Genetic Diversity and Taxonomy of Algae)
Show Figures

Figure 1

56 pages, 1605 KiB  
Review
Challenges for Managing Fisheries on Diverse Coral Reefs
by Douglas Fenner
Diversity 2012, 4(1), 105-160; https://doi.org/10.3390/d4010105 - 13 Mar 2012
Cited by 62 | Viewed by 17709
Abstract
Widespread coral reef decline has included the decline of reef fish populations, and the subsistence and artisanal fisheries that depend on them. Overfishing and destructive fishing have been identified as the greatest local threats to coral reefs, but the greatest future threats are [...] Read more.
Widespread coral reef decline has included the decline of reef fish populations, and the subsistence and artisanal fisheries that depend on them. Overfishing and destructive fishing have been identified as the greatest local threats to coral reefs, but the greatest future threats are acidification and increases in mass coral bleaching caused by global warming. Some reefs have shifted from dominance by corals to macroalgae, in what are called “phase shifts”. Depletion of herbivores including fishes has been identified as a contributor to such phase shifts, though nutrients are also involved in complex interactions with herbivory and competition. The depletion of herbivorous fishes implies a reduction of the resilience of coral reefs to the looming threat of mass coral mortality from bleaching, since mass coral deaths are likely to be followed by mass macroalgal blooms on the newly exposed dead substrates. Conventional stock assessment of each fish species would be the preferred option for understanding the status of the reef fishes, but this is far too expensive to be practical because of the high diversity of the fishery and poverty where most reefs are located. In addition, stock assessment models and fisheries in general assume density dependent populations, but a key prediction that stocks recover from fishing is not always confirmed. Catch Per Unit Effort (CPUE) has far too many weaknesses to be a useful method. The ratio of catch to stock and the proportion of catch that is mature depend on fish catch data, and are heavily biased toward stocks that are in good condition and incapable of finding species that are in the worst condition. Near-pristine reefs give us a reality check about just how much we have lost. Common fisheries management tools that control effort or catch are often prohibitively difficult to enforce for most coral reefs except in developed countries. Ecosystem-based management requires management of impacts of fishing on the ecosystem, but also vice versa. Marine Protected Areas (MPAs) have been a favorite management tool, since they require little information. MPAs are excellent conservation and precautionary tools, but address only fishing threats, and may be modest fisheries management tools, which are often chosen because they appear to be the only feasible alternative. “Dataless management” is based on qualitative information from traditional ecological knowledge and/or science, is sufficient for successful reef fisheries management, and is very inexpensive and practical, but requires either customary marine tenure or strong governmental leadership. Customary marine tenure has high social acceptance and compliance and may work fairly well for fisheries management and conservation where it is still strong. Full article
(This article belongs to the Special Issue Coral Reef Diversity: Climate Change and Coral Reef Degradation)
Show Figures

Figure 1

Back to TopTop