Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,379)

Search Parameters:
Keywords = cruise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1722 KB  
Article
Transformation of Phytoplankton Communities in the High Arctic: Ecological Properties of Species
by Larisa Pautova, Vladimir Silkin, Marina Kravchishina and Alexey Klyuvitkin
Diversity 2025, 17(10), 703; https://doi.org/10.3390/d17100703 - 8 Oct 2025
Abstract
During the 84th cruise of the R/V Akademik Mstislav Keldysh in August 2021, patterns of phytoplankton composition transformation were revealed along a northward gradient. The study involved three transects in the Fram Strait and adjacent Arctic waters: a southern transect (from the Barents [...] Read more.
During the 84th cruise of the R/V Akademik Mstislav Keldysh in August 2021, patterns of phytoplankton composition transformation were revealed along a northward gradient. The study involved three transects in the Fram Strait and adjacent Arctic waters: a southern transect (from the Barents Sea shelf to the Greenland shelf), a middle transect across the Fram Strait, and a northern transect along the ice edge. Ten species of diatoms and eleven of dinoflagellates were identified, and their ecological preferences were characterized by determining the minimum, maximum, mean, and median values for abundance, biomass, depth of the biomass maximum, salinity, temperature, and the concentrations and ratios of nitrogen, phosphorus, and silicon. Significant gradients in temperature, salinity, silicon, and nitrogen concentrations were recorded along the south–north direction in the study area. The phytoplankton community responds to these changing factors through restructuring. Dinoflagellates predominantly dominate the southern and middle transects, whereas large diatoms make a substantial contribution to the phytoplankton biomass in the northern transect. Diatom biomass is determined by nitrogen concentration. The dependence of dinoflagellate biomass on that of small flagellates confirms the importance of mixotrophic nutrition. A hypothesis is proposed that the most probable criterion for the selective selection of diatoms northward is the half-saturation constant for nitrogen uptake, while for dinoflagellates, it is temperature. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

31 pages, 7893 KB  
Article
A Capacity Optimization Method of Ship Integrated Power System Based on Comprehensive Scenario Planning: Considering the Hydrogen Energy Storage System and Supercapacitor
by Fanzhen Jing, Xinyu Wang, Yuee Zhang and Shaoping Chang
Energies 2025, 18(19), 5305; https://doi.org/10.3390/en18195305 - 8 Oct 2025
Abstract
Environmental pollution caused by shipping has always received great attention from the international community. Currently, due to the difficulty of fully electrifying medium- and large-scale ships, the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the [...] Read more.
Environmental pollution caused by shipping has always received great attention from the international community. Currently, due to the difficulty of fully electrifying medium- and large-scale ships, the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the economic and long-term energy efficiency of ships, as well as the uncertainty of the output power of renewable energy units, this paper proposes an improved design for an integrated power system for large cruise ships, combining renewable energy and a hybrid energy storage system. An energy management strategy (EMS) based on time-gradient control and considering load dynamic response, as well as an energy storage power allocation method that considers the characteristics of energy storage devices, is designed. A bi-level power capacity optimization model, grounded in comprehensive scenario planning and aiming to optimize maximum return on equity, is constructed and resolved by utilizing an improved particle swarm optimization algorithm integrated with dynamic programming. Based on a large-scale cruise ship, the aforementioned method was investigated and compared to the conventional planning approach. It demonstrates that the implementation of this optimization method can significantly decrease costs, enhance revenue, and increase the return on equity from 5.15% to 8.66%. Full article
Show Figures

Figure 1

35 pages, 2596 KB  
Article
Integrated Evaluation of C-ITS Services: Synergistic Effects of GLOSA and CACC on Traffic Efficiency and Sustainability
by Manuel Walch and Matthias Neubauer
Sustainability 2025, 17(19), 8855; https://doi.org/10.3390/su17198855 - 3 Oct 2025
Viewed by 219
Abstract
Cooperative Intelligent Transport Systems (C-ITS) have emerged as a key enabler of more efficient, safer, and environmentally sustainable road traffic by allowing vehicles and infrastructure to exchange information and coordinate behavior. To evaluate their benefits, impact assessment studies are essential. However, most existing [...] Read more.
Cooperative Intelligent Transport Systems (C-ITS) have emerged as a key enabler of more efficient, safer, and environmentally sustainable road traffic by allowing vehicles and infrastructure to exchange information and coordinate behavior. To evaluate their benefits, impact assessment studies are essential. However, most existing studies focus on individual C-ITS services in isolation, overlooking how combined deployments influence outcomes. This study addresses this gap by presenting the first systematic evaluation of individual and joint deployments of Cooperative Adaptive Cruise Control (CACC) and Green Light Optimal Speed Advisory (GLOSA) under diverse conditions. A dual-model simulation framework is applied, combining controlled artificial networks with calibrated real-world corridors in Upper Austria. This allows both statistical testing and validation of plausibility in real-world contexts. Key performance indicators include travel time and CO2 emissions, evaluated across varying lane configurations, numbers of traffic lights, demand levels, and equipment rates. The results demonstrate that C-ITS effectiveness is strongly context-dependent: while CACC generally provides larger efficiency gains, GLOSA yields consistent emission reductions, and the combined deployment offers conditional synergies but may also diminish benefits at high demand. The study contributes a guideline for selecting service configurations based on site conditions, thereby providing practical recommendations for future C-ITS rollouts. Full article
(This article belongs to the Special Issue Sustainable Traffic Flow Management and Smart Transportation)
Show Figures

Figure 1

23 pages, 3018 KB  
Article
Experimental Evaluation of UAV Energy Management Using Solar Panels and Battery Systems
by Pedro Fernandes, Ricardo Santos and Francisco Rego
Appl. Sci. 2025, 15(19), 10689; https://doi.org/10.3390/app151910689 - 3 Oct 2025
Viewed by 165
Abstract
Solar-electric propulsion offers a practical way to lengthen the endurance of small fixed-wing unmanned aerial vehicles while removing the noise, emissions, and upkeep that come with combustion engines. This work describes and tests a lightweight platform that couples a flexible thin-film photovoltaic array, [...] Read more.
Solar-electric propulsion offers a practical way to lengthen the endurance of small fixed-wing unmanned aerial vehicles while removing the noise, emissions, and upkeep that come with combustion engines. This work describes and tests a lightweight platform that couples a flexible thin-film photovoltaic array, a high-efficiency power-tracking controller, and a lithium–polymer battery to an electric brushless drivetrain. A ground-based flight emulator reproducing steady cruise allows continuous logging of the electrical flows between panel, battery, and motor. The results show that the solar subsystem can sustain most of the cruise demand, so the battery is called on only sparingly and is even able to recharge when sunlight is higher than a specific threshold. This balance translates into a clear endurance gain without upsetting the aircraft’s weight or handling. Full article
(This article belongs to the Special Issue Advanced Control Systems and Control Engineering)
31 pages, 917 KB  
Article
Safety of LNG-Fuelled Cruise Ships in Comparative Risk Assessment
by Elvis Čapalija, Peter Vidmar and Marko Perkovič
J. Mar. Sci. Eng. 2025, 13(10), 1896; https://doi.org/10.3390/jmse13101896 - 2 Oct 2025
Viewed by 174
Abstract
Although liquefied natural gas (LNG) is already widely used as a marine fuel, its use on large cruise ships is a relatively new development. By the end of 2024, twenty-four LNG-fuelled cruise ships were in operation, each carrying several thousand passengers and making [...] Read more.
Although liquefied natural gas (LNG) is already widely used as a marine fuel, its use on large cruise ships is a relatively new development. By the end of 2024, twenty-four LNG-fuelled cruise ships were in operation, each carrying several thousand passengers and making frequent port calls. These operational characteristics increase the potential risks compared to conventional cargo ships and require a rigorous safety assessment. In this study, the safety of LNG-fuelled cruise ships is assessed using the Formal Safety Assessment (FSA) framework prescribed by the International Maritime Organization (IMO). The assessment includes a hazard identification (HAZID), a risk analysis, an evaluation of risk control options, a cost–benefit analysis and recommendations for decision-making. Given the limited operational data on LNG-fuelled cruise ships, event trees are developed on the basis of LNG tanker incidents, adjusted to reflect passenger-related risks and cruise-specific operating conditions. A statistical overview of marine casualties involving cruise ships and LNG carriers of more than 20,000 GT over the last 35 years provides a further basis for the analysis. To ensure compliance, the study also analyses class requirements and regulatory frameworks, including risk assessments for ship design, bunker operations and emergency preparedness. These assessments, which are carried out at component, ship and process level, remain essential for safety validation and regulatory approval. The results provide a comprehensive framework for assessing LNG safety in the cruise sector by combining existing safety data, regulatory standards and probabilistic risk modelling. Recent work also confirms that event tree modelling identifies critical accident escalation pathways, particularly in scenarios involving passenger evacuation and port operations, which are under-researched in current practice. The results contribute to the wider debate on alternative fuels and support evidence-based decision-making by ship operators, regulators and industry stakeholders. Full article
(This article belongs to the Special Issue Maritime Security and Risk Assessments—2nd Edition)
19 pages, 5560 KB  
Article
Application of a Kdamper with a Magnetorheological Damper for Control of Longitudinal Vibration of Propulsion Shaft System
by Kangwei Zhu, Haiyu Zhang, Weiguo Wu and Hao Liang
Appl. Sci. 2025, 15(19), 10564; https://doi.org/10.3390/app151910564 - 30 Sep 2025
Viewed by 163
Abstract
Ship noise not only has an impact on crew comfort, but also causes damage to the marine environment. Longitudinal vibration of propulsion shaft system is one of the most important causes of ship noise, so in order to indirect control the vibration noise, [...] Read more.
Ship noise not only has an impact on crew comfort, but also causes damage to the marine environment. Longitudinal vibration of propulsion shaft system is one of the most important causes of ship noise, so in order to indirect control the vibration noise, the development of a propulsion shaft system vibration controller is an effective method. In this paper, a Kdamper with a magnetorheological damper (Kdamper-MRD) is proposed to control the longitudinal vibrations transmitted along the propulsion shaft system. The vibration characteristics of the propulsion shaft system are analyzed using the transfer matrix method and the optimal Kdamper-MRD design parameters for controlling the target modes are given. Specific structural design parameters are given as well as material selection. The magnetic field distribution and the magnitude of the output damping force of the MRD are obtained by the simulation method, and the negative stiffness characteristics of the disk spring are also discussed. An on–off current switching control strategy is proposed to further improve the vibration damping performance of the Kdamper-MRD. A comparison with the traditional DVA under simple harmonic excitation and random excitation proves that the Kdamper-MRD has better low-frequency vibration damping performance and is able to attenuate longitudinal vibration of the axle system in the whole frequency domain. Full article
(This article belongs to the Special Issue Vibration Problems in Engineering Science)
Show Figures

Figure 1

27 pages, 10042 KB  
Article
CFD Study of a Novel Wave Energy Converter in Survival Mode
by Cassandre Senocq, Daniel Clemente, Mailys Bertrand, Paulo Rosa-Santos and Gianmaria Giannini
Energies 2025, 18(19), 5189; https://doi.org/10.3390/en18195189 - 30 Sep 2025
Viewed by 284
Abstract
Harnessing Europe’s strong wave energy could support net-zero emissions goals, but extreme ocean loads still make wave energy expensive and delay the rollout of commercial wave-energy converters (WECs). To address this, the twin-floater CECO WEC has been redesigned into a single-pivot device called [...] Read more.
Harnessing Europe’s strong wave energy could support net-zero emissions goals, but extreme ocean loads still make wave energy expensive and delay the rollout of commercial wave-energy converters (WECs). To address this, the twin-floater CECO WEC has been redesigned into a single-pivot device called the Pivoting WEC (PWEC), which includes a passive duck diving survival mode to reduce extreme wave impacts. Its performance is evaluated using detailed wave simulations based on Reynolds-Averaged Navier–Stokes (RANS) equations and the Volume-of-Fluid (VoF) method in OpenFOAM-olaFlow, which is validated with data from small-scale (1:20) wave tank experiments. Extreme non-breaking and breaking waves are simulated based on 100-year hindcast data for the case study site of Matosinhos (Portugal) using a modified Miche criterion. These are validated using data of surface elevation and force sensors. Wave height errors averaged 5.13%, and period errors remain below 0.75%. The model captures well major wave loads with a root mean square error down to 47 kN compared to a peak load of 260 kN and an R2 up to 0.80. The most violent plunging waves increase peak forces by 5 to 30% compared to the highest non-breaking crests. The validated numerical approach provides accurate extreme load predictions and confirms the effectiveness of the PWEC’s passive duck diving survival mode. The results contribute to the development of structurally resilient WECs, supporting the progress of WECs toward higher readiness levels. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

12 pages, 1732 KB  
Data Descriptor
A Dataset of Environmental Toxins for Water Monitoring in Coastal Waters of Southern Centre, Vietnam: Case of Nha Trang Bay
by Hoang Xuan Ben, Tran Cong Thinh and Phan Minh-Thu
Data 2025, 10(10), 155; https://doi.org/10.3390/data10100155 - 29 Sep 2025
Viewed by 286
Abstract
This study presents a comprehensive dataset developed to monitor coastal water quality in the south-central region of Vietnam, focusing on Nha Trang Bay. Environmental data were collected from four research cruises conducted between 2013 and 2024. Water samples were taken at two depths: [...] Read more.
This study presents a comprehensive dataset developed to monitor coastal water quality in the south-central region of Vietnam, focusing on Nha Trang Bay. Environmental data were collected from four research cruises conducted between 2013 and 2024. Water samples were taken at two depths: surface samples at approximately 0.5–1.0 m below the water surface, and bottom samples 1.0 to 2.0 m above the seabed, depending on site-specific bathymetry. These samples were analyzed for key water quality parameters, including biological oxygen demand (BOD5), dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and Chlorophyll-a (Chl-a). The data establish a valuable baseline for assessing both spatial and temporal patterns of water quality, and for calculating eutrophication index to evaluate potential environmental degradation. Importantly, it also demonstrates practical applications for environmental management. The dataset can support assessments of how seasonal tourism peaks contribute to nutrient enrichment, how aquaculture expansion affects dissolved oxygen dynamics, and how water quality trends evolve under increasing anthropogenic pressure. These applications make it a useful resource for evaluating pollution control efforts and for guiding sustainable development in coastal areas. By promoting open access, the dataset not only supports scientific research but also strengthens evidence-based management strategies to protect ecosystem health and socio-economic resilience in Nha Trang Bay. Full article
Show Figures

Figure 1

19 pages, 3021 KB  
Article
Design of a Mobile Assisting Robot for Blind and Elderly People
by María Garrosa, Marco Ceccarelli, Matteo Russo and Bowen Yang
Appl. Sci. 2025, 15(19), 10474; https://doi.org/10.3390/app151910474 - 27 Sep 2025
Viewed by 298
Abstract
This paper presents the design, development, and experimental evaluation of a hybrid wheel–leg guide robot intended to assist blind and elderly people with mobility tasks indoors and outdoors. The design requirements are derived from an analysis of safety, usability, and affordability needs for [...] Read more.
This paper presents the design, development, and experimental evaluation of a hybrid wheel–leg guide robot intended to assist blind and elderly people with mobility tasks indoors and outdoors. The design requirements are derived from an analysis of safety, usability, and affordability needs for assisting devices. The resulting design consists of a compact platform with two front leg–wheel assemblies and three additional wheels, two of which are motorized, arranged in a triangular configuration that provides stable support and reliable traction. The proposed locomotion system is innovative because existing guide robots typically rely exclusively on either wheels or legs. In contrast, this hybrid configuration combines the energy efficiency of wheeled locomotion with the capability of leg-assisted stepping, enabling improved terrain adaptability. Experiments with a prototype were carried out in indoor environments, including straight-line motion, turning, and obstacle-overcoming tests. The prototype, with a total weight of 1.9 kg and a material cost of 255 euros, maintained stable movement and achieved a 100% success rate for obstacles up to 30 mm, with partial success up to 40 mm. Additional test results indicate an average cruising speed of 0.1 m/s, and a practical endurance of 4.5–5 h. The proposed design aims to contribute to the development of more inclusive, efficient, and user-centered robotic solutions, promoting greater autonomy and quality of life for blind and elderly people. Full article
(This article belongs to the Special Issue Application of Computer Science in Mobile Robots, 3rd Edition)
Show Figures

Figure 1

33 pages, 5531 KB  
Article
Aerodynamic Design and Analysis of an Aerial Vehicle Module for Split-Type Flying Cars in Urban Transportation
by Songyang Li, Yingjun Shen, Bo Liu, Xuefeng Chao, Shuxin He and Guangshuo Feng
Aerospace 2025, 12(10), 871; https://doi.org/10.3390/aerospace12100871 - 27 Sep 2025
Viewed by 349
Abstract
The low-altitude economy represents an important facet of emerging productive forces, and flying cars serve as key vehicles driving its development. This paper proposes an aerodynamic design for the aerial vehicle module of split-type flying cars, which meets the functional requirements for vertical [...] Read more.
The low-altitude economy represents an important facet of emerging productive forces, and flying cars serve as key vehicles driving its development. This paper proposes an aerodynamic design for the aerial vehicle module of split-type flying cars, which meets the functional requirements for vertical takeoff, climb, and cruising, and provides a reference solution for urban air mobility. A multidisciplinary constraint-based approach was employed to define the design requirements of the aerial vehicle module, ensuring its capability to operate in various complex environments. Through theoretical analysis and Computer-Aided Design (CAD) methods, key geometric, aerodynamic, and stability parameters were developed and evaluated. After finalizing the design concept of the aerial vehicle module, aerodynamic analysis was conducted, and aerodynamic coefficients were assessed using Computational Fluid Dynamics (CFD) simulations across angles of attack ranging from −5° to 20°. The results indicated that the aerial vehicle module achieved a maximum lift-to-drag ratio of 13.40 at an angle of attack of 2°, and entered a stall condition at 13°. The aerodynamic design enhances the module’s stability under various operating conditions, thereby improving handling performance. Overall, the aerial vehicle module demonstrates favorable aerodynamic characteristics during low-altitude flight and low-speed cruising, satisfying the design requirements and constraints. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 4006 KB  
Article
Advancing Sustainable Propulsion Solutions for Maritime Applications: Numerical and Experimental Assessments of a Methanol HT-PEMFC System
by Simona Di Micco, Filippo Scamardella, Marco Altosole, Ivan Arsie and Mariagiovanna Minutillo
Energies 2025, 18(19), 5119; https://doi.org/10.3390/en18195119 - 26 Sep 2025
Viewed by 292
Abstract
The interest in analyzing alternative fuels and new propulsion technologies for shipping decarbonization is growing rapidly. This paper aims to evaluate the performance of high-temperature polymeric exchange membrane fuel cells (HT-PEMFCs) fed by reformed methanol and their potential application as a propulsion system [...] Read more.
The interest in analyzing alternative fuels and new propulsion technologies for shipping decarbonization is growing rapidly. This paper aims to evaluate the performance of high-temperature polymeric exchange membrane fuel cells (HT-PEMFCs) fed by reformed methanol and their potential application as a propulsion system for vessels. The proposed system is intended to be installed on board a 10 m long ship, designed for commercial use in the marine area of Capri Island. Numerical and experimental analyses were performed to estimate the system’s performance, and a feasibility assessment was carried out to verify its real applicability on board the reference case study. From the numerical perspective, a CFD model of the ship hull, as well as a thermochemical model of the propulsion system, was developed. From the experimental point of view, the system behavior was tested by means of a dedicated test bench. The results of the numerical models allowed for the sizing of the propulsion system and the calculation of the fuel consumption. In particular, to satisfy the ship’s power demand, two 5 kW HT-PEMFCs were needed, with a total fuel consumption of 12.7 kg over a typical daily cruise, with a methanol consumption of 1.88 kg/h during cruising at 7 knots. The feasibility analysis highlighted that the propulsion system fits the vessel’s requirements, both in terms of volume and weight. Full article
Show Figures

Figure 1

30 pages, 1709 KB  
Review
Performance of Advanced Rider Assistance Systems in Varying Weather Conditions
by Zia Ullah, João A. C. da Silva, Ricardo Rodrigues Nunes, Arsénio Reis, Vítor Filipe, João Barroso and E. J. Solteiro Pires
Vehicles 2025, 7(4), 105; https://doi.org/10.3390/vehicles7040105 - 24 Sep 2025
Viewed by 373
Abstract
Advanced rider assistance systems (ARAS) play a crucial role in enhancing motorcycle safety through features such as collision avoidance, blind-spot detection, and adaptive cruise control, which rely heavily on sensors like radar, cameras, and LiDAR. However, their performance is often compromised under adverse [...] Read more.
Advanced rider assistance systems (ARAS) play a crucial role in enhancing motorcycle safety through features such as collision avoidance, blind-spot detection, and adaptive cruise control, which rely heavily on sensors like radar, cameras, and LiDAR. However, their performance is often compromised under adverse weather conditions, leading to sensor interference, reduced visibility, and inconsistent reliability. This study evaluates the effectiveness and limitations of ARAS technologies in rain, fog, and snow, focusing on how sensor performance, algorithms, techniques, and dataset suitability influence system reliability. A thematic analysis was conducted, selecting studies focused on ARAS in adverse weather conditions based on specific selection criteria. The analysis shows that while ARAS offers substantial safety benefits, its accuracy declines in challenging environments. Existing datasets, algorithms, and techniques were reviewed to identify the most effective options for ARAS applications. However, more comprehensive weather-resilient datasets and adaptive multi-sensor fusion approaches are still needed. Advancing in these areas will be critical to improving the robustness of ARAS and ensuring safer riding experiences across diverse environmental conditions. Full article
Show Figures

Figure 1

30 pages, 7243 KB  
Article
Mission-Oriented Propulsion System Configuration and Whole Aircraft Redundancy Safety Performance for Distributed Electric Propulsion UAVs
by Ziyi Chen, Duoneng Liu, Zhongxi Hou and Suqi Chen
Drones 2025, 9(9), 662; https://doi.org/10.3390/drones9090662 - 22 Sep 2025
Viewed by 412
Abstract
Distributed electric propulsion has emerged as a prominent research area in aerospace engineering. The capabilities of shorter takeoff distance and efficient cruise flight are the important advantages of a distributed propulsion UAV over a traditional fixed-wing UAV, and the composition of multiple motors [...] Read more.
Distributed electric propulsion has emerged as a prominent research area in aerospace engineering. The capabilities of shorter takeoff distance and efficient cruise flight are the important advantages of a distributed propulsion UAV over a traditional fixed-wing UAV, and the composition of multiple motors can significantly improve the safety of the aircraft. This paper proposed an overall design method for the power system of the distributed propulsion UAV with the mission requirements as inputs, using the Actuator Disk Theory and Vortex Lattice Method to analyze the aerodynamic performance corresponding to different propeller numbers and layouts, and combining with the BP neural network to obtain the optimal propeller position. Meanwhile, the Linear Quadratic Regulator method was employed to analyze different configurations of UAVs, and the effects of the number of propellers and thrust redundancy on their safety were explored. The parametric study revealed that as the number of propellers increased, the optimal horizontal distance between the propeller and the leading edge of the wing gradually decreased (closer to the wing), and the vertical distance also gradually decreased (lower to the wing). The safety study revealed that when the number of propellers reached eight or more, the UAV could maintain stable flight with a probability exceeding 70% even when two or three propulsion components fail. The computational method and safety analysis for different propeller combinations studied in this paper feature high efficiency and low computational consumption, which can provide an effective reference for the overall design phase of distributed propulsion aircraft. Full article
Show Figures

Figure 1

24 pages, 2157 KB  
Article
Research on Aerodynamic Force/Thrust Vector Combined Trajectory Optimization Method for Hypersonic Drones Based on Deep Reinforcement Learning
by Zijun Zhang, Yunfan Zhou, Leichao Yang, Wenzhong Jin and Jun Wang
Actuators 2025, 14(9), 461; https://doi.org/10.3390/act14090461 - 22 Sep 2025
Viewed by 319
Abstract
This paper addresses the cruise range maximization problem for hypersonic drones by proposing a combined aerodynamic force/thrust vector trajectory optimization method. A novel continuous linear parameterization strategy for trajectory optimization is innovatively developed, achieving continuous thrust vector trajectory optimization throughout the entire flight [...] Read more.
This paper addresses the cruise range maximization problem for hypersonic drones by proposing a combined aerodynamic force/thrust vector trajectory optimization method. A novel continuous linear parameterization strategy for trajectory optimization is innovatively developed, achieving continuous thrust vector trajectory optimization throughout the entire flight using only 21 parameters through recursive linear function design. This approach reduces parameter dimensionality and effectively addresses sparse rewards and training difficulties in reinforcement learning. The study integrates the Deep Deterministic Policy Gradient (DDPG) algorithm with deep residual networks for trajectory optimization, systematically exploring the impact mechanisms of different aerodynamic force and thrust vector combination modes on range performance. Through collaborative trajectory optimization of thrust vectors and flight height, simulation results demonstrate that the combined trajectory optimization strategy achieves a total range enhancement of approximately 146.14 km compared to pure aerodynamic control, with continuous linearly parameterized thrust vector trajectory optimization providing superior performance over traditional segmented methods. These results verify the significant advantages of the proposed trajectory optimization approach and the effectiveness of the deep reinforcement learning framework. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

19 pages, 3612 KB  
Article
Phase-Adaptive Reinforcement Learning for Self-Tuning PID Control of Cruise Missiles
by Chang Tan, Jianfeng Wang, Hong Cai, Sen Hu, Bangchu Zhang and Weiyu Zhu
Aerospace 2025, 12(9), 849; https://doi.org/10.3390/aerospace12090849 - 20 Sep 2025
Viewed by 289
Abstract
Conventional fixed-gain PID controllers face inherent limitations in maintaining optimal performance across the diverse and dynamic flight phases of cruise missiles. To overcome these challenges, we propose Time-Fusion Proximal Policy Optimization (TF-PPO), a novel adaptive reinforcement learning framework designed specifically for cruise missile [...] Read more.
Conventional fixed-gain PID controllers face inherent limitations in maintaining optimal performance across the diverse and dynamic flight phases of cruise missiles. To overcome these challenges, we propose Time-Fusion Proximal Policy Optimization (TF-PPO), a novel adaptive reinforcement learning framework designed specifically for cruise missile control. TF-PPO synergistically integrates Long Short-Term Memory (LSTM) networks for enhanced temporal state perception and phase-specific reward engineering enabling self-evolution of PID parameters. Extensive hardware-in-the-loop experiments tailored to cruise missile dynamics demonstrate that TF-PPO achieves a 36.3% improvement in control accuracy over conventional PID methods. The proposed framework provides a robust, high-precision adaptive control solution capable of enhancing the performance of cruise missile systems under varying operational. Full article
(This article belongs to the Special Issue New Perspective on Flight Guidance, Control and Dynamics)
Show Figures

Figure 1

Back to TopTop