Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,921)

Search Parameters:
Keywords = cost benefit analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 244 KB  
Article
Energy Transition in Public Transport: A Cost-Benefit Analysis of Diesel, Electric, and Hydrogen Fuel Cell Buses in Poland’s GZM Metropolis
by Grzegorz Krawczyk, Grzegorz Karoń and Tomasz Wojciech Szulc
Energies 2025, 18(17), 4658; https://doi.org/10.3390/en18174658 - 2 Sep 2025
Abstract
Energy transformation is one of the processes shaping contemporary urban transport systems, with public transport being the subject of initiatives designed to enhance its attractiveness and transport utility, including electromobility. This article presents a case study for a metropolitan conurbation—the GZM Metropolis in [...] Read more.
Energy transformation is one of the processes shaping contemporary urban transport systems, with public transport being the subject of initiatives designed to enhance its attractiveness and transport utility, including electromobility. This article presents a case study for a metropolitan conurbation—the GZM Metropolis in Poland—considering the economic efficiency of implementing buses with conventional diesel engines, electric buses (battery electric buses), and hydrogen fuel cell-powered buses. The analysis is based on the cost-benefit analysis (CBA) method using the discounted cash flow (DCF) method. Full article
(This article belongs to the Special Issue Forecasting and Optimization in Transport Energy Management Systems)
33 pages, 2609 KB  
Review
Thermal and Nutritional Strategies for Managing Tenacibaculum maritimum in Aquaculture: A Welfare-Oriented Review
by Raquel Carrilho, Márcio Moreira, Ana Paula Farinha, Denise Schrama, Florbela Soares, Pedro Rodrigues and Marco Cerqueira
Animals 2025, 15(17), 2581; https://doi.org/10.3390/ani15172581 - 2 Sep 2025
Abstract
Disease outbreaks pose a significant challenge in aquaculture, leading to substantial economic losses for producers. Tenacibaculosis, a significant ulcerative bacterial disease caused by Tenacibaculum maritimum, affects a wide range of marine fish species globally. Current disease management relies on antibiotics and chemicals, [...] Read more.
Disease outbreaks pose a significant challenge in aquaculture, leading to substantial economic losses for producers. Tenacibaculosis, a significant ulcerative bacterial disease caused by Tenacibaculum maritimum, affects a wide range of marine fish species globally. Current disease management relies on antibiotics and chemicals, leading to environmental issues, impaired fish and consumer health, and increased antimicrobial-resistant bacteria. This narrative review critically explores welfare-oriented alternatives, specifically examining the potential of temperature modulation and functional diets. Although thermal strategies show promise for warm-water species through behavioural fever mechanisms, their effectiveness remains limited by species-specific thermal tolerances and lack of commercial validation. Nutritional interventions using marine algae, probiotics, and immunostimulants demonstrate broader applicability but suffer from inconsistent methodologies, limited commercial validation, and significant knowledge gaps. We propose that integration of these approaches could theoretically represent a paradigm shift from pathogen-focused to host-centred disease management, pending empirical validation. However, this integration concept requires rigorous validation, as significant knowledge gaps persists regarding optimal implementation protocols, welfare monitoring frameworks, and economic viability assessments. From our perspective, transitioning to welfare-oriented aquaculture demands rigorous evaluation and validation, commercial-scale trials, economic cost–benefit analysis, and the establishment of regulatory frameworks before these theoretical alternatives can be responsibly implemented. Full article
(This article belongs to the Section Aquatic Animals)
29 pages, 2570 KB  
Article
Governance Framework for Intelligent Digital Twin Systems in Battery Storage: Aligning Standards, Market Incentives, and Cybersecurity for Decision Support of Digital Twin in BESS
by April Lia Hananto and Ibham Veza
Computers 2025, 14(9), 365; https://doi.org/10.3390/computers14090365 - 2 Sep 2025
Abstract
Digital twins represent a transformative innovation for battery energy storage systems (BESS), offering real-time virtual replicas of physical batteries that enable accurate monitoring, predictive analytics, and advanced control strategies. These capabilities promise to significantly enhance system efficiency, reliability, and lifespan. Yet, despite the [...] Read more.
Digital twins represent a transformative innovation for battery energy storage systems (BESS), offering real-time virtual replicas of physical batteries that enable accurate monitoring, predictive analytics, and advanced control strategies. These capabilities promise to significantly enhance system efficiency, reliability, and lifespan. Yet, despite the clear technical potential, large-scale deployment of digital twin-enabled battery systems faces critical governance barriers. This study identifies three major challenges: fragmented standards and lack of interoperability, weak or misaligned market incentives, and insufficient cybersecurity safeguards for interconnected systems. The central contribution of this research is the development of a comprehensive governance framework that aligns these three pillars—standards, market and regulatory incentives, and cybersecurity—into an integrated model. Findings indicate that harmonized standards reduce integration costs and build trust across vendors and operators, while supportive regulatory and market mechanisms can explicitly reward the benefits of digital twins, including improved reliability, extended battery life, and enhanced participation in energy markets. For example, simulation-based evidence suggests that digital twin-guided thermal and operational strategies can extend usable battery capacity by up to five percent, providing both technical and economic benefits. At the same time, embedding robust cybersecurity practices ensures that the adoption of digital twins does not introduce vulnerabilities that could threaten grid stability. Beyond identifying governance gaps, this study proposes an actionable implementation roadmap categorized into short-, medium-, and long-term strategies rather than fixed calendar dates, ensuring adaptability across different jurisdictions. Short-term actions include establishing terminology standards and piloting incentive programs. Medium-term measures involve mandating interoperability protocols and embedding digital twin requirements in market rules, and long-term strategies focus on achieving global harmonization and universal plug-and-play interoperability. International examples from Europe, North America, and Asia–Pacific illustrate how coordinated governance can accelerate adoption while safeguarding energy infrastructure. By combining technical analysis with policy and governance insights, this study advances both the scholarly and practical understanding of digital twin deployment in BESSs. The findings provide policymakers, regulators, industry leaders, and system operators with a clear framework to close governance gaps, maximize the value of digital twins, and enable more secure, reliable, and sustainable integration of energy storage into future power systems. Full article
(This article belongs to the Section AI-Driven Innovations)
Show Figures

Figure 1

18 pages, 239 KB  
Article
“Firefighters Hate Two Things—Change and the Way Things Are” Exploring Firefighters’ Perspectives Towards Change
by Eric J. Carlson, Matthew Manierre and Michael C. F. Bazzocchi
Fire 2025, 8(9), 348; https://doi.org/10.3390/fire8090348 - 2 Sep 2025
Abstract
This study focuses on firefighters’ relationship with different types of change in their profession and what barriers and facilitators might contribute to how they respond. Informed by the Force Field analysis of change, interviews were conducted to better understand what specific barriers and [...] Read more.
This study focuses on firefighters’ relationship with different types of change in their profession and what barriers and facilitators might contribute to how they respond. Informed by the Force Field analysis of change, interviews were conducted to better understand what specific barriers and facilitators contribute to their views on types of change and the level of influence they carried. Twenty-five interviews were conducted with firefighters from a variety of backgrounds, including different ages, genders, ranks, and experience levels for both career and volunteer firefighters. Thematic analysis identified different responses to four common rationales that helped to explain the acceptance or dismissal of changes. These were as follows: (1) openness or apprehension towards change; (2) the results of a cost–benefit analysis that considered financial and manpower limits, perceived legitimacy of the problem, and efficacy of the solution; (3) reference to past experiences with changes that had failed or succeeded; and (4) trusted messengers that respected the chain of command were preferred. These themes are applicable across multiple types of changes, including technological and cultural adaptation. However, they also reveal challenges that may emerge due to friction with firefighters’ professional identities and traditional masculine norms. The patterns identified here can help to inform future efforts to implement changes and to anticipate likely points of friction or motivation that can be leveraged. Full article
(This article belongs to the Section Fire Social Science)
31 pages, 1511 KB  
Article
Economic Evaluation During Physicochemical Characterization Process: A Cost–Benefit Analysis
by Despina A. Gkika, Nick Vordos, Athanasios C. Mitropoulos and George Z. Kyzas
ChemEngineering 2025, 9(5), 95; https://doi.org/10.3390/chemengineering9050095 - 2 Sep 2025
Abstract
As academic institutions expand, the proliferation of laboratories dealing with hazardous chemicals has risen. While the physicochemical characterization equipment employed in these academic chemical laboratories is widely recognized, its usage presents a notable risk to researchers at various levels. This paper presents a [...] Read more.
As academic institutions expand, the proliferation of laboratories dealing with hazardous chemicals has risen. While the physicochemical characterization equipment employed in these academic chemical laboratories is widely recognized, its usage presents a notable risk to researchers at various levels. This paper presents a simplified approach for evaluating the effects of the implementation of prevention investments in regard to working with nanomaterials on a lab scale. The evaluation is based on modeling the benefits (avoided accident costs) and costs (safety training), as opposed to an alternative (not investing in safety training). Each scenario analyzed in the economic evaluation reflects a different level of risk. The novelty of this study lies in its objective to provide an economic assessment of the benefits and returns from safety investments—specifically training—in a chemical laboratory, using a framework that integrates qualitative insights to explore and define the context alongside quantitative data derived from a cost–benefit analysis. The Net Present Value (NPV) was evaluated. The results of the cost–benefit analysis demonstrated that the benefits exceed the cost of the investment. The findings from the sensitivity analysis highlight the significant influence of insurance benefits on safety investments in the specific case study. In this case study, the deterministic analysis yielded a Net Present Value (NPV) of €280,414.67, which aligns closely with the probabilistic results. The probabilistic NPV indicates 90% confidence that the investment will yield a positive NPV ranging from €283,053 to €337,356. The cost–benefit analysis results demonstrate that the benefits outweigh the costs, showing that with an 87% training success rate, this investment would generate benefits of approximately €6328 by preventing accidents in this study. To the best of the researchers’ knowledge, this is the first study to evaluate the influence of safety investment through an economic evaluation of laboratory accidents with small-angle X-ray scattering during the physicochemical characterization process of engineered nanomaterials. The proposed approach and framework are relevant not only to academic settings but also to industry. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

27 pages, 1506 KB  
Article
Port Performance and Its Influence on Vessel Operating Costs and Emissions
by Livia Rauca, Catalin Popa, Dinu Atodiresei and Andra Teodora Nedelcu
Logistics 2025, 9(3), 122; https://doi.org/10.3390/logistics9030122 - 1 Sep 2025
Viewed by 25
Abstract
Background: Port congestion contributes significantly to operational inefficiency and environmental impact in maritime logistics. With tightening EU regulations such as the Emissions Trading System (EU ETS) and FuelEU Maritime, understanding and mitigating the economic and environmental effects of vessel delays is increasingly [...] Read more.
Background: Port congestion contributes significantly to operational inefficiency and environmental impact in maritime logistics. With tightening EU regulations such as the Emissions Trading System (EU ETS) and FuelEU Maritime, understanding and mitigating the economic and environmental effects of vessel delays is increasingly critical. This study focuses on a single bulk cargo pier at Constanta Port (Romania), which has experienced substantial traffic fluctuations since 2021, and examines operational and environmental performance through a queuing-theoretic lens. Methods: The authors have applied an M/G/1/∞/FIFO/∞ queuing model to vessel traffic and service time data from 2021–2023, supplemented by Monte Carlo simulations to capture variability in maneuvering and service durations. Environmental impact was quantified in CO2 emissions using standard fuel-based emission factors, and a Cold Ironing scenario was modeled to assess potential mitigation benefits. Economic implications were estimated through operational cost modeling and conversion of CO2 emissions into equivalent EU ETS carbon costs. Results: The analysis revealed high berth utilization rates across all years, with substantial variability in waiting times and queue lengths. Congestion was associated with considerable CO2 emissions, which, when expressed in monetary terms under prevailing EU ETS prices, represent a significant financial burden. The Cold Ironing scenario demonstrated a substantial reduction in at-berth emissions and corresponding cost savings, underscoring its potential as a viable mitigation strategy. Conclusions: Results confirm that operational congestion at the studied berth imposes substantial environmental and financial burdens. The analysis supports targeted interventions such as Just-In-Time arrivals, optimized berth scheduling, and Cold Ironing adoption. Recommendations are most applicable to single-berth bulk cargo operations; future research should extend the approach to multi-berth configurations and incorporate additional operational constraints for broader generalizability. Full article
(This article belongs to the Section Sustainable Supply Chains and Logistics)
Show Figures

Figure 1

18 pages, 492 KB  
Review
Consumer Psychology in Functional Beverages: From Nutritional Awareness to Habit Formation
by Tariq A. Alalwan
Beverages 2025, 11(5), 126; https://doi.org/10.3390/beverages11050126 - 1 Sep 2025
Viewed by 177
Abstract
The functional beverage sector has experienced a remarkable transformation driven by evolving consumer decision-making patterns emphasizing therapeutic benefits alongside taste preferences. This comprehensive narrative review investigates how consumer psychology, neurobiological processes, and scientific product development converge through a hierarchical framework illustrating their dynamic [...] Read more.
The functional beverage sector has experienced a remarkable transformation driven by evolving consumer decision-making patterns emphasizing therapeutic benefits alongside taste preferences. This comprehensive narrative review investigates how consumer psychology, neurobiological processes, and scientific product development converge through a hierarchical framework illustrating their dynamic interactions. Today’s consumers exhibit unprecedented sophistication when assessing bioactive ingredients, conducting independent research using scientific databases rather than relying on conventional marketing. Our analysis explores mechanisms underlying habit development, behavioral adaptation, and social proof factors driving functional beverage integration into daily routines. We trace evolution from broad-spectrum wellness drinks toward personalized nutrition solutions, recognizing individual metabolic requirements, with consumers viewing these products as preventive health investments requiring evidence-based validation. Key findings underscore the importance of clinically validated formulations at therapeutic dosages, nutritional transparency, and understanding consumer psychology for fostering lasting consumption behaviors driven by cost–benefit analysis. Results indicate future innovations must merge sophisticated bioactive delivery technologies with insights into consumer information-seeking patterns, social validation processes, and evidence-driven decision-making mechanisms. Full article
Show Figures

Figure 1

25 pages, 1642 KB  
Article
The Green HACCP Approach: Advancing Food Safety and Sustainability
by Mohamed Zarid
Sustainability 2025, 17(17), 7834; https://doi.org/10.3390/su17177834 - 30 Aug 2025
Viewed by 304
Abstract
Food safety management has evolved with the Hazard Analysis and Critical Control Point (HACCP) system serving as a global benchmark. However, conventional HACCP does not explicitly address environmental sustainability, leading to challenges such as excessive water use, chemical discharge, and energy inefficiency. Green [...] Read more.
Food safety management has evolved with the Hazard Analysis and Critical Control Point (HACCP) system serving as a global benchmark. However, conventional HACCP does not explicitly address environmental sustainability, leading to challenges such as excessive water use, chemical discharge, and energy inefficiency. Green HACCP extends traditional HACCP by integrating Environmental Respect Practices (ERPs) to fill this critical gap between food safety and sustainability. This study is presented as a conceptual paper based on a structured literature review combined with illustrative industry applications. It analyzes the principles, implementation challenges, and economic viability of Green HACCP, contrasting it with conventional systems. Evidence from recent reports and industry examples shows measurable benefits: water consumption reductions of 20–25%, energy savings of 10–15%, and improved compliance readiness through digital monitoring technologies. It explores how digital technologies—IoT for real-time monitoring, AI for predictive optimization, and blockchain for traceability—enhance efficiency and sustainability. By aligning HACCP with sustainability goals and the United Nations Sustainable Development Goals (SDGs), this paper provides academic contributions including a clarified conceptual framework, quantified advantages, and policy recommendations to support the integration of Green HACCP into global food safety systems. Industry applications from dairy, seafood, and bakery sectors illustrate practical benefits, including waste reduction and improved compliance. This study concludes with policy recommendations to integrate Green HACCP into global food safety frameworks, supporting broader sustainability goals. Overall, Green HACCP demonstrates a cost-effective, scalable, and environmentally responsible model for future food production. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

22 pages, 813 KB  
Review
A Narrative Review and Gap Analysis of Blockchain for Transparency, Traceability, and Trust in Data-Driven Supply Chains
by Mitra Madanchian and Hamed Taherdoost
Appl. Sci. 2025, 15(17), 9571; https://doi.org/10.3390/app15179571 - 30 Aug 2025
Viewed by 384
Abstract
The increasing complexity and digitization of modern supply chains have created an urgent demand for transparent, traceable, and trustworthy systems of data management. Blockchain, with its core features of immutability, decentralization, and smart contracts, has emerged as a promising solution for strengthening data-driven [...] Read more.
The increasing complexity and digitization of modern supply chains have created an urgent demand for transparent, traceable, and trustworthy systems of data management. Blockchain, with its core features of immutability, decentralization, and smart contracts, has emerged as a promising solution for strengthening data-driven supply chain operations. This paper presents a narrative review synthesizing insights from academic research, industry reports, and regulatory documents to examine blockchain’s role in enhancing transparency, traceability, and trust. References were identified through targeted searches of major databases and gray literature sources, with emphasis on diverse sectors and global perspectives, rather than exhaustive coverage. The review maps how blockchain’s technical capabilities—such as data integrity preservation, access control, automated validation, and provenance tracking—support these outcomes, and assesses the empirical indicators used to evaluate them. A sectoral applicability analysis distinguishes contexts in which blockchain adoption offers clear advantages from those where benefits are limited. The review also identifies critical research gaps, including inconsistent definitions of core concepts, insufficient interoperability standards, overreliance on subjective performance measures, and lack of longitudinal cost–benefit evidence. Finally, it proposes directions for future research, including the development of sector-specific adoption frameworks, integration with complementary technologies, and cross-border regulatory harmonization. Full article
(This article belongs to the Special Issue Data-Driven Supply Chain Management and Logistics Engineering)
Show Figures

Figure 1

21 pages, 928 KB  
Proceeding Paper
Advances in Enzyme-Based Biosensors: Emerging Trends and Applications
by Kerolina Sonowal, Partha Protim Borthakur and Kalyani Pathak
Eng. Proc. 2025, 106(1), 5; https://doi.org/10.3390/engproc2025106005 - 29 Aug 2025
Viewed by 14
Abstract
Enzyme-based biosensors have emerged as a transformative technology, leveraging the specificity and catalytic efficiency of enzymes across various domains, including medical diagnostics, environmental monitoring, food safety, and industrial processes. These biosensors integrate biological recognition elements with advanced transduction mechanisms to provide highly sensitive, [...] Read more.
Enzyme-based biosensors have emerged as a transformative technology, leveraging the specificity and catalytic efficiency of enzymes across various domains, including medical diagnostics, environmental monitoring, food safety, and industrial processes. These biosensors integrate biological recognition elements with advanced transduction mechanisms to provide highly sensitive, selective, and portable solutions for real-time analysis. This review explores the key components, detection mechanisms, applications, and future trends in enzyme-based biosensors. Artificial enzymes, such as nanozymes, play a crucial role in enhancing enzyme-based biosensors by mimicking natural enzyme activity while offering improved stability, cost-effectiveness, and scalability. Their integration can significantly boost sensor performance by increasing the catalytic efficiency and durability. Additionally, lab-on-a-chip and microfluidic devices enable the miniaturization of biosensors, allowing for the development of compact, portable devices that require minimal sample volumes for complex diagnostic tests. The functionality of enzyme-based biosensors is built on three essential components: enzymes as biocatalysts, transducers, and immobilization techniques. Enzymes serve as the biological recognition elements, catalyzing specific reactions with target molecules to produce detectable signals. Transducers, including electrochemical, optical, thermal, and mass-sensitive types, convert these biochemical reactions into measurable outputs. Effective immobilization strategies, such as physical adsorption, covalent bonding, and entrapment, enhance the enzyme stability and reusability, enabling consistent performance. In medical diagnostics, they are widely used for glucose monitoring, cholesterol detection, and biomarker identification. Environmental monitoring benefits from these biosensors by detecting pollutants like pesticides, heavy metals, and nerve agents. The food industry employs them for quality control and contamination monitoring. Their advantages include high sensitivity, rapid response times, cost-effectiveness, and adaptability to field applications. Enzyme-based biosensors face challenges such as enzyme instability, interference from biological matrices, and limited operational lifespans. Addressing these issues involves innovations like the use of synthetic enzymes, advanced immobilization techniques, and the integration of nanomaterials, such as graphene and carbon nanotubes. These advancements enhance the enzyme stability, improve sensitivity, and reduce detection limits, making the technology more robust and scalable. Full article
Show Figures

Figure 1

27 pages, 1324 KB  
Article
Optimal Design and Cost–Benefit Analysis of a Solar Photovoltaic Plant with Hybrid Energy Storage for Off-Grid Healthcare Facilities with High Refrigeration Loads
by Obu Samson Showers and Sunetra Chowdhury
Energies 2025, 18(17), 4596; https://doi.org/10.3390/en18174596 - 29 Aug 2025
Viewed by 192
Abstract
This paper presents the optimal design and cost–benefit analysis of an off-grid solar photovoltaic system integrated with a hybrid energy storage system for a Category 3 rural healthcare facility in Elands Bay, South Africa. The optimal configuration, designed in Homer Pro, consists of [...] Read more.
This paper presents the optimal design and cost–benefit analysis of an off-grid solar photovoltaic system integrated with a hybrid energy storage system for a Category 3 rural healthcare facility in Elands Bay, South Africa. The optimal configuration, designed in Homer Pro, consists of a 16.1 kW solar PV array, 10 kW lithium-ion battery, 23 supercapacitor strings (2 modules per string), 50 kW fuel cell, 50 kW electrolyzer, 20 kg hydrogen tank, and 10.8 kW power converter. The daily energy consumption for the selected healthcare facility is 44.82 kWh, and peak demand is 9.352 kW. The off-grid system achieves 100% reliability (zero unmet load) and zero CO2 emissions, compared to the 24,128 kg/year of CO2 emissions produced by the diesel generator. Economically, it demonstrates strong competitiveness with a levelized cost of energy (LCOE) of ZAR24.35/kWh and a net present cost (NPC) of ZAR6.05 million. Sensitivity analysis reveals the potential for a further 20–40% reduction in LCOE by 2030 through anticipated declines in component costs. Hence, it is established that the proposed model is a reliable and viable option for off-grid rural healthcare facilities. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

28 pages, 3002 KB  
Article
Integrating Off-Site Modular Construction and BIM for Sustainable Multifamily Buildings: A Case Study in Rio de Janeiro
by Matheus Q. Vargas, Ana Briga-Sá, Dieter Boer, Mohammad K. Najjar and Assed N. Haddad
Sustainability 2025, 17(17), 7791; https://doi.org/10.3390/su17177791 - 29 Aug 2025
Viewed by 175
Abstract
The construction industry faces persistent challenges, including low productivity, high waste generation, and resistance to technological innovation. Off-site modular construction, supported by Building Information Modeling (BIM), emerges as a promising strategy to address these issues and advance sustainability goals. This study aims to [...] Read more.
The construction industry faces persistent challenges, including low productivity, high waste generation, and resistance to technological innovation. Off-site modular construction, supported by Building Information Modeling (BIM), emerges as a promising strategy to address these issues and advance sustainability goals. This study aims to evaluate the practical impacts of industrialized off-site construction in the Brazilian context, focusing on cost, execution time, structural weight, and architectural–logistical constraints. The novelty lies in applying the methodology to a high standard, mixed-use multifamily building, an atypical scenario for modular construction in Brazil, and employing a MultiCriteria Decision Analysis (MCDA) to integrate results. A detailed case study is developed comparing conventional and off-site construction approaches using BIM-assisted analyses for weight reduction, cost estimates, and schedule optimization. The results show an 89% reduction in structural weight, a 6% decrease in overall costs, and a 40% reduction in project duration when adopting fully off-site solutions. The integration of results was performed through the Weighted Scoring Method (WSM), a form of MCDA chosen for its transparency and adaptability to case studies. While this study defined weights and scores, the framework allows the future incorporation of stakeholder input. Challenges identified include the need for early design integration, transport limitations, and site-specific constraints. By quantifying benefits and limitations, this study contributes to expanding the understanding of off-site modular adaptability of construction projects beyond low-cost housing, demonstrating its potential for diverse projects and advancing its implementation in emerging markets. Beyond technical and economic outcomes, the study also frames off-site modular construction within the three pillars of sustainability. Environmentally, it reduces structural weight, resource consumption, and on-site waste; economically, it improves cost efficiency and project delivery times; and socially, it offers potential benefits such as safer working conditions, reduced urban disruption, and faster provision of community-oriented buildings. These dimensions highlight its broader contribution to sustainable development in Brazil. Full article
Show Figures

Figure 1

16 pages, 6484 KB  
Review
Digital Technologies in Implantology: A Narrative Review
by Ani Kafedzhieva, Angelina Vlahova and Bozhana Chuchulska
Bioengineering 2025, 12(9), 927; https://doi.org/10.3390/bioengineering12090927 - 29 Aug 2025
Viewed by 266
Abstract
Digital technologies have significantly advanced implant dentistry, refining diagnosis, treatment planning, surgical precision, and prosthetic rehabilitation. This review explores recent developments, emphasizing accuracy, efficiency, and clinical impact. A literature analysis identifies key innovations, such as digital planning, guided surgery, dynamic navigation, digital impressions [...] Read more.
Digital technologies have significantly advanced implant dentistry, refining diagnosis, treatment planning, surgical precision, and prosthetic rehabilitation. This review explores recent developments, emphasizing accuracy, efficiency, and clinical impact. A literature analysis identifies key innovations, such as digital planning, guided surgery, dynamic navigation, digital impressions and CAD/CAM prosthetics. Digital workflows enhance implant placement by improving precision and reducing deviations compared to freehand techniques. Dynamic navigation provides real-time guidance, offering accuracy comparable to static guides and proving benefits in complex cases. Digital impressions demonstrate high precision, which can match or, in some scenarios, surpass conventional methods, though conventional impressions remain the gold standard for full-arch cases. CAD/CAM technology optimizes prosthetic fit, aesthetics, and material selection. Artificial intelligence and machine learning contribute to treatment planning and predictive analytics, yet challenges persist, including high costs, the need for specialized training, and long-term clinical validation. This review underscores the advantages of digital approaches—improved accuracy, better communication, and minimally invasive procedures—while addressing existing limitations. Emerging technologies, such as AI, augmented reality, and 3D printing, are expected to further transform implantology. Continued research is crucial to fully integrate digital advancements and enhance patient outcomes. Full article
(This article belongs to the Special Issue Dentistry Regenerative Medicine and Oral Bioengineering)
Show Figures

Figure 1

26 pages, 973 KB  
Article
Technological Readiness and Implementation Pathways for Electrifying Greek Coastal Ferry Operations: Insights from Norway’s Zero-Emission Ferry Transition
by Georgios Remoundos, Maria Lekakou, Georgios Stergiopoulos, Dimitris Gavalas, Ioannis Katsounis, Sofia Peppa, Dimitrios-Nikolaos Pagonis and Knut Vaagsaether
Energies 2025, 18(17), 4582; https://doi.org/10.3390/en18174582 - 29 Aug 2025
Viewed by 231
Abstract
The decarbonization of short sea shipping is emerging as a critical priority for Mediterranean countries. This paper presents key findings from the ELECTRA-GR project, funded by the EEA Financial Mechanism (MIS 5202231), which aimed to evaluate the feasibility, technical readiness, and legislative requirements [...] Read more.
The decarbonization of short sea shipping is emerging as a critical priority for Mediterranean countries. This paper presents key findings from the ELECTRA-GR project, funded by the EEA Financial Mechanism (MIS 5202231), which aimed to evaluate the feasibility, technical readiness, and legislative requirements for the electrification of coastal ferry services in Greece. The study focused on two pilot routes—Salamis–Perama and Chios–Oinousses— representative of the high-frequency, short-distance ferry operations characteristic of the Greek archipelago. A comprehensive assessment was conducted combining technical fleet profiling, stakeholder consultations, legislative analysis, cost–benefit evaluations, and international benchmarking with Norway. For the base scenario of the high-traffic Salamis–Perama route, full electrification yields an annual reduction of approximately 900 tons of CO2 compared to diesel operation and achieves a Net Present Value (NPV) of €1.6 million over a 15-year period. In contrast, the Chios–Oinousses route, characterized by lower traffic volume, achieves a reduction of 85 tons of CO2 annually through hybrid conversion, but results in an NPV of €−1.69 million, underscoring the need for financial support mechanisms or targeted subsidies to ensure economic feasibility. The results indicate that electrification of short ferry routes in Greece is technically feasible and environmentally advantageous but faces significant challenges, including inadequate port infrastructure, regulatory gaps, and limited industrial readiness. The study proposes a structured roadmap toward electrification, emphasizing the modernization of shipyards, tailored policy instruments, and public–private cooperation. The findings contribute to the formulation of a scalable strategy for clean maritime transport in peripheral and island regions of Greece. Full article
Show Figures

Figure 1

21 pages, 1888 KB  
Article
Evolutionary Game Analysis of Emergency Grain Storage Regulatory Mechanisms Under Government Digital Governance
by Ping-Ping Cao, Zong-Hao Jiang and Wei Bi
Mathematics 2025, 13(17), 2773; https://doi.org/10.3390/math13172773 - 28 Aug 2025
Viewed by 168
Abstract
Grain storage is one of the important means of national macro-control, significantly impacting people’s livelihood and social stability. In emergencies, grain storage enhances disaster relief efficiency and victim resettlement. Currently, developing countries primarily use government storage and government–enterprise joint storage. In response to [...] Read more.
Grain storage is one of the important means of national macro-control, significantly impacting people’s livelihood and social stability. In emergencies, grain storage enhances disaster relief efficiency and victim resettlement. Currently, developing countries primarily use government storage and government–enterprise joint storage. In response to the speculative behavior caused by the profit-seeking tendencies of agent storage enterprises in the process of joint government–enterprise grain storage, this study considers the current status of digital governance reform by the government and takes the government–enterprise emergency joint grain storage mechanism as its research object. We construct an evolutionary game model between the government and agent storage enterprises, analyze the evolutionary stability of the strategy choices of the two parties, explore the impact of various factors on the strategy choices of both parties, and discuss different stable strategy combinations. Through simulation analysis of the cost–benefit systems of both sides, initial strategy probabilities, key factor sensitivity, and the impact of digital governance levels, we propose a number of management recommendations that can effectively reduce speculative behavior and provide guidance for the government to improve its emergency grain storage system. Full article
Show Figures

Figure 1

Back to TopTop