Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (407)

Search Parameters:
Keywords = corrosion behaviour

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5087 KB  
Article
Study on Chloride Diffusion Performance and Structural Durability Design of UHPC Under Chloride Salt Erosion
by Wenbo Kang, Kuihua Mei, Wei Liu and Shengjiang Sun
Buildings 2025, 15(19), 3569; https://doi.org/10.3390/buildings15193569 (registering DOI) - 3 Oct 2025
Viewed by 154
Abstract
Normal concrete exhibits poor resistance to chloride penetration, often leading to reinforcement corrosion and premature structural failure. In contrast, ultra-high-performance concrete (UHPC) demonstrates superior resistance to corrosion caused by chloride salts. The chloride diffusion behaviour of UHPC was investigated via long-term immersion (LTI) [...] Read more.
Normal concrete exhibits poor resistance to chloride penetration, often leading to reinforcement corrosion and premature structural failure. In contrast, ultra-high-performance concrete (UHPC) demonstrates superior resistance to corrosion caused by chloride salts. The chloride diffusion behaviour of UHPC was investigated via long-term immersion (LTI) and rapid chloride migration (RCM) tests. Additionally, this study presents the first development of a time-dependent diffusion model for UHPC under chloride corrosion, as well as the proposal of a performance-based design method for calculating the protective layer thickness. Results show that the incorporation of steel fibers reduced the chloride diffusion coefficient (D) by 37.9%. The free chloride content (FCC) in UHPC increased by 92.0% at 2 mm after 300 d of the action of LTI. D decreased by up to 91.0%, whereas the surface chloride concentration (Cs) increased by up to 92.5% under the action of LTI. The time-dependent models of D and Cs followed power and logarithmic functions, respectively. An increase in UHPC surface temperature, relative humidity, and tensile stress ratio significantly diminishes the chloride resistance of UHPC. The minimum UHPC protective layer thicknesses required for UHPC-HPC composite beams with design service lives of 100 years, 150 years, and 200 years are 30 mm, 37 mm, and 43 mm, respectively. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 17110 KB  
Article
Effect of Oxygen Concentration on the Corrosion Behaviour of Coated and Uncoated 316L Stainless Steel in Liquid Lead
by Daniel Petrescu, Florentina Golgovici, Mircea Corban, Oana Brincoveanu and Ioana Demetrescu
Appl. Sci. 2025, 15(19), 10572; https://doi.org/10.3390/app151910572 - 30 Sep 2025
Viewed by 196
Abstract
The 316L stainless steel, uncoated and coated with two types of EB-PVD thin-film deposits, was tested in liquid lead both under oxygen-saturated conditions (~10−3 wt.%) for exposure times of 1000 and 2000 h and under low-oxygen conditions (~108 wt.%) for 1000 [...] Read more.
The 316L stainless steel, uncoated and coated with two types of EB-PVD thin-film deposits, was tested in liquid lead both under oxygen-saturated conditions (~10−3 wt.%) for exposure times of 1000 and 2000 h and under low-oxygen conditions (~108 wt.%) for 1000 h. The first coating consisted of a ~1 µm NiCrAlY thin film. At the same time, the second was a NiCrAlY/Al2O3 multilayer with a total thickness of ~3 µm, on top of which an additional 100–200 nm metallic Cr layer was deposited. Uncoated specimens tested under oxygen-saturated conditions developed a duplex oxide layer on their surface. SEM-EDS analyses revealed that the inner layer was denser and contained Fe, Cr, and O, whereas the outer layer was more porous and composed mainly of Fe and O. Microscopic examinations indicated that the multilayer-coated specimens exposed to low-oxygen conditions exhibited no signs of material degradation. In contrast, both the uncoated samples and those coated only with a single NiCrAlY layer showed generalised corrosion over the entire surface after exposure to liquid lead at low oxygen concentrations. The austenitic microstructure was degraded to a depth of 100–200 µm. Vickers microhardness indentations performed on the structurally altered regions revealed two distinct corrosion zones with markedly different hardness values. Full article
Show Figures

Figure 1

25 pages, 4563 KB  
Article
Metal Ion Release from PEO-Coated Ti6Al4V DMLS Alloy for Orthopedic Implants
by Shaghayegh Javadi, Laura Castro, Raúl Arrabal and Endzhe Matykina
J. Funct. Biomater. 2025, 16(10), 362; https://doi.org/10.3390/jfb16100362 - 28 Sep 2025
Viewed by 460
Abstract
This study investigates the influence of plasma electrolytic oxidation (PEO) on corrosion resistance of Ti6Al4V alloys produced by direct metal laser sintering (DMLS) for orthopedic implants. PEO (300 s) and flash-PEO (60 s) coatings containing Si, Ca, P, Mg and Zn were applied [...] Read more.
This study investigates the influence of plasma electrolytic oxidation (PEO) on corrosion resistance of Ti6Al4V alloys produced by direct metal laser sintering (DMLS) for orthopedic implants. PEO (300 s) and flash-PEO (60 s) coatings containing Si, Ca, P, Mg and Zn were applied on both DMLS and wrought Ti6Al4V alloys. Samples, coated and uncoated, were characterized for microstructure, morphology and composition. Electrochemical behaviour was assessed by potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF) at 37 °C. Ion release was quantified by inductively coupled plasma optical emission spectroscopy (ICP-OES). DMLS alloy was more passive than wrought Ti6Al4V, releasing ~60% less Ti and ~25% less Al, but ~900% more V. For both alloys, correlation of corrosion current and ion release indicated that 98–99% of oxidized Ti remained in the passive layer. Flash-PEO produced uniform porous coatings composed of anatase and rutile with ~50% amorphous phase, while PEO yielded heterogeneous layers due to soft sparking. In both cases, coatings were the main source of ions. For the DMLS alloy, the best protection was afforded by flash-PEO, releasing 0.01 μg cm−2 d−1 Ti, 26 μg cm−2 d−1 Al, and 0.25 μg cm−2 d−1 V over 30 days. Full article
(This article belongs to the Special Issue Advances in Biomedical Alloys and Surface Modification)
Show Figures

Figure 1

33 pages, 7138 KB  
Review
Comparative Analysis of Properties and Behaviour of Scaffolding Joints and Anchors
by Amin Ramezantitkanloo, Dariusz Czepiżak and Michał Pieńko
Appl. Sci. 2025, 15(19), 10371; https://doi.org/10.3390/app151910371 - 24 Sep 2025
Viewed by 236
Abstract
Scaffolds are temporary structures that workers usually use during building or repair work. These structures can be built in different shapes and types depending on the type of joints to which the beams and columns of the scaffolds are connected. Due to their [...] Read more.
Scaffolds are temporary structures that workers usually use during building or repair work. These structures can be built in different shapes and types depending on the type of joints to which the beams and columns of the scaffolds are connected. Due to their temporary nature, they are very sensitive to vibration under dynamic or static actions, and this causes many accidents and unstable behaviours in them. This unstable behaviour has different reasons, including bracing conditions and slenderness of the columns, stiffness of joints and anchors, imperfections in the construction, damage and corrosion due to climate change, etc. This article aims to reanalyse the mechanical properties of scaffold joints and anchors and obtain some critical factors in the overall stability of the mentioned structures, including load-bearing capacity, initial stiffness, energy absorption, and ductility. To this aim, some recent research on scaffolds has been summarised and discussed, and then the failure mode and mechanical behaviour of the scaffolds in different types of scaffold joints and anchors have been estimated and considered from previous studies. Moreover, some mechanical properties, including ductility, initial stiffness, and energy absorption, have been estimated and developed based on the force-displacement curves of previous studies. The results highlight the crucial importance of the mechanical properties and behaviour of anchors and joints in estimating the behaviour and stability of scaffolds. The results also revealed that determining the mechanical characteristics of the mentioned elements can have a significant influence on the optimisation and design of scaffolds more accurately and predictably. Moreover, determining the mechanical properties of the anchors and joints can enhance our insights and understanding of how the mentioned parameters can improve the behaviour, stability, and safety of the scaffold structures. Full article
(This article belongs to the Special Issue Innovative Approaches to Non-Destructive Evaluation)
Show Figures

Figure 1

21 pages, 3818 KB  
Article
Atmospheric Corrosion of Steel on the Australian Pacific Central Coast
by Robert Jeffrey and Robert E. Melchers
Corros. Mater. Degrad. 2025, 6(3), 44; https://doi.org/10.3390/cmd6030044 - 16 Sep 2025
Viewed by 380
Abstract
Comprehensive data are presented for corrosion losses of mild steel exposed for up to 5 years, all obtained from exposing steel coupons at one specific severe marine exposure site on the Pacific Ocean coast. The test programme considered the effects of duration of [...] Read more.
Comprehensive data are presented for corrosion losses of mild steel exposed for up to 5 years, all obtained from exposing steel coupons at one specific severe marine exposure site on the Pacific Ocean coast. The test programme considered the effects of duration of exposure, inclination, orientation, height, shielding, and coupon variability, using multiple, nominally identical mild steel coupons, all under a single local climatic regime. Such a controlled, consistent, natural environment permits unique, valid comparison of the various influences, both for short-term and longer-term exposures, unlike previous tests of some parameters conducted in the short term at disparate sites. In contrast to coupons exposed only on one side, boldly exposed double-sided coupons corroded severely within 3 years. The effects on corrosion behaviour between individual coupons exposed at different heights and vertical continuous single strips of steel are described. Also reported are corrosion losses for continuous strips and for a series of coupons oriented in different directions. Observations of variability in corrosion losses for nominally identically exposed steel coupons are reported. The effect on corrosion losses with continued exposure to 5 years is reported and compared with information available in the literature. Full article
Show Figures

Figure 1

22 pages, 3904 KB  
Article
Sulphate Resistance of Alkali-Activated Material Produced Using Wood Ash
by Yiying Du, Ina Pundiene, Jolanta Pranckeviciene and Aleksandrs Korjakins
Materials 2025, 18(18), 4313; https://doi.org/10.3390/ma18184313 (registering DOI) - 15 Sep 2025
Viewed by 456
Abstract
The durability of construction and building materials under sulphate environments is an important indicator to evaluate their service life. In this study, the physical and mechanical behaviours of wood-ash-based alkali-activated materials (AAMs) incorporating coal fly ash, metakaolin, natural zeolite, and calcined phosphogypsum were [...] Read more.
The durability of construction and building materials under sulphate environments is an important indicator to evaluate their service life. In this study, the physical and mechanical behaviours of wood-ash-based alkali-activated materials (AAMs) incorporating coal fly ash, metakaolin, natural zeolite, and calcined phosphogypsum were assessed before and after being subjected to sodium sulphate corrosion cycles via the compressive strength, mass, and volume changes. The microstructure, elemental composition, and phase identification were further analysed using X-Ray Diffraction(XRD) and scanning electron microscope(SEM). The results show that the exposure to sulphate solution caused decalcification and dealumination of hydrates, releasing calcium and aluminium to react with sulphate and forming expansive erosion products, ettringite and gypsum. This contributed to the microstructural damage, leading to mass change, volume expansion, and compressive strength loss of 7.33, 1.29, and 60.42%. The introduction of binary aluminosilicate precursors enhanced the sulphate resistance by forming a well-bonded microstructure consisting of calcium (aluminate) silicate hydrate and sodium aluminate silicate hydrate, with the compressive strength loss decreasing up to 18.60%. The co-usage of calcined phosphogypsum deteriorated the mechanical properties of AAMs but significantly improved the sulphate resistance. The sodium sulphate environment facilitated anhydrate hydration, generating more sulphate hydrates and hemigypsums that co-existed with erosion products, forming a compact microstructure and improving the compressive strength by twofold. Full article
Show Figures

Figure 1

12 pages, 2710 KB  
Article
A Study of the Properties of Two-Layer Coatings Based on TiO2-Cr2O3/Ta
by Bauyrzhan Rakhadilov, Zhangabay Turar, Dauir Kakimzhanov and Dastan Buitkenov
Coatings 2025, 15(9), 1078; https://doi.org/10.3390/coatings15091078 - 15 Sep 2025
Viewed by 386
Abstract
In this work, a comparative study of the corrosion resistance and microstructural characteristics of oxide coatings based on TiO2 and TiO2 + Cr2 + Cr2O3 both deposited onto and without a tantalum sublayer has been carried out. [...] Read more.
In this work, a comparative study of the corrosion resistance and microstructural characteristics of oxide coatings based on TiO2 and TiO2 + Cr2 + Cr2O3 both deposited onto and without a tantalum sublayer has been carried out. The coatings were formed through thermal spraying, and their corrosion behaviour was evaluated through potentiodynamic polarisation in 3.5% NaCl solution using a potentiostat–galvanostat in a three-electrode cell. The TiO2 + Cr2O3 composite coating, applied with a tantalum sublayer, had the lowest corrosion current density and the most positive corrosion potential, indicating its high corrosion resistance. The morphology and elemental composition of the coatings were analysed using scanning electron microscopy (SEM) and energy-dispersive analysis (EDX). The microstructural analysis revealed that the coatings with Cr2O3 added were characterised by an increased density, a more uniform phase distribution, and improved adhesion to the substrate. The obtained results confirm that combined TiO2 + Cr2O3 coatings with a tantalum sublayer are promising for use in aggressive environments due to their high corrosion resistance and structural stability. Full article
(This article belongs to the Special Issue Advances in Ceramic Materials and Coatings)
Show Figures

Figure 1

32 pages, 15669 KB  
Article
Numerical Study on the Performance and Failure Modes of Bolted Connections in Pultruded-Fibre-Reinforced Polymer (PFRP) Profiles
by Abdur Rahman, Ingrid Boem and Natalino Gattesco
J. Compos. Sci. 2025, 9(9), 492; https://doi.org/10.3390/jcs9090492 - 10 Sep 2025
Viewed by 488
Abstract
The use of pultruded-fibre-reinforced polymer (PFRP) composite profiles in structural applications is rapidly increasing, due to their high strength-to-weight ratio, corrosion resistance, and durability. Bolted joints between PFRP play a critical role, as localized high stresses in a material that typically exhibits brittle [...] Read more.
The use of pultruded-fibre-reinforced polymer (PFRP) composite profiles in structural applications is rapidly increasing, due to their high strength-to-weight ratio, corrosion resistance, and durability. Bolted joints between PFRP play a critical role, as localized high stresses in a material that typically exhibits brittle behaviour—especially in tension and shear—can lead to sudden failure. This study aims to investigate the mechanical performance of such bolted connections (in terms of stiffness, strength, displacement capacities and failure modes), contributing to the development of reliable yet optimized design criteria for structural applications. In particular, numerical analyses of single-bolted connections in PFRP profiles are presented in the paper. To emphasize the general validity of the model and demonstrate its applicability across different configurations, the simulations were validated against experimental results from three separate test campaigns, which varied in both material (three different PFRP composites) and geometry (profile thickness, bolt diameter, and hole–end distance). Finite element models using continuum shell elements in ABAQUS, based on the Hashin failure criteria, successfully captured typical failure modes, including shear-out and pin-bearing. Two analysis approaches—implicit and explicit solvers—were also compared and discussed. Sensitivity analyses were carried out to enhance the model’s accuracy and its computational efficiency. The validated model was then extended to simulate different configurations, investigating the role of the main parameters influencing the connections. Full article
Show Figures

Figure 1

30 pages, 6724 KB  
Article
Electrochemical Behaviour of Nd–Fe–B and Sm–Fe–N Polymer-Bonded Magnets and Their Metal Components in Various Electrolytes
by Nikolina Lešić, Janez Kovač and Ingrid Milošev
Corros. Mater. Degrad. 2025, 6(3), 42; https://doi.org/10.3390/cmd6030042 - 4 Sep 2025
Viewed by 704
Abstract
Polymer-bonded Nd–Fe–B and Sm–Fe–N magnets have excellent magnetic properties, but their corrosion resistance is inferior. Polymer-bonded magnets, the binary alloys Nd–Fe and Sm–Fe, and the metals Fe, Nd, and Sm were investigated in electrolytes with a pH range of 1.8 to 12.8. Potentiodynamic [...] Read more.
Polymer-bonded Nd–Fe–B and Sm–Fe–N magnets have excellent magnetic properties, but their corrosion resistance is inferior. Polymer-bonded magnets, the binary alloys Nd–Fe and Sm–Fe, and the metals Fe, Nd, and Sm were investigated in electrolytes with a pH range of 1.8 to 12.8. Potentiodynamic polarisation measurements showed that these materials corrode in acidic (H2SO4) and near-neutral (Na2SO4 and NaCl) electrolytes. Iron passivates at pH > 9, but Nd and Sm passivate only in strongly alkaline electrolytes (pH > 12). The alloys and magnets combine the characteristics of the individual metals. Scanning electron microscopy with energy-dispersive X-ray spectroscopy characterised the surface layers before and after electrochemical measurements. The speciation and the depth distribution of elements in the surface layers were analysed using X-ray photoelectron spectroscopy. In the H2SO4, a non-protective layer was formed. In NaCl, the corrosion products were more abundant, consisting of a mixture of oxides, hydroxides, and chlorides, while in NaOH, an oxide/hydroxide layer was formed. The corrosion product layers formed in the H2SO4 and NaCl electrolytes were significantly thicker for the Sm–Fe–N magnet than for the Nd–Fe–B magnet. Understanding the differences and similarities in the electrochemical behaviour of magnets in various electrolytes is essential to overcoming corrosion-related problems. Full article
Show Figures

Figure 1

19 pages, 3164 KB  
Article
Deteriorated Cyclic Behaviour of Corroded RC Framed Elements: A Practical Proposal for Their Modelling
by José Barradas-Hernández, Dariniel Barrera-Jiménez, Irving Ramírez-González, Franco Carpio-Santamaría, Alejandro Vargas-Colorado, Sergio Márquez-Domínguez, Rolando Salgado-Estrada, José Piña-Flores and Abigail Zamora-Hernández
Buildings 2025, 15(17), 3110; https://doi.org/10.3390/buildings15173110 - 29 Aug 2025
Viewed by 370
Abstract
Corrosion is a phenomenon that significantly impacts the durability of reinforced concrete (RC) structures, particularly in highly corrosive environments like coastal regions. The existing numerical modelling often relies on complex approaches that are impractical for structural assessment. For this reason, this study proposes [...] Read more.
Corrosion is a phenomenon that significantly impacts the durability of reinforced concrete (RC) structures, particularly in highly corrosive environments like coastal regions. The existing numerical modelling often relies on complex approaches that are impractical for structural assessment. For this reason, this study proposes a simplified numerical modelling approach to simulate the cyclic behaviour of existing RC framed structures with corrosion levels (η) below 25%. The proposed modelling employs concentrated plasticity hinges for beams and fiber sections for columns, incorporating corrosion-induced degradation through modified backbone curves and material properties based on the corrosion level of the structural element. The modelling approach was validated against experimental results from the literature; the proposed model adequately captures hysteretic energy, lateral load, and deformation capacities, with maximum errors of 11% for maximum lateral load, 12% for ultimate load, and 33% for dissipated energy in RC frames. For isolated columns, the errors were 11, 12, and 22%, respectively. In addition, a maximum difference of 7% was found in the lateral load capacity of the corroded frames associated with the Life Safety limit state. Finally, it was concluded that the proposed methodology is suitable for representing the cyclic behaviour of corroded RC columns and frames and provides engineers with a tool to evaluate the behaviour of corroded structures without resorting to complex models. Full article
(This article belongs to the Special Issue Seismic Performance and Durability of Engineering Structures)
Show Figures

Figure 1

20 pages, 4177 KB  
Article
PEO Treatment for Improved Corrosion Resistance in a Zn-Mg Alloy: Electrochemical and Structural Analysis
by Ramona Cimpoeșu, Sorin Georgian Moga, Bogdan Istrate, Fabian Cezar Lupu, Nicanor Cimpoesu, Ana-Maria Roman, Gheorghe Bădărău, Ion Pătrașcu, Remus Diaconu and Romeu Chelariu
Materials 2025, 18(17), 4064; https://doi.org/10.3390/ma18174064 - 29 Aug 2025
Viewed by 455
Abstract
Zinc-based alloys have been extensively studied for their potential applications in biodegradable materials, yet their corrosion behaviour necessitates the development of effective surface treatments. In this study, a ZnMg alloy was developed by casting in an inert medium and subsequently treating it with [...] Read more.
Zinc-based alloys have been extensively studied for their potential applications in biodegradable materials, yet their corrosion behaviour necessitates the development of effective surface treatments. In this study, a ZnMg alloy was developed by casting in an inert medium and subsequently treating it with Plasma Electrolytic Oxidation (PEO). The corrosion behaviour was characterised in a 0.9% NaCl solution through Tafel polarisation, cyclic polarisation, and electrochemical impedance spectroscopy (EIS). Additionally, the surface morphology was investigated using scanning electron microscopy (SEM) and EDX analysis. The structure and phases of the oxide layer and of the corrosion products were investigated through X-ray diffraction (XRD). The electrochemical results demonstrated a substantial decrease in the corrosion current density and an increase in the polarisation resistance for the treated samples. Electrical Impedance Spectroscopy (EIS) modelling revealed the formation of a layer exhibiting distinct capacitive behaviour, comprising two distinct regions. XRD analysis confirmed evidence of corrosion compounds characteristic of chlorinated media on the surface. The findings indicated that PEO treatment enhanced the corrosion resistance of the ZnMg alloy, suggesting its suitability for biomedical applications or exposure to marine environments characterised by high levels of corrosion. Full article
Show Figures

Graphical abstract

21 pages, 6437 KB  
Article
Assessment of the Surface Characteristics of ISO 5832-1 Stainless Steel for Biomaterial Applications
by Eurico Felix Pieretti, Davide Piaggio and Isolda Costa
Materials 2025, 18(17), 4020; https://doi.org/10.3390/ma18174020 - 27 Aug 2025
Viewed by 655
Abstract
Marking techniques are employed to guarantee the identification and traceability of biomedical materials. This study investigated the impact of laser and mechanical marking processes on the tribological performance of ISO 5832-1 austenitic stainless steel (SS), specifically examining corrosion resistance, the coefficient of friction, [...] Read more.
Marking techniques are employed to guarantee the identification and traceability of biomedical materials. This study investigated the impact of laser and mechanical marking processes on the tribological performance of ISO 5832-1 austenitic stainless steel (SS), specifically examining corrosion resistance, the coefficient of friction, and wear volume in ball-cratering wear tests. The laser marking was performed using a nanosecond Q-switched Nd:YAG laser. Cytotoxicity tests assessed the biocompatibility of the biomaterial. Non-marked surfaces were also evaluated for comparison. A phosphate-buffered saline solution (PBS) served as both the lubricant and corrosion medium. The surface finishing was analyzed using optical microscopy and scanning electron microscopy coupled with a field-emission gun (SEM-FEG), combined with an energy-dispersive X-ray spectrometer. The oxide film was examined through X-ray photoelectron spectroscopy (XPS). Wear tests lasted 10 min, with PBS drops applied every 10 s at 75 rpm; solid balls of AISI 316L stainless steel (SS) and polypropylene (PP), each 1 inch in diameter, were used as counter-bodies. Corrosion resistance was assessed using electrochemical methods. Results showed variations in roughness and microstructure due to laser marking. The tribological behaviour was influenced by the type of marking process, and the wear amount depended on the normal force and ball nature. None of the samples was considered cytotoxic, although laser-marked surfaces exhibited the lowest cellular viability among the tested surfaces and the lowest corrosion resistance. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

25 pages, 3670 KB  
Article
Pulse-Driven Surface Hardening and Advanced Electrospark Alloying for Maritime Applications
by Oleksiy Melnyk, Oleg Onishchenko, Serhii Kurdiuk, Mykola Bulgakov, Oleksij Fomin, Václav Píštěk and Pavel Kučera
J. Mar. Sci. Eng. 2025, 13(9), 1624; https://doi.org/10.3390/jmse13091624 - 26 Aug 2025
Viewed by 507
Abstract
This study examines advanced electrospark alloying (ESA) as a pulse-driven surface hardening technique for marine engineering components operating in corrosive and abrasive environments. Coatings were deposited using cobalt-based (Stellite 6), nickel-based (NiCrBSi), titanium-based (VT1-0), and boron-based (B4C) electrodes, with pulse energies [...] Read more.
This study examines advanced electrospark alloying (ESA) as a pulse-driven surface hardening technique for marine engineering components operating in corrosive and abrasive environments. Coatings were deposited using cobalt-based (Stellite 6), nickel-based (NiCrBSi), titanium-based (VT1-0), and boron-based (B4C) electrodes, with pulse energies of 0.2–0.5 J, discharge frequencies of 100–200 Hz, electrode feed rates of 5–8 mm/min, applied loads of 15–20 N, and treatment durations of 40–60 s. The effects of processing parameters on coating microstructure, adhesion strength, microhardness, corrosion resistance, and wear behaviour were systematically evaluated. ESA treatments increased microhardness by 35–48% and adhesion strength by 22–30%, while reducing the corrosion rate from 0.043 mm/year to 0.025–0.027 mm/year and lowering wear volume loss by 40–47%. Compared with high-velocity oxy-fuel (HVOF) spraying and laser hardening, ESA achieved 37–58% lower energy consumption and 40–70% lower CO2 emissions. These findings highlight ESA as an energy-efficient and environmentally sustainable option for on-site maintenance and modernisation of maritime equipment. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 2685 KB  
Article
Assessing the Effects of Green Surface Coatings on the Corrosion-Related Mechanical Attributes of Materials
by Mohammed A. Albadrani
Processes 2025, 13(8), 2576; https://doi.org/10.3390/pr13082576 - 14 Aug 2025
Viewed by 431
Abstract
This study investigates the effectiveness of an environmentally friendly coating in mitigating corrosion and preserving the mechanical properties of carbon steel, copper, and aluminium. The coated and uncoated samples were subjected to a 20-day immersion in 5% NaCl solution. Corrosion behaviour was assessed [...] Read more.
This study investigates the effectiveness of an environmentally friendly coating in mitigating corrosion and preserving the mechanical properties of carbon steel, copper, and aluminium. The coated and uncoated samples were subjected to a 20-day immersion in 5% NaCl solution. Corrosion behaviour was assessed using Linear Sweep Voltammetry (LSV), Open Circuit Potential (OCP), and Electrochemical Impedance Spectroscopy (EIS), while mechanical performance was evaluated through tensile testing. The coating’s thickness, surface roughness, water contact angle, and composition were characterised to understand its protective behaviour. The results show that the coating significantly reduced corrosion rates, with carbon steel exhibiting a 99.99% inhibition efficiency and aluminium showing the lowest corrosion rate due to a synergistic effect between the coating and native oxide layer. Mechanical testing revealed that coated carbon steel retained higher tensile strength and stiffness compared to its uncoated counterpart, while aluminium showed notable recovery in elastic modulus. Copper displayed minimal mechanical changes due to its inherent corrosion resistance. This work highlights the potential of eco-friendly coatings in enhancing both the corrosion resistance and mechanical durability of metallic materials in aggressive environments. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

20 pages, 7843 KB  
Article
Effect of Ageing on a Novel Cobalt-Free Precipitation-Hardenable Martensitic Alloy Produced by SLM: Mechanical, Tribological and Corrosion Behaviour
by Inés Pérez-Gonzalo, Florentino Alvarez-Antolin, Alejandro González-Pociño and Luis Borja Peral-Martinez
J. Manuf. Mater. Process. 2025, 9(8), 261; https://doi.org/10.3390/jmmp9080261 - 4 Aug 2025
Viewed by 747
Abstract
This study investigates the mechanical, tribological, and electrochemical behaviour of a novel precipitation-hardenable martensitic alloy produced by selective laser melting (SLM). The alloy was specifically engineered with an optimised composition, free from cobalt and molybdenum, and featuring reduced nickel content (7 wt.%) and [...] Read more.
This study investigates the mechanical, tribological, and electrochemical behaviour of a novel precipitation-hardenable martensitic alloy produced by selective laser melting (SLM). The alloy was specifically engineered with an optimised composition, free from cobalt and molybdenum, and featuring reduced nickel content (7 wt.%) and 8 wt.% chromium. It has been developed as a cost-effective and sustainable alternative to conventional maraging steels, while maintaining high mechanical strength and a refined microstructure tailored to the steep thermal gradients inherent to the SLM process. Several ageing heat treatments were assessed to evaluate their influence on microstructure, hardness, tensile strength, retained austenite content, dislocation density, as well as wear behaviour (pin-on-disc test) and corrosion resistance (polarisation curves in 3.5%NaCl). The results indicate that ageing at 540 °C for 2 h offers an optimal combination of hardness (550–560 HV), tensile strength (~1700 MPa), microstructural stability, and wear resistance, with a 90% improvement compared to the as-built condition. In contrast, ageing at 600 °C for 1 h enhances ductility and corrosion resistance (Rp = 462.2 kΩ; Ecorr = –111.8 mV), at the expense of a higher fraction of reverted austenite (~34%) and reduced hardness (450 HV). This study demonstrates that the mechanical, surface, and electrochemical performance of this novel SLM-produced alloy can be effectively tailored through controlled thermal treatments, offering promising opportunities for demanding applications requiring a customised balance of strength, durability, and corrosion behaviour. Full article
Show Figures

Graphical abstract

Back to TopTop