Processing math: 92%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = core mass fraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3462 KiB  
Article
Equation of State Parameters of hcp-Fe Up to Super-Earth Interior Conditions
by Yanyao Zhang, Shichang Zhang, Dongyang Kuang and Chao Xiong
Crystals 2025, 15(3), 221; https://doi.org/10.3390/cryst15030221 - 26 Feb 2025
Viewed by 449
Abstract
Equation of state (EoS) parameters of hexagonal close-packed iron (hcp-Fe), the dominant core component in large terrestrial planets, is crucial for studying interior structures of super-Earths. However, EoS parameters at interior conditions of super-Earths remain poorly constrained, and extrapolating from Earth’s core conditions [...] Read more.
Equation of state (EoS) parameters of hexagonal close-packed iron (hcp-Fe), the dominant core component in large terrestrial planets, is crucial for studying interior structures of super-Earths. However, EoS parameters at interior conditions of super-Earths remain poorly constrained, and extrapolating from Earth’s core conditions introduces significant uncertainties at TPa pressures. Here, we compiled experimental static and dynamic compression data and theoretical data up to 1374 GPa and 12,000 K from the literature to refine the EoS of hcp-Fe. Using the third-order Birch–Murnaghan and Mie–Grüneisen–Debye equations, we obtained V0 (unit-cell volume) = 6.756 (10) cm3/mol, KT0 (isothermal bulk modulus) = 174.7 (17) GPa, KT0 (pressure derivative of KT0) = 4.790 (14), θ0 (Debye temperature) = 1209 (73) K, γ0 (Grüneisen parameters) = 2.86 (10), and q (volume-independent constant) = 0.84 (5) at ambient conditions. These parameters were then incorporated into an interior model of CoRoT-7b and Kepler-10b, which includes four solid compositional layers (forsterite, MgSiO3 perovskite, post-perovskite, and hcp-Fe). The model yields the core mass fractions (CMF) of 0.1709 in CoRoT-7b and 0.2216 in Kepler-10b, suggesting a Mars-like interior structure. Extrapolation uncertainties (±10–20% in density) can change CMF by −12.6 to 21.2%, highlighting the necessity of precise EoS constraints at the super-Earth interior conditions. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

13 pages, 2505 KiB  
Case Report
Phyllodes Tumor of the Breast: A Case Report Regarding the Importance of Fast Interdisciplinary Management
by Horia-Dan Lișcu, Andreea-Iuliana Ionescu, Iman Mologani and Nicolae Verga
Reports 2025, 8(1), 17; https://doi.org/10.3390/reports8010017 - 2 Feb 2025
Viewed by 964
Abstract
Background and clinical significance: Phyllodes tumors (PTs) are rare stromal neoplasms originating in the connective tissue of the breast, distinct from carcinomas that arise from the ducts or lobules. These tumors exhibit a broad spectrum of morphologic features and are traditionally classified as [...] Read more.
Background and clinical significance: Phyllodes tumors (PTs) are rare stromal neoplasms originating in the connective tissue of the breast, distinct from carcinomas that arise from the ducts or lobules. These tumors exhibit a broad spectrum of morphologic features and are traditionally classified as benign, borderline, or malignant. Case presentation: We present the case of a 71-year-old female diagnosed with a malignant PT and treated at our hospital. The patient noticed a gradually enlarging lump in her right breast over several months. Mammography was inconclusive, but an ultrasound later revealed a lobulated, firm mass, classified as BIRADS 5. Physical examination identified a 20 cm mass, and core needle biopsy suggested a borderline PT. Following lumpectomy, pathology confirmed a malignant tumor with narrow surgical margins (0.1 cm). Although mastectomy was recommended to achieve wider margins, the patient opted for adjuvant radiotherapy. She received 50 Gy in 25 fractions to the whole breast, followed by a 16 Gy boost to the tumor bed in 8 fractions. The treatment was well tolerated and completed successfully. Initially, the patient’s therapeutic management was delayed due to a combination of personal and organizational factors. However, the process was later streamlined through the use of a novel digital tool developed to facilitate the entire patient journey within our hospital system. Conclusions: This case highlights the diagnostic complexities of PTs, the critical need for effective collaboration between specialties, and the importance of timely treatment planning for optimal patient outcomes. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

20 pages, 3129 KiB  
Article
Assessment of the Performance of 210Pb-Based Dating Models with a Challenging Sediment History in Maryport Harbour (UK)
by José M. Abril-Hernández
J. Mar. Sci. Eng. 2025, 13(1), 144; https://doi.org/10.3390/jmse13010144 - 15 Jan 2025
Viewed by 958
Abstract
The 210Pb-based method is used for absolute age determination in recent sediments (<150 years). Different assumptions are possible, leading to different models and chronologies. The evaluation of the capacities and limitations of the models in challenging sedimentary scenarios is of broad interest [...] Read more.
The 210Pb-based method is used for absolute age determination in recent sediments (<150 years). Different assumptions are possible, leading to different models and chronologies. The evaluation of the capacities and limitations of the models in challenging sedimentary scenarios is of broad interest to the scientific community, and this is the aim of the present work. The performance of the classical models, CFCS and CRS, and the novel TERESA is assessed with a 2 m long, high-resolution core sampled in Maryport Harbour, UK, by using raw data from the literature. It was affected by dredging, shortening, and by the anthropogenic impacts of radionuclides released by the Sellafield nuclear plant and the phosphate industry in Whitehaven and was considered non-datable by the 210Pb method. A reference chronology from Sellafield-derived radionuclides serves to assess the 210Pb dating models. The study uses the mass depth scale and solves the estimation of the unsupported fraction of 210Pb needed for the models. The profile was very irregular, and a cluster analysis led to an ambiguous use of the piecewise CFCS model. The inventory was incomplete and in an unsteady state, but the CRS model can be tentatively applied with the reference SAR and the reference date methods, although also with ambiguous results. TERESA can explicitly handle 210Pbexc fluxes and sedimentation rates that vary over time and shows the best performance with insightful outputs. Full article
(This article belongs to the Special Issue Environmental Radioactivity and Its Applications in Marine Areas)
Show Figures

Figure 1

18 pages, 714 KiB  
Article
Implications of the Intriguing Constant Inner Mass Surface Density Observed in Dark Matter Halos
by Jorge Sánchez Almeida
Galaxies 2025, 13(1), 6; https://doi.org/10.3390/galaxies13010006 - 9 Jan 2025
Viewed by 741
Abstract
It has long been known that the observed mass surface density of cored dark matter (DM) halos is approximately constant, independently of the galaxy mass (i.e., ρcrcconstant, with ρc and rc being the central volume [...] Read more.
It has long been known that the observed mass surface density of cored dark matter (DM) halos is approximately constant, independently of the galaxy mass (i.e., ρcrcconstant, with ρc and rc being the central volume density and the radius of the core, respectively). Here, we review the evidence supporting this empirical fact as well as its theoretical interpretation. It seems to be an emergent law resulting from the concentration–halo mass relation predicted by the current cosmological model, where the DM is made of collisionless cold DM particles (CDM). We argue that the prediction ρcrcconstant is not specific to this particular model of DM but holds for any other DM model (e.g., self-interacting) or process (e.g., stellar or AGN feedback) that redistributes the DM within halos conserving its CDM mass. In addition, the fact that ρcrcconstant is shown to allow the estimate of the core DM mass and baryon fraction from stellar photometry alone is particularly useful when the observationally expensive conventional spectroscopic techniques are unfeasible. Full article
Show Figures

Figure 1

19 pages, 11104 KiB  
Article
Microbially Induced Calcite Precipitation (MICP) Improved Drilling Fluid Optimization for Gravel Stratum
by Rui Pan, Zhou Shu, Yumin Chen, Xiaobing Sha, Xinquan Zhang and Yi Han
Processes 2025, 13(1), 162; https://doi.org/10.3390/pr13010162 - 9 Jan 2025
Viewed by 870
Abstract
During the exploration of the gravel stratum, incidents such as wellbore leakage, stuck drilling, and unstable wellbore walls frequently occur. These issues lead to diminished drilling efficiency and prolonged construction timelines, ultimately adversely affecting the core recovery rate, resulting in a significant waste [...] Read more.
During the exploration of the gravel stratum, incidents such as wellbore leakage, stuck drilling, and unstable wellbore walls frequently occur. These issues lead to diminished drilling efficiency and prolonged construction timelines, ultimately adversely affecting the core recovery rate, resulting in a significant waste of manpower and material resources. To address the issue of hole collapse during drilling, the microbially induced calcite carbonate precipitation (MICP) technique was employed to enhance the properties of bentonite mud drilling fluids. This study analyzed the effects of three factors, i.e., bentonite, biological solution, and barite powder, on the bentonite mud bio-cementation effectiveness through an orthogonal experiment and response surface methodology (RSM). The biological mechanism was examined using scanning electron microscopy (SEM). The experimental results indicated that optimal formulation was achieved when the mass fraction of bentonite was 13.96%, the biological solution comprised 0.6% xanthan gum and 0.4% carboxymethyl cellulose, and the mass fraction of barite was 25%. This research explores the application potential of MICP in enhancing the rheological properties of bentonite mud drilling fluids, which provides new insights and technical references for optimizing their performance. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 2076 KiB  
Article
Unlocking Molecular Fingerprint of an Ombrotrophic Peat Bog: Advanced Characterization Through Hexamethyldisilazane Thermochemolysis and Principal Component Analysis
by Sara Moghnie, Emil Obeid, Jalal Halwani, Laurent Grasset and Khaled Younes
Molecules 2024, 29(23), 5537; https://doi.org/10.3390/molecules29235537 - 23 Nov 2024
Viewed by 899
Abstract
This study examines a boreal peatland (the Sagnes peatland, Fanay, Limousin, France) with a depth of 1 m. This peatland is currently in the late stages of organic deposition, as evidenced by the growth of Carex species, along with Sphagnum mosses, in the [...] Read more.
This study examines a boreal peatland (the Sagnes peatland, Fanay, Limousin, France) with a depth of 1 m. This peatland is currently in the late stages of organic deposition, as evidenced by the growth of Carex species, along with Sphagnum mosses, in the uppermost level. To gain molecular insights, we conducted an analysis of the lignin and polyphenolic counterparts using HMDS (hexamethyldisilazane) thermochemolysis, enabling the identification of lignin degradation proxies. The goal was to develop characteristic indicators for the state of lignin degradation based on the relative distribution of lignin phenols, measured by gas chromatography coupled with mass spectrometry (GC-MS) after the HMDS thermochemolysis. For that purpose, the singular contribution of the 11 aromatic moieties yielded, along with SGC (sum of lignin moieties) and the most lignin degradation proxies, were applied. It has been shown that HMDS thermochemolysis exhibited the capacity to reveal oxidized and degraded lignin fractions, following the increasing trend yielded for most moieties and SGC proxy, in the mesotelm and catotelm layers. In addition, the C/G (Cinnamyl/Guaiacyl) and S/G (Syringyl/Guaiacyl) ratios showed their highest input in the upper half of the core. This bias in the aforementioned ratios could indicate that HMDS thermochemolysis is to be applied for geological samples, where low G-compounds exist. For the sake of validating HMDS thermochemolysis’ application, Principal Component Analysis (PCA) was then applied to the molecular fingerprint. For ratios and proxies of aromatic moieties of HMDS thermochemolysis, the PCA approach exhibited a higher contribution (79%). This indicates the efficiency of these ratios in describing the molecular fingerprint of peat depth records. In addition, a higher separation between the contributions of the investigated variables (molecular proxies) along the first two PCs was noticed. In other words, the variables that showed a high contribution towards PC1 exhibited a low contribution towards PC2, and vice versa. These findings indicate the high reliance of applying the ratios and proxies of HMDS thermochemolysis. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

31 pages, 5369 KiB  
Article
Evaluation of the Effects of Body Forces and Diffusion Mechanisms on Droplet Separation in a Two-Phase Annular–Mist Flow
by Oktawia Dolna
Appl. Sci. 2024, 14(23), 10793; https://doi.org/10.3390/app142310793 - 21 Nov 2024
Viewed by 689
Abstract
For decades, studies have been conducted on the efficiency of gas purification processes with wet scrubbers, including the Venturi scrubbers, and this is the most commonly addressed issue in the field literature. The Venturi scrubber consists of a Venturi nozzle and a cyclone. [...] Read more.
For decades, studies have been conducted on the efficiency of gas purification processes with wet scrubbers, including the Venturi scrubbers, and this is the most commonly addressed issue in the field literature. The Venturi scrubber consists of a Venturi nozzle and a cyclone. The article addresses the empirical and analytical studies on the annular–mist flow regime that exists in the throat of the Venturi nozzle with a square cross-section. The uniform distribution of droplets over the cross-section area of the Venturi’s throat strongly correlates with the efficiency of the gas cleaning process using Venturi scrubbers. Due to the above, studies on the physics of the phenomena that affect the quantity of small droplets present in the core of the flow are highly justified. The influence of body forces and diffusive mechanisms impacting the number of droplets in the core flow were investigated to tackle the problem in question. Consequently, the fractions of droplets susceptible to turbulent or inertial–turbulent diffusion mechanisms can now be predicted using the outcomes of the research carried out. The droplets were divided into three fractions that differed by their sizes as follows: airborne droplets I confirm thar italic can be removed in all cases. (dd 10 µm), medium-sized droplets (dd 20 µm), and largest droplets (dd = (50–150) µm). The estimation of diffusion coefficients (εd,M,εd,ref) and stopping distances (sM,sref) of all fractions of droplets was carried out with the inclusion (εd,M,sM) and exclusion (εd,ref,sref) of the Magnus lift force (M) in equations of both the droplet’s stopping distance and its diffusion coefficient. The outcomes revealed that the inclusion of the M force translates significantly to the growth in values of εd,M,sM compared to εd,ref,sref. Hence, it was concluded that the M force impacts the increase in the speed of the diffusion of the droplets with dd 16.45 µm, which is favorable. Hence, the inertial–turbulent diffusion of larger droplets and the turbulent diffusion of medium ones seem to be supported by the M force. The local velocity gradient, which varied within the region of the flow’s hydraulic stabilization also impacted the mass content of droplets with diameter dd 10 µm in the core of the flow. As the flow development progressed, the number of droplets measured at n = 5 Hz varied nonlinearly up to the point where the boundary layer thickness reached the channel radius. The quantity of small droplets in the main flow was significantly influenced by turbulence intensity (Tu). The desired high number of small droplets in the core of the flow (mist flow) was estimated empirically, and it was achieved when gas flows at high speed and has a mean value of Tu. The former benefits the efficiency of gas purification. Investigations on the effects of body forces of inertia of the continuous phase on the separation of droplets with diameters of a few microns and sub-microns from the flow were performed by employing two channel elbows, namely e4 and e1. The curved channels were subsequently mounted at the end of the straight channel (SCh2). The curvature angle (α) of the e4 and e1 equaled 90 °C and 30 °C, respectively. The number of droplets existing in the mist flow was higher in value, as desired, when the e4 was used, unlike e1. Two-dimensional flow fields of the mist have been obtained using the Particle Imaging Velocimetry (PIV) technique and analyzed further. Topas LAP 332 Aerosol Spectrometer was used for the determination of droplet (dd 40 µm) size distribution (DSD) and particle concentrations, while the Droplet Size Analyzer D Kamika Instruments (DSA) was exploited to ascertain DSD of droplets with diameter dd>40 µm. Full article
Show Figures

Figure 1

14 pages, 741 KiB  
Article
Pharmaceutical Residues in Sediments of a Coastal Lagoon in Northwest Mexico—Occurrence and Environmental Risk Assessment
by Oscar Fernando Becerra-Rueda, Griselda Margarita Rodríguez-Figueroa, Ana Judith Marmolejo-Rodríguez, Sergio Aguíñiga-García and Juan Carlos Durán-Álvarez
J. Xenobiot. 2024, 14(4), 1757-1770; https://doi.org/10.3390/jox14040093 - 7 Nov 2024
Viewed by 1461
Abstract
Contamination of marine ecosystems by pharmaceutically active compounds (PhACs) deserves more research since their environmental fate differs from that observed in freshwater systems. However, knowledge remains scarce, especially in semi-arid coastal regions of the Global South. This study investigates the occurrence and distribution [...] Read more.
Contamination of marine ecosystems by pharmaceutically active compounds (PhACs) deserves more research since their environmental fate differs from that observed in freshwater systems. However, knowledge remains scarce, especially in semi-arid coastal regions of the Global South. This study investigates the occurrence and distribution of caffeine, carbamazepine, ciprofloxacin, and sulfamethoxazole in sediments from the La Paz lagoon, a coastal system in a semi-arid region of Mexico with inverse estuarine conditions. Samples of superficial sediments (0–5 cm depth) were collected from 18 sampling points distributed through the lagoon, encompassing sites heavily polluted by discharges of municipal sewage and 3 potentially pristine sites far from the urban and peri-urban zones. Also, a 25 cm length sediment core was taken and divided into 1 cm sub-samples to determine the deposition of target PhACs in the sediment bed through time. The extraction of the target PhACs was performed through the accelerated solvent extraction (ASE) technique and quantification was achieved using a validated HPLC-MS/MS analytical method. The concentration of caffeine, carbamazepine, ciprofloxacin, and sulfamethoxazole in superficial sediment oscillated in the range of 1 to 45 ng g−1 (dry weight). The highest mass fraction of target PhACs was detected in sites impacted by wastewater discharges. The caffeine-to-carbamazepine ratio was determined for the first time in marine sediments impacted by wastewater discharges, resulting in values from 4.2 to 9.12. Analysis of the 25 cm length sediment core revealed a high dispersion of caffeine, which was attributed to high water solubility, while antibiotics were predominantly detected in the upper 20 cm of the core. Risk quotients were calculated, observing low risk for caffeine, carbamazepine, and ciprofloxacin, while sulfamethoxazole presented high risk in all the sampling points. PhACs are retained in superficial sediments from a lagoon impacted by wastewater discharges, and the level of impact depends on the properties of the compounds and the TOC content in sediments. Risk assessments should be performed in the future considering the combination of pharmaceuticals and byproducts in marine sediments. This research emphasizes the importance of sewage management in preserving marine ecosystems in semi-arid regions in the Global South. Full article
(This article belongs to the Section Emerging Chemicals)
Show Figures

Graphical abstract

10 pages, 4125 KiB  
Article
Preparation and Properties of Thermoregulated Seaweed Fibers Based on Magnetic Paraffin wax@calcium Carbonate Microcapsules
by Yonggui Li, Congzhu Xu, Yuanxin Lin, Xiaolei Song, Runjun Sun, Qiang Wang and Xinqun Feng
Materials 2024, 17(19), 4826; https://doi.org/10.3390/ma17194826 - 30 Sep 2024
Viewed by 987
Abstract
In order to enhance the application of thermoregulated materials, magnetic phase change microcapsules were prepared using a self-assembly method. Paraffin wax was chosen for its fine thermoregulation properties as the core material, while Fe3O4 nanoparticles doped in calcium carbonate served [...] Read more.
In order to enhance the application of thermoregulated materials, magnetic phase change microcapsules were prepared using a self-assembly method. Paraffin wax was chosen for its fine thermoregulation properties as the core material, while Fe3O4 nanoparticles doped in calcium carbonate served as the hybrid shell material. The microcapsules were then blended with sodium alginate and processed into seaweed fibers through wet spinning. The microstructure, thermal, and magnetic properties of the microcapsules were analyzed using scanning electron microscopy, energy dispersive X-ray spectroscopy, a laser particle size analyzer, an X-ray diffractometer, a differential scanning calorimeter, a thermogravimetric analyzer, and a vibrating sample magnetometer. The thermoregulation of the fibers was evaluated using a thermal infrared imager. The results indicated that the microcapsules had a uniform size distribution and good thermal properties. When the mass fraction of Fe3O4 nanoparticles was 8%, the microcapsules exhibited a saturation magnetization of 2.44 emu/g and an enthalpy value of 94.25 J/g, indicating effective phase change and magnetic properties. Furthermore, the thermoregulated seaweed fibers showed a high enthalpy value of 19.8 J/g with fine shape, offering potential for developing multifunctional fiber products. Full article
(This article belongs to the Special Issue Synthesis and Properties of Flame Retardant for Polymers)
Show Figures

Figure 1

32 pages, 8140 KiB  
Article
Constraining the Initial Mass Function via Stellar Transients
by Francesco Gabrielli, Lumen Boco, Giancarlo Ghirlanda, Om Sharan Salafia, Ruben Salvaterra, Mario Spera and Andrea Lapi
Universe 2024, 10(10), 383; https://doi.org/10.3390/universe10100383 - 29 Sep 2024
Cited by 1 | Viewed by 2144
Abstract
The stellar initial mass function (IMF) represents a fundamental quantity in astrophysics and cosmology describing the mass distribution of stars from low mass all the way up to massive and very massive stars. It is intimately linked to a wide variety of topics, [...] Read more.
The stellar initial mass function (IMF) represents a fundamental quantity in astrophysics and cosmology describing the mass distribution of stars from low mass all the way up to massive and very massive stars. It is intimately linked to a wide variety of topics, including stellar and binary evolution, galaxy evolution, chemical enrichment, and cosmological reionization. Nonetheless, the IMF still remains highly uncertain. In this work, we aim to determine the IMF with a novel approach based on the observed rates of transients of stellar origin. We parametrize the IMF with a simple but flexible Larson shape, and insert it into a parametric model for the cosmic UV luminosity density, local stellar mass density, type Ia supernova (SN Ia), core-collapse supernova (CCSN), and long gamma-ray burst (LGRB) rates as a function of redshift. We constrain our free parameters by matching the model predictions to a set of empirical determinations for the corresponding quantities via a Bayesian Markov Chain Monte Carlo method. Remarkably, we are able to provide an independent IMF determination with a characteristic mass mc=0.10+0.240.08M and high-mass slope ξ=2.53+0.240.27 that are in accordance with the widely used IMF parameterizations (e.g., Salpeter, Kroupa, Chabrier). Moreover, the adoption of an up-to-date recipe for the cosmic metallicity evolution allows us to constrain the maximum metallicity of LGRB progenitors to Zmax=0.12+0.290.05Z. We also find which progenitor fraction actually leads to SN Ia or LGRB emission (e.g., due to binary interaction or jet-launching conditions), put constraints on the CCSN and LGRB progenitor mass ranges, and test the IMF universality. These results show the potential of this kind of approach for studying the IMF, its putative evolution with the galactic environment and cosmic history, and the properties of SN Ia, CCSN, and LGRB progenitors, especially considering the wealth of data incoming in the future. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2024 – Compact Objects)
Show Figures

Figure 1

32 pages, 2996 KiB  
Article
Chemical Composition and In Vitro Bioactivities of Extracts from Cones of P. halepensis, P. brutia, and P. pinea: Insights into Pharmaceutical and Cosmetic Potential
by Amel Chammam, Luc Fillaudeau, Mehrez Romdhane and Jalloul Bouajila
Plants 2024, 13(13), 1802; https://doi.org/10.3390/plants13131802 - 29 Jun 2024
Cited by 4 | Viewed by 2100
Abstract
Various parts of the Pinaceae species, a traditional plant, have potential health benefits and exhibit antibacterial, anti-cancer, and antioxidant activities. This study aims to investigate the biochemical properties of both petal (P) and core (C) fractions from pinecones of P. halepensis (PA), P. brutia (PB), [...] Read more.
Various parts of the Pinaceae species, a traditional plant, have potential health benefits and exhibit antibacterial, anti-cancer, and antioxidant activities. This study aims to investigate the biochemical properties of both petal (P) and core (C) fractions from pinecones of P. halepensis (PA), P. brutia (PB), and P. pinea (PP). Pinecones were manually separated into P and C, which were then milled to investigate maceration with solvents of increasing polarity: cyclohexane (1SV), ethyl acetate (2SV), and methanol (3SV) at 20 °C. Spectrophotometry was utilized to quantify the total phenolic content (TPC) and to assess bioactivities. Gas chromatography with mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) were employed to identify the chemical composition. 3SV extracts demonstrated the highest TPC and a significant anti–oxidant potential. PA-P-3SV exhibited the highest TPC (460.66 mg GAE/g DW) and PP-P-3SV displayed the best IC50 (10.54 µg/mL) against DPPH. 1SV and 2SV extracts showed interesting anticancer activity against Hela and HepG2 cells. No significant toxic effect of P and C extracts from pinecones was observed on HEK-293 cells. GC-MS analysis unveiled 46 volatile compounds, of which 32 were detected for the first time in these species. HPLC analysis identified 38 compounds, of which 27 were not previously detected in these species. This study highlights the significant potential of pinecones as a rich source of bioactive compounds. Full article
Show Figures

Figure 1

19 pages, 2735 KiB  
Article
Low-Velocity Impact of Clamped Rectangular Sandwich Tubes with Fiber Metal Laminated Tubes
by Yao Wang, Jianxun Zhang, Hui Guo and Hui Yuan
Polymers 2024, 16(13), 1833; https://doi.org/10.3390/polym16131833 - 27 Jun 2024
Viewed by 874
Abstract
Fiber metal laminated sandwich tubes are made up of alternating fiber-reinforced composite and metal layers. Fiber metal laminated tubes have the advantages of the high strength and high stiffness of fiber and the toughness of metal, so they have become an excellent load-bearing [...] Read more.
Fiber metal laminated sandwich tubes are made up of alternating fiber-reinforced composite and metal layers. Fiber metal laminated tubes have the advantages of the high strength and high stiffness of fiber and the toughness of metal, so they have become an excellent load-bearing and energy-absorbing, lightweight structure. Due to the complexity of the fiber layup, it is difficult to establish an analytical model of the relevant structural properties. In this work, introducing the number and volume fraction of fiber layup, based on the modified rigid–plastic model, an analytical model is established for low-velocity impacts on sandwich tubes with fiber metal laminated tubes, which provided a theoretical basis for the design of fiber–metal composite tubes. In addition, a numerical simulation was conducted for low-velocity impacts on clamped rectangular sandwich tubes with fiber metal laminated (FML) tubes and a foam core. By comparing the results obtained from the theoretical analysis and numerical calculations, it is shown that the analytical results can reasonably agree with the numerical results. The influences of the metal volume fraction (MVF), the strength ratio factor of the FML metal layer to the FML composite layer, and the relative strength of the foam on the dynamic response of the rectangular sandwich tubes with FML tubes and a metal foam core (MFC) are discussed. It is shown that by increasing the fiber content and fiber strength of the FML tubes and the foam strength, the load-carrying and energy-absorbing capacity of the rectangular sandwich tubes can be effectively improved, especially by changing the fiber properties. In addition, present analytical solutions can be applied to make predictions about the dynamic response of the rectangular sandwich tubes with FML tubes and MFC during impacts with low-velocity and reasonably heavy-mass. Full article
(This article belongs to the Special Issue Additive Manufacturing of Fibre Reinforced Polymer Composites)
Show Figures

Figure 1

16 pages, 4950 KiB  
Article
Analysis of Mechanical Properties of Fiber-Reinforced Soil Cement Based on Kaolin
by Junnan Zhao, Zhongling Zong, Hang Cen and Pai Jiang
Materials 2024, 17(9), 2153; https://doi.org/10.3390/ma17092153 - 4 May 2024
Cited by 3 | Viewed by 1388
Abstract
Adding fibers into cement to form fiber-reinforced soil cement material can effectively enhance its physical and mechanical properties. In order to investigate the effect of fiber type and dosage on the strength of fiber-reinforced soil cement, polypropylene fibers (PPFs), polyvinyl alcohol fibers (PVAFs), [...] Read more.
Adding fibers into cement to form fiber-reinforced soil cement material can effectively enhance its physical and mechanical properties. In order to investigate the effect of fiber type and dosage on the strength of fiber-reinforced soil cement, polypropylene fibers (PPFs), polyvinyl alcohol fibers (PVAFs), and glass fibers (GFs) were blended according to the mass fraction of the mixture of cement and dry soil (0.5%, 1%, 1.5%, and 2%). Unconfined compressive strength tests, split tensile strength tests, scanning electron microscopy (SEM) tests, and mercury intrusion porosimetry (MIP) pore structure analysis tests were conducted. The results indicated that the unconfined compressive strength of the three types of fiber-reinforced soil cement peaked at a fiber dosage of 0.5%, registering 26.72 MPa, 27.49 MPa, and 27.67 MPa, respectively. The split tensile strength of all three fiber-reinforced soil cement variants reached their maximum at a 1.5% fiber dosage, recording 2.29 MPa, 2.34 MPa, and 2.27 MPa, respectively. The predominant pore sizes in all three fiber-reinforced soil cement specimens ranged from 10 nm to 100 nm. Furthermore, analysis from the perspective of energy evolution revealed that a moderate fiber dosage can minimize energy loss. This paper demonstrates that the unconfined compressive strength test, split tensile strength test, scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) pore structure analysis offer theoretical underpinnings for the utilization of fiber-reinforced soil cement in helical pile core stiffening and broader engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

19 pages, 7945 KiB  
Article
Numerical Simulation on Two-Phase Ejector with Non-Condensable Gas
by Yinghua Chai, Yuansheng Lin, Qi Xiao, Chonghai Huang, Hanbing Ke and Bangming Li
Energies 2024, 17(6), 1341; https://doi.org/10.3390/en17061341 - 11 Mar 2024
Cited by 2 | Viewed by 1231
Abstract
The two-phase ejector is a simple and compact pressure boosting device and widely used in ejector steam-generator water feeding systems and core emergency cooling systems. The direct contact condensation of water and steam is the key process of a two-phase ejector. Usually, the [...] Read more.
The two-phase ejector is a simple and compact pressure boosting device and widely used in ejector steam-generator water feeding systems and core emergency cooling systems. The direct contact condensation of water and steam is the key process of a two-phase ejector. Usually, the high-temperature and high-pressure steam will inevitably induce non-condensable gases. The existence of non-condensable gases will reduce the condensation heat transfer rate between steam and water, and harm the equipment. This study carried out 3D numerical simulations of a two-phase ejector based on an inhomogeneous multiphase model. The steam inlet pressure and the non-condensable gas mass fraction rang in 0.6–2.9 MPa and 1–10%, respectively. The heat and mass transfer characteristics were analyzed under different conditions. The results show that the heat transfer coefficient and plume penetration length increased with the steam inlet pressure. Non-condensable gas prevents direct contact condensation between the steam and water. The non-condensable gas mass fraction rises from 1% to 10%, the heat transfer between steam and water deteriorates, and leads to a lower heat transfer coefficient. Full article
(This article belongs to the Special Issue Advances in Numerical Modeling of Multiphase Flow and Heat Transfer)
Show Figures

Figure 1

13 pages, 3989 KiB  
Article
Exploring the Distribution and Impact of Bosonic Dark Matter in Neutron Stars
by Davood Rafiei Karkevandi, Mahboubeh Shahrbaf, Soroush Shakeri and Stefan Typel
Particles 2024, 7(1), 201-213; https://doi.org/10.3390/particles7010011 - 3 Mar 2024
Cited by 11 | Viewed by 2304
Abstract
The presence of dark matter (DM) within neutron stars (NSs) can be introduced by different accumulation scenarios in which DM and baryonic matter (BM) may interact only through the gravitational force. In this work, we consider asymmetric self-interacting bosonic DM, which can reside [...] Read more.
The presence of dark matter (DM) within neutron stars (NSs) can be introduced by different accumulation scenarios in which DM and baryonic matter (BM) may interact only through the gravitational force. In this work, we consider asymmetric self-interacting bosonic DM, which can reside as a dense core inside the NS or form an extended halo around it. It is seen that depending on the boson mass (mχ), self-coupling constant (λ) and DM fraction (Fχ), the maximum mass, radius and tidal deformability of NSs with DM admixture will be altered significantly. The impact of DM causes some modifications in the observable features induced solely by the BM component. Here, we focus on the widely used nuclear matter equation of state (EoS) called DD2 for describing NS matter. We show that by involving DM in NSs, the corresponding observational parameters will be changed to be consistent with the latest multi-messenger observations of NSs. It is seen that for mχ MeV and λ2π, DM-admixed NSs with 4%Fχ20% are consistent with the maximum mass and tidal deformability constraints. Full article
Show Figures

Figure 1

Back to TopTop