Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (549)

Search Parameters:
Keywords = cosmic rays

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 438 KB  
Article
Holographic Naturalness and Information See-Saw Mechanism for Neutrinos
by Andrea Addazi and Giuseppe Meluccio
Particles 2026, 9(1), 11; https://doi.org/10.3390/particles9010011 - 2 Feb 2026
Viewed by 83
Abstract
The microscopic origin of the de Sitter entropy remains a central puzzle in quantum gravity that is related to the cosmological constant problem. Within the paradigm of Holographic Naturalness, we propose that this entropy is carried by a vast number of [...] Read more.
The microscopic origin of the de Sitter entropy remains a central puzzle in quantum gravity that is related to the cosmological constant problem. Within the paradigm of Holographic Naturalness, we propose that this entropy is carried by a vast number of light, coherent degrees of freedom—called “hairons”—which emerge as the moduli of gravitational instantons on orbifolds. Starting from the Euclidean de Sitter instanton (S4), we construct a new class of orbifold gravitational instantons, S4/ZN, where N corresponds to the de Sitter entropy. We demonstrate that the dimension of the moduli space of these instantons scales linearly with N, and we identify these moduli with the hairon fields. A ZN symmetry, derived from Wilson loops in the instanton background, ensures the distinguishability of these modes, leading to the correct entropy count. The hairons acquire a mass of the order of the Hubble scale and exhibit negligible mutual interactions, suggesting that the de Sitter vacuum is a coherent state, or Bose–Einstein condensate, of these fundamental excitations. Then, we present a novel framework which unifies neutrino mass generation with the cosmological constant through gravitational topology and holography. The small neutrino mass scale emerges naturally from first principles, without requiring new physics beyond the Standard Model and Gravity. The gravitational Chern–Simons structure and its anomaly with neutrinos force a topological Higgs mechanism, leading to neutrino condensation via S4/ZN gravitational instantons. The number of topological degrees of freedom NMP2/Λ10120 provides both the holographic counting of the de Sitter entropy and a 1/Ninformation see-saw mechanism for neutrino masses. Our framework makes the following predictions: (i) a neutrino superfluid condensation forming Cooper pairs below meV energies, as a viable candidate for cold dark matter; (ii) a possible resolution of the strong CP problem through a QCD composite axion state; (iii) time-varying neutrino masses which track the evolution of dark energy; and (iv) several distinctive signatures in astroparticle physics, ultra-high-energy cosmic rays and high magnetic field experiments. Full article
22 pages, 9263 KB  
Article
On the Variability of the Barometric Effect and Its Relation to Cosmic-Ray Neutron Sensing
by Patrick Davies, Roland Baatz, Paul Schattan, Emmanuel Quansah, Leonard Kofitse Amekudzi and Heye Reemt Bogena
Sensors 2026, 26(3), 925; https://doi.org/10.3390/s26030925 - 1 Feb 2026
Viewed by 179
Abstract
Accurate estimation of the barometric coefficient (β) is important for correcting pressure effects in soil moisture data from cosmic-ray neutron sensing (CRNS) due to the barometric effect. To evaluate estimation strategies for β, we compared analytical and empirical approaches using [...] Read more.
Accurate estimation of the barometric coefficient (β) is important for correcting pressure effects in soil moisture data from cosmic-ray neutron sensing (CRNS) due to the barometric effect. To evaluate estimation strategies for β, we compared analytical and empirical approaches using 71 CRNS and 46 neutron monitor (NM) stations across the United States, Europe, and globally. Our results show spatio-temporal variation in the barometric effect, with β ranging from 0.66 to 0.82 %hPa for NM and from 0.63 to 0.80 %hPa for CRNS. These coefficients exhibit higher variability than previously published semi-analytical models. In addition, we found that the analytically determined β values were systematically lower compared with empirical estimates, with stronger agreement between the two empirical methods (r0.67) than between empirical and analytical approaches. Furthermore, NM stations produced higher β values than CRNS, indicating that differences in detector energy sensitivity affected the values of β. Principal Component Analysis (PCA) further showed that the analytical and empirical β estimates clustered together, reflecting shared sensitivity to elevation. In contrast, soil moisture and atmospheric humidity projected nearly orthogonally to the β vectors, indicating negligible influence, while cut-off rigidity contributed to a separate, inverse gradient. Analytical β estimates were fully orthogonal to AH, while empirical methods showed only slight deviations beyond orthogonality. The barometric coefficient (β), therefore, varies with location, altitude, atmospheric conditions, and sensor type, highlighting the necessity of station-specific values for precise correction. Overall, our study emphasizes the need for atmospheric correction in CRNS measurements and introduces a method for deriving site- and sensor-specific β values for accurate soil moisture estimation. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

19 pages, 5415 KB  
Article
Real-Time Detection of the Ground Level Enhancement 74 (GLE74) Event on 11 May 2024 by the A.Ne.Mo.S. GLE Alert++ System
by Maria Gerontidou, Norma B. Crosby, Helen Mavromichalaki, Maria-Christina Papailiou, Pavlos Paschalis and Mark Dierckxsens
Universe 2026, 12(2), 41; https://doi.org/10.3390/universe12020041 - 31 Jan 2026
Viewed by 126
Abstract
During a period of intense solar activity and highly disturbed geomagnetic conditions, a large Forbush decrease began on 10 May 2024 accompanied by a historic geomagnetic storm that lasted for four days. This extreme geomagnetic disturbance classified as G5 according to “NOAA Space [...] Read more.
During a period of intense solar activity and highly disturbed geomagnetic conditions, a large Forbush decrease began on 10 May 2024 accompanied by a historic geomagnetic storm that lasted for four days. This extreme geomagnetic disturbance classified as G5 according to “NOAA Space Weather Scale for Geomagnetic Storms” is referred to in the literature as the Mother’s Day Storm. This resulted from multiple, at least seven, Coronal Mass Ejections (CMEs) that had been occurring since 7 May. In addition, on 11 May, a powerful X5.8 class solar flare, reaching its maximum at 01:32 UT, was followed by an abrupt increase in proton flux with energies > 100 MeV (with onset on 11 May at 01:45 UT and peaking at 02:45 UT), as recorded by GOES satellites. This resulted in a Ground Level Enhancement (GLE), identified as GLE74, occurring on 11 May 2024 during the recovery phase of the deep Forbush decrease (~15%). This Solar Energetic Particle (SEP) event consisted of both impulsive and gradual components, where the high-energy tail of the gradual component was recorded by several stations of the worldwide ground-based neutron monitor network. Approximately 15 minutes after the onset of the SEP event and 40 minutes prior to its peak, an alert was issued by the GLE Alert++ system of the Athens Neutron Monitor Station of the National and Kapodistrian University of Athens (NKUA), available as a federated product on the ESA SWE Portal under the Space Radiation Expert Service Centre. In this paper, a description of the solar activity, i.e., solar flares and CMEs, occurring during this time period is given. Moreover, recordings of cosmic ray data obtained by ground-based neutron monitors are used to perform a detailed analysis of GLE74. Finally, the response of the NKUA GLE Alert++ system to GLE74 is thoroughly presented. Full article
(This article belongs to the Section Space Science)
Show Figures

Figure 1

10 pages, 319 KB  
Article
Timing and Signal Amplitude Measurements in a Small EAS Array
by Tadeusz Wibig
Symmetry 2026, 18(2), 229; https://doi.org/10.3390/sym18020229 - 28 Jan 2026
Viewed by 128
Abstract
Small detector arrays, which are designed to record relatively small EAS with energy in the ‘knee’ region, are often equipped with clocks that measure the time difference between fast signals from several detectors, as well as spectrometric channels that provide the amplitudes of [...] Read more.
Small detector arrays, which are designed to record relatively small EAS with energy in the ‘knee’ region, are often equipped with clocks that measure the time difference between fast signals from several detectors, as well as spectrometric channels that provide the amplitudes of these signals. When analyzing them to determine the angles of arrival and the size of the registered showers, it is important to take into account uncertainties, i.e., the dispersion of measured time differences and shower size relative to the ‘true’ values, which are unknown in the actual situation. Analyses of these spreads are essentially only possible on the basis of correctly performed simulation calculations that take into account all possible stochastic processes in the development of showers in the atmosphere. In this paper, we present a simulation-based analysis using the CORSIKA program of a small EAS array model consisting of four charged particle detectors. We demonstrate the potential offered by ideal timing and how we can infer the energy of the primary particle by analyzing signal amplitudes. The analysis shows that the costs, not only financial, of introducing timing and shower spectrometry are not worth the potential physical gains that we can achieve by using them to analyse small showers. Full article
(This article belongs to the Special Issue Feature Papers in 'Physics' Section 2025)
Show Figures

Figure 1

14 pages, 4073 KB  
Conference Report
High-Precision Cross-Sections for Galactic Cosmic Rays: Highlights from XSCRC2024 and Follow-Up Actions
by David Maurin, Fiorenza Donato and Saverio Mariani
Particles 2026, 9(1), 9; https://doi.org/10.3390/particles9010009 - 26 Jan 2026
Viewed by 127
Abstract
The interpretation of high-precision Galactic cosmic-ray data from AMS-02, CALET, DAMPE, etc., is fundamentally limited by nuclear cross-sections uncertainties. This proceeding highlights the results presented at the XSCRC2024 workshop, which aims at bringing together the cosmic-ray, nuclear, and particle physics communities, with the [...] Read more.
The interpretation of high-precision Galactic cosmic-ray data from AMS-02, CALET, DAMPE, etc., is fundamentally limited by nuclear cross-sections uncertainties. This proceeding highlights the results presented at the XSCRC2024 workshop, which aims at bringing together the cosmic-ray, nuclear, and particle physics communities, with the goal of improving cross-section measurements across various domains, from nuclei production for constraining cosmic-ray transport parameters, to antiproton and anti-deuteron production for dark matter searches. This workshop lead to a comprehensive roadmap for new cross-section measurements in the next decade, as well as other outcomes. Full article
Show Figures

Figure 1

27 pages, 6867 KB  
Article
Recovering Gamma-Ray Burst Redshift Completeness Maps via Spherical Generalized Additive Models
by Zsolt Bagoly and Istvan I. Racz
Universe 2026, 12(2), 31; https://doi.org/10.3390/universe12020031 - 24 Jan 2026
Viewed by 151
Abstract
We present an advanced statistical framework for estimating the relative intensity of astrophysical event distributions (e.g., Gamma-Ray Bursts, GRBs) on the sky tofacilitate population studies and large-scale structure analysis. In contrast to the traditional approach based on the ratio of Kernel Density Estimation [...] Read more.
We present an advanced statistical framework for estimating the relative intensity of astrophysical event distributions (e.g., Gamma-Ray Bursts, GRBs) on the sky tofacilitate population studies and large-scale structure analysis. In contrast to the traditional approach based on the ratio of Kernel Density Estimation (KDE), which is characterized by numerical instability and bandwidth sensitivity, this work applies a logistic regression embedded in a Bayesian framework to directly model selection effects. It reformulates the problem as a logistic regression task within a Generalized Additive Model (GAM) framework, utilizing isotropic Splines on the Sphere (SOS) to map the conditional probability of redshift measurement. The model complexity and smoothness are objectively optimized using Restricted Maximum Likelihood (REML) and the Akaike Information Criterion (AIC), ensuring a data-driven bias-variance trade-off. We benchmark this approach against an Adaptive Kernel Density Estimator (AKDE) using von Mises–Fisher kernels and Abramson’s square root law. The comparative analysis reveals strong statistical evidence in favor of this Preconditioned (Precon) Estimator, yielding a log-likelihood improvement of ΔL74.3 (Bayes factor >1030) over the adaptive method. We show that this Precon Estimator acts as a spectral bandwidth extender, effectively decoupling the wideband exposure map from the narrowband selection efficiency. This provides a tool for cosmologists to recover high-frequency structural features—such as the sharp cutoffs—that are mathematically irresolvable by direct density estimators due to the bandwidth limitation inherent in sparse samples. The methodology ensures that reconstructions of the cosmic web are stable against Poisson noise and consistent with observational constraints. Full article
(This article belongs to the Section Astroinformatics and Astrostatistics)
Show Figures

Figure 1

23 pages, 13361 KB  
Article
Conceptual Design and Structural Assessment of a Hemispherical Two-Chamber Water Cherenkov Detector for Extensive Air-Shower Arrays
by Jasmina Isaković, Marina Manganaro and Michele Doro
Universe 2026, 12(2), 29; https://doi.org/10.3390/universe12020029 - 24 Jan 2026
Viewed by 168
Abstract
A conceptual design study is presented for a hemispherical, two-chamber water Cherenkov detector instrumented with bladder-embedded light traps. The detector consists of a rigid aluminium vessel enclosing a water volume that is divided into an outer, optically black chamber and a inner, reflective [...] Read more.
A conceptual design study is presented for a hemispherical, two-chamber water Cherenkov detector instrumented with bladder-embedded light traps. The detector consists of a rigid aluminium vessel enclosing a water volume that is divided into an outer, optically black chamber and a inner, reflective chamber lined by a flexible bladder. Arrays of light-trap modules, based on plastic scintillators with wavelength-shifting elements and thin silicon photomultipliers, are integrated into the bladder and selected inner surfaces. This geometry is intended to enhance muon tagging, increase acceptance for inclined air showers, and enable improved discrimination between electromagnetic and hadronic components. The study describes the mechanical and optical layout of the detector, the baseline aluminium housing, and the use of 3D-printed hexagonal prototypes to validate integration of the bladder and readout electronics. A first-order structural assessment based on thin-shell and plate theory is presented, indicating large safety margins for the hemispherical shells and identifying the flat base as the mechanically most loaded component. While GEANT4 simulations for detector response to extensive air showers in the atmosphere and performance measurements are left to future work, the present study establishes a mechanically validated, costed baseline design and outlines the steps needed to assess its impact in air-shower arrays. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

15 pages, 10604 KB  
Article
From Light to Energy: Machine Learning Algorithms for Position and Energy Deposition Estimation in Scintillator–SiPM Detectors
by Yoav Simhony, Alex Segal, Ofer Amrani and Erez Etzion
Sensors 2026, 26(1), 101; https://doi.org/10.3390/s26010101 - 23 Dec 2025
Viewed by 509
Abstract
Scintillator-SiPM Particle Detectors (SSPDs) are compact, low-power devices with applications including particle physics, underground tomography, cosmic-ray studies, and space instrumentation. They are based on a prism-shaped scintillator with corner-mounted SiPMs. Previous work has demonstrated that analytic algorithms based on a physical model of [...] Read more.
Scintillator-SiPM Particle Detectors (SSPDs) are compact, low-power devices with applications including particle physics, underground tomography, cosmic-ray studies, and space instrumentation. They are based on a prism-shaped scintillator with corner-mounted SiPMs. Previous work has demonstrated that analytic algorithms based on a physical model of light propagation can reconstruct particle impinging positions and tracks and estimate deposited energy and Linear Energy Transfer (LET) with moderate accuracy. In this study, we enhance this approach by applying machine learning (ML) methods, specifically gradient boosting techniques, to improve the accuracy of spatial location and energy deposition estimation. Using the GEANT4 simulation toolkit, we simulated cosmic muons and energetic oxygen ions traversing an SSPD, and we trained XGBoost and LightGBM models to predict particle impinging positions and deposited energy. Both algorithms outperformed the analytic baseline. We further investigated hybrid strategies, including hybrid boosting and probing. While hybrid boosting provided no significant improvement, probing yielded measurable gains in both position and LET estimation. These results suggest that ML-driven reconstruction provides a powerful enhancement to SSPD performance. Full article
Show Figures

Figure 1

21 pages, 668 KB  
Article
The EPSI R&D: Development of an Innovative Electron–Positron Discrimination Technique for Space Applications
by Oscar Adriani, Lucia Baldesi, Eugenio Berti, Pietro Betti, Massimo Bongi, Alberto Camaiani, Massimo Chiari, Raffaello D’Alessandro, Giacomo De Giorgi, Noemi Finetti, Leonardo Forcieri, Elena Gensini, Andrea Paccagnella, Lorenzo Pacini, Paolo Papini, Oleksandr Starodubtsev, Anna Vinattieri and Chiara Volpato
Particles 2025, 8(4), 101; https://doi.org/10.3390/particles8040101 - 12 Dec 2025
Viewed by 369
Abstract
The study of the antimatter component in cosmic rays is essential for the understanding of their acceleration and propagation mechanisms, and is one of the most powerful tools for the indirect search of dark matter. Current methods rely on magnetic spectrometers for charge-sign [...] Read more.
The study of the antimatter component in cosmic rays is essential for the understanding of their acceleration and propagation mechanisms, and is one of the most powerful tools for the indirect search of dark matter. Current methods rely on magnetic spectrometers for charge-sign discrimination, but these are not suitable for extending measurements to the TeV region within a short timeframe of a few decades. Since most of present and upcoming high-energy space experiments use large calorimeters, it is crucial to develop an alternative charge-sign discrimination technique that can be integrated with them. The Electron/Positron Space Instrument (EPSI) project, a two-year R&D initiative launched in 2023 with EU recovery funds, aims to address this challenge. The basic idea is to exploit the synchrotron radiation emitted by charged particles moving through Earth’s magnetic field. The simultaneous detection of an electron/positron with an electromagnetic calorimeter and synchrotron photons with an X-ray detector is enough to discriminate between the two particles at the event level. The main challenge is to develop an X-ray detector with a very large active area, high X-ray detection efficiency, and a low-energy detection threshold, compliant with space applications. In this paper, we give an overview of the EPSI project, with a focus on the general idea of the detection principle, the concept of the space instrument, and the design of the X-ray detector. Full article
Show Figures

Figure 1

23 pages, 8989 KB  
Article
Characterization of Novel Composite Materials with Radiation Shielding Properties for Electronic Encapsulation
by Carla Ortiz Sánchez, Juan José Medina Del Barrio, Gonzalo Fernández Romero, Ángel Yedra Martínez, Paula Ruiz Losada and Luis Alejandro Arriaga Arellano
Materials 2025, 18(24), 5564; https://doi.org/10.3390/ma18245564 - 11 Dec 2025
Viewed by 1493
Abstract
It is well known that the space radiation environment, which has contributions from the trapped particles within the Van Allen belts, solar energetic particles (SEPs) and galactic cosmic rays (GCRs), directly influences space systems. These systems rely on complex and fragile electronic devices, [...] Read more.
It is well known that the space radiation environment, which has contributions from the trapped particles within the Van Allen belts, solar energetic particles (SEPs) and galactic cosmic rays (GCRs), directly influences space systems. These systems rely on complex and fragile electronic devices, whose performance can be degraded because of the action of the radiation and its related phenomena: single-event effects (SEEs), displacement damages (DDs) and total ionizing dose (TID). This could cause failures to arise through various mechanisms, ranging from parametric drift failures, such as leakage current and threshold voltage, among others, to destructive effects, like single-event burnout (SEB) or single-event latch-up (SEL). These failures in electronics affect the system’s reliability and its performance, which could compromise the mission’s success. Considering this, the main objective of the SRPROTEC project is to develop and validate new composite materials with better shielding performance against space radiation to increase the radiation tolerance of microelectronic devices encapsulated with these materials. For this purpose, three composites will be synthesized using a liquid epoxy resin filled with silica as a matrix mixed in different proportions, with a high-Z filler. The presence of low-Z elements from the high hydrogen content in the polymer and the presence of high-Z fillers are expected to produce a material with good radiation shielding properties. The developed materials will be exhaustively characterized, subjecting the three composites and control samples to rheological outgassing; gamma radiation shielding; and thermal, electrical, thermomechanical and moisture absorption, among other tests. Finally, the composite with the best performance will be selected and subjected to degradation tests (thermal cycling in vacuum, thermal cycling, thermal shock and relative humidity tests) to determine its suitability for space packaging applications. Full article
(This article belongs to the Topic Advanced Composite Materials)
Show Figures

Figure 1

20 pages, 1033 KB  
Article
Scalar Field and Quintessence in Late-Time Cosmic Expansion
by Aroonkumar Beesham
Mathematics 2025, 13(24), 3917; https://doi.org/10.3390/math13243917 - 7 Dec 2025
Viewed by 537
Abstract
The persistent Hubble tension—marked by a notable disparity between early- and late-universe determinations of the Hubble constant H0—poses a serious challenge to the standard cosmological framework. Closely linked to this is the H0rd tension, which stems from [...] Read more.
The persistent Hubble tension—marked by a notable disparity between early- and late-universe determinations of the Hubble constant H0—poses a serious challenge to the standard cosmological framework. Closely linked to this is the H0rd tension, which stems from the fact that BAO-based estimates of H0 are intrinsically dependent on the assumed value of the sound horizon at the drag epoch, rd. In this study, we construct a scalar field dark energy model within the framework of a spatially flat Friedmann–Lemaitre–Robertson–Walker model to explore the dynamics of cosmic acceleration. To solve the field equations, we introduce a generalized extension of the standard Lambda Cold Dark Matter model that allows for deviations in the expansion history. Employing advanced Markov Chain Monte Carlo techniques, we constrain the model parameters using a comprehensive combination of observational data, including Baryon Acoustic Oscillations, Cosmic Chronometers, and Standard Candle datasets from Pantheon, Quasars, and Gamma-Ray Bursts (GRBs). Our analysis reveals a transition redshift from deceleration to acceleration at ztr=0.69 and a present-day deceleration parameter value of q0=0.64. The model supports a dynamical scalar field interpretation, with an equation of state parameter satisfying 1<ω0ϕ<0, consistent with quintessence behavior, and signaling a deviation from the Λ. While the model aligns closely with the Lambda Cold Dark Matter scenario at lower redshifts (z0.65), notable departures emerge at higher redshifts (z0.65), offering a potential window into modified early-time cosmology. Furthermore, the evolution of key cosmographic quantities such as energy density ρϕ, pressure pϕ, and the scalar field equation of state highlights the robustness of scalar field frameworks in describing dark energy phenomenology. Importantly, our results indicate a slightly higher value of the Hubble constant H0 for specific data combinations, suggesting that the model may provide a partial resolution of the current H0 tension. Full article
Show Figures

Figure 1

15 pages, 11792 KB  
Article
A Nanosatellite-Sized Detector for Sub-MeV Charged Cosmic Ray Fluxes in Low Earth Orbit: The Low-Energy Module (LEM) Onboard the NUSES Space Mission
by Riccardo Nicolaidis, Andrea Abba, Domenico Borrelli, Adriano Di Giovanni, Luigi Ferrentino, Giovanni Franchi, Francesco Nozzoli, Giancarlo Pepponi, Lorenzo Perillo, David Schledewitz and Enrico Verroi
Particles 2025, 8(4), 97; https://doi.org/10.3390/particles8040097 - 4 Dec 2025
Viewed by 437
Abstract
NUSES is a planned space mission aiming to test new observational and technological approaches related to the study of low-energy cosmic rays, gamma rays, and high-energy astrophysical neutrinos. Two scientific payloads will be hosted onboard the NUSES space mission: Terzina and Zirè. Terzina [...] Read more.
NUSES is a planned space mission aiming to test new observational and technological approaches related to the study of low-energy cosmic rays, gamma rays, and high-energy astrophysical neutrinos. Two scientific payloads will be hosted onboard the NUSES space mission: Terzina and Zirè. Terzina will be an optical telescope readout by SiPM arrays for the detection and study of Cerenkov light emitted by Extensive Air Showers (EASs) generated by high-energy cosmic rays and neutrinos in the atmosphere. Zirè will focus on the detection of protons and electrons up to a few hundred MeV and 0.1–30 MeV photons and will include the Low-Energy Module (LEM). The LEM will be a particle spectrometer devoted to the observation of fluxes of low-energy electrons in the 0.1–7-MeV range and protons in the 3–50 MeV range in low Earth orbit (LEO) followed by the hosting platform. The detection of Particle Bursts (PBs) in this physics channel of interest could provide insights into understanding complex phenomena such as possible correlations between seismic events or volcanic activity with the collective motion of particles in the plasma populating Van Allen belts. With its compact size and limited acceptance, the LEM will allow the exploration of hostile environments such as the South Atlantic Anomaly (SAA) and the inner Van Allen belt, in which the anticipated electron fluxes are on the order of 106 to 107 electrons per square centimeter per steradian per second. Concerning the vast literature on space-based particle spectrometers, the innovative aspect of the LEM resides in its compactness, within 10×10×10 cm3, and in its “active collimation” approach to dealing with the problem of multiple scattering at these low energies. In this work, the geometry of the detector, its detection concept, its operation modes, and the hardware adopted will be presented. Some preliminary results from a Monte Carlo simulation (Geant4) will be shown. Full article
Show Figures

Figure 1

10 pages, 501 KB  
Article
Simulation of a SiPM-Based Cherenkov Camera
by Isaac Buckland, Riccardo Munini and Valentina Scotti
Particles 2025, 8(4), 96; https://doi.org/10.3390/particles8040096 - 3 Dec 2025
Viewed by 335
Abstract
Future space detectors for Ultra High Energy neutrinos and cosmic rays will utilize Cherenkov telescopes to detect forward-beamed Cherenkov light produced by charged particles in Extensive Air Showers (EASs). A Cherenkov detector can be equipped with an array of Silicon Photo-Multiplier (SiPM) pixels, [...] Read more.
Future space detectors for Ultra High Energy neutrinos and cosmic rays will utilize Cherenkov telescopes to detect forward-beamed Cherenkov light produced by charged particles in Extensive Air Showers (EASs). A Cherenkov detector can be equipped with an array of Silicon Photo-Multiplier (SiPM) pixels, which offer several advantages over traditional Photo-Multiplier Tubes (PMTs). SiPMs are compact and lightweight and operate at lower voltages, making them well-suited for space-based experiments. The SiSMUV (SiPM-based Space Monitor for UV-light) is developing a SiPM-based Cherenkov camera for PBR (POEMMA Baloon with Radio) at INFN Napoli. To understand the response of such an instrument, a comprehensive simulation of the response of individual SiPM pixels to incident light is needed. For the accurate simulation of a threshold trigger, this simulation must reproduce the current produced by a SiPM pixel as a function of time. Since a SiPM pixel is made of many individual Avalanche Photo-Diodes (APDs), saturation and pileup in APDs must also be simulated. A Gaussian mixture fit to ADC count spectrum of a SiPM pixel exposed to low levels of laser light at INFN Napoli shows a significant amount of samples between the expected PE (Photo Electron) peaks. Thus, noise sources such as dark counts and afterpulses, which result in partially integrated APD pulses, must be accounted for. With static, reasonable values for noise rates, the simulation chain presented in this work uses the characteristics of individual APDs to produce the aggregate current produced by a SiPM pixel. When many such pulses are simulated and integrated, the ADC spectra generated by low levels of laser light at the INFN Napoli SiSMUV test setup can be accurately reproduced. Full article
Show Figures

Figure 1

37 pages, 2355 KB  
Review
From Bench to Use: The Status of Gamma-Shielding Nanomaterials and the Prospects for Lead-Free Wearables
by Qianhe Qi, Liangyu He, Hao Ye, Ce Wang, Ping Hu and Yong Liu
Nanomaterials 2025, 15(23), 1799; https://doi.org/10.3390/nano15231799 - 28 Nov 2025
Viewed by 794
Abstract
The rapid development of deep-space exploration and crewed missions makes efficient, lightweight, and low–secondary-radiation γ-ray protection in complex cosmic fields a critical materials challenge. Current studies still struggle to simultaneously balance attenuation efficiency, areal density and thickness, flexibility, and shielding against secondary γ [...] Read more.
The rapid development of deep-space exploration and crewed missions makes efficient, lightweight, and low–secondary-radiation γ-ray protection in complex cosmic fields a critical materials challenge. Current studies still struggle to simultaneously balance attenuation efficiency, areal density and thickness, flexibility, and shielding against secondary γ rays. Compared with existing reviews that mainly focus on single matrices (especially polymers) or medical lead-based protection, this work targets γ-ray shielding under deep-space and mixed radiation environments, emphasizing multiscale structural designs (multilayer/gradient architectures, micro/nanofiller synergy, and fiber networks) for suppressing secondary γ-rays and outlining composition–structure–morphology–coupled strategies for flexible, wearable, lead-free shields. Recycling and sustainability remain key bottlenecks for practical deployment. Accordingly, this review also summarizes representative Monte Carlo simulation tools and their integration with experiments, and proposes directions for element selection, structural design, and green manufacturing to build design rules and a scale-up roadmap for next-generation lead-free γ-shielding wearables. Full article
(This article belongs to the Special Issue Carbon Nanocomposites for Energy)
Show Figures

Graphical abstract

16 pages, 3231 KB  
Article
Observation of the Large Forbush Decrease Event on 1–10 June 2025 at the Tien Shan Cosmic Ray Station
by Alexander Shepetov, Olga Kryakunova, Rustam Koichubayev, Nikolay Nikolayevskiy, Vladimir Ryabov, Botakoz Seifullina, Irina Tsepakina and Valery Zhukov
Atmosphere 2025, 16(12), 1349; https://doi.org/10.3390/atmos16121349 - 28 Nov 2025
Viewed by 554
Abstract
An intensive disturbance of the heliosphere originating from a series of solar flares at the end of May 2025 revealed itself as an extremely strong Forbush decrease in the flux of galactic cosmic rays, which was observed at the worldwide network of neutron [...] Read more.
An intensive disturbance of the heliosphere originating from a series of solar flares at the end of May 2025 revealed itself as an extremely strong Forbush decrease in the flux of galactic cosmic rays, which was observed at the worldwide network of neutron monitoring starting from 1 June 2025. Together with an effect on the intensity of cosmic rays measured at a height of 3340 m a.s.l. by a standard NM64 neutron supermonitor of the Tien Shan High-Mountain Cosmic Ray Station, the impact of this event was detected here as a synchronous depression in the counting rates of thermal neutrons and hard gamma rays, the background intensity of which is also continuously tracked in the environment of the station. This observation may be profitable for development of an alternative technique applicable for studying large disturbances in the heliosphere, besides using the traditional method of neutron monitor. An analysis of the frequency of the events of multiple-neutron generation in the Tien Shan supermonitor demonstrated that the influence of the heliosphere disturbance on the hadronic component of cosmic rays did most distinctively reveal itself in the energy range of (3–20) GeV. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

Back to TopTop