Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (620)

Search Parameters:
Keywords = crystalline defects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2291 KB  
Article
Infrared FEL-Induced Alteration of Zeta Potential in Electrochemically Grown Quantum Dots: Insights into Ion Modification
by Sukrit Sucharitakul, Siripatsorn Thanasanvorakun, Vasan Yarangsi, Suparoek Yarin, Kritsada Hongsith, Monchai Jitvisate, Hideaki Ohgaki, Surachet Phadungdhitidhada, Heishun Zen, Sakhorn Rimjaem and Supab Choopun
Nanomaterials 2025, 15(20), 1543; https://doi.org/10.3390/nano15201543 - 10 Oct 2025
Viewed by 321
Abstract
This study explores the use of mid-infrared (MIR) free-electron laser (FEL) irradiation as a tool for tailoring the surface properties of electrochemically synthesized TiO2—graphene quantum dots (QDs). The QDs, prepared in colloidal form via a cost-effective electrochemical method in a KCl—citric [...] Read more.
This study explores the use of mid-infrared (MIR) free-electron laser (FEL) irradiation as a tool for tailoring the surface properties of electrochemically synthesized TiO2—graphene quantum dots (QDs). The QDs, prepared in colloidal form via a cost-effective electrochemical method in a KCl—citric acid medium, were exposed to MIR wavelengths (5.76, 8.02, and 9.10 µm) at the Kyoto University FEL facility. Post-irradiation measurements revealed a pronounced inversion of zeta potential by 40–50 mV and approximately 10% reduction in hydrodynamic size, indicating double-layer contraction and ionic redistribution at the QD—solvent interface. Photoluminescence spectra showed enhanced emission for GQDs and TiO2/GQD composites, while Tauc analysis revealed modest bandgap blue shifts (0.04–0.08 eV), both consistent with trap-state passivation and sharper band edges. TEM confirmed intact crystalline structures, verifying that FEL-induced modifications were confined to surface chemistry rather than bulk lattice damage. Taken together, these results demonstrate that MIR FEL irradiation provides a resonance-driven, non-contact method to reorganize ions, suppress defect states, and improve the optoelectronic quality of QDs. This approach offers a scalable post-synthetic pathway for enhancing electron transport layers in perovskite solar cells and highlights the broader potential of photonic infrastructure for advanced nanomaterial processing and interface engineering in optoelectronic and energy applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

24 pages, 6079 KB  
Article
Influence of Shape-Forming Elements on Microstructure and Mechanical Properties in Coextruded Thermoplastic Composites
by Rebecca Olanrewaju, Yuefang Jiang, Thao Nguyen and David Kazmer
Polymers 2025, 17(19), 2703; https://doi.org/10.3390/polym17192703 - 8 Oct 2025
Viewed by 282
Abstract
The immiscibility of most polymers leads to poor interfacial adhesion in blends, a critical challenge that often limits the mechanical performance of polymer composites. This research introduces shape-forming elements (SFEs), a novel class of coextrusion dies designed to create additional geometric complexity and [...] Read more.
The immiscibility of most polymers leads to poor interfacial adhesion in blends, a critical challenge that often limits the mechanical performance of polymer composites. This research introduces shape-forming elements (SFEs), a novel class of coextrusion dies designed to create additional geometric complexity and control over interfacial architecture. Specifically inspired by Julia Set and T-Square fractals, SFEs were simulated, prototyped, and found to be effective in coextrusion of different-colored polymer clays. The SFEs were employed to coextrude architected composites consisting of a liquid crystalline polymer (Vectra A950) and a cycloaliphatic polyamide (Trogamid CX7323). Mechanical testing revealed a strong positive correlation between the draw ratio and both the tensile modulus (adjusted R2 = 0.94) and tensile stress at break (adjusted R2 = 0.84). However, experimental cross-sections significantly differed from simulation results. These discrepancies were attributed to interfacial instabilities caused by material incompatibility between the two polymers and potential moisture-induced defects. This finding highlights critical challenges that arise during practical processing, emphasizing the importance of addressing polymer compatibility and moisture management to realize the full potential of SFEs in designing advanced polymer composites with targeted properties. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

15 pages, 10073 KB  
Article
Defect Engineering in Fluorinated Metal–Organic Frameworks Within Mixed-Matrix Membranes for Enhanced CO2 Separation
by Benxing Li, Lei Wang, Yizheng Tao, Rujing Hou and Yichang Pan
Membranes 2025, 15(10), 296; https://doi.org/10.3390/membranes15100296 - 30 Sep 2025
Viewed by 332
Abstract
Developing highly permeable and selective membranes for energy-efficient CO2/CH4 separation remains challenging. Mixed-matrix membranes (MMMs) integrating polymer matrices with metal–organic frameworks (MOFs) offer significant potential. However, rational filler–matrix matching presents substantial difficulties, constraining separation performance. In this work, defects were [...] Read more.
Developing highly permeable and selective membranes for energy-efficient CO2/CH4 separation remains challenging. Mixed-matrix membranes (MMMs) integrating polymer matrices with metal–organic frameworks (MOFs) offer significant potential. However, rational filler–matrix matching presents substantial difficulties, constraining separation performance. In this work, defects were engineered within fluorinated MOF ZU-61 through the partial replacement of 4,4′-bipyridine linkers with pyridine modulators, producing high-porosity HP-ZU-61 nanoparticles exhibiting a 267% BET surface area enhancement (992.9 m2 g−1) over low-porosity ZU-61 (LP-ZU-61) (372.2 m2 g−1). The HP-ZU-61/6FDA-DAM MMMs (30 wt.%) demonstrated homogeneous filler dispersion and pre-served crystallinity, achieving a CO2 permeability of 1626 barrer and CO2/CH4 selectivity (33), surpassing the 2008 Robeson upper bound. Solution-diffusion modeling indicated ligand deficiencies generated accelerated diffusion pathways, while defect-induced unsaturated metal sites functioned as strong CO2 adsorption centers that maintained solubility selectivity. This study establishes defect engineering in fluorinated MOF-based MMMs as a practical strategy to concurrently overcome the permeability–selectivity trade-off for efficient CO2 capture. Full article
(This article belongs to the Special Issue Functional Composite Membranes: Properties and Applications)
Show Figures

Figure 1

15 pages, 4890 KB  
Article
Tunable Bandgap in Cobalt-Doped FeS2 Thin Films for Enhanced Solar Cell Performance
by Eder Cedeño Morales, Yolanda Peña Méndez, Sergio A. Gamboa-Sánchez, Boris Ildusovich Kharissov, Tomás C. Hernández García and Marco A. Garza-Navarro
Materials 2025, 18(19), 4546; https://doi.org/10.3390/ma18194546 - 30 Sep 2025
Viewed by 299
Abstract
Cobalt-doped iron disulfide (FeS2) thin films were synthesized via chemical bath deposition (CBD) followed by annealing at 450 °C, yielding phase-pure pyrite structures with multifunctional properties. A deposition temperature of 95 °C is critical for promoting Co incorporation, suppressing sulphur vacancies, [...] Read more.
Cobalt-doped iron disulfide (FeS2) thin films were synthesized via chemical bath deposition (CBD) followed by annealing at 450 °C, yielding phase-pure pyrite structures with multifunctional properties. A deposition temperature of 95 °C is critical for promoting Co incorporation, suppressing sulphur vacancies, and achieving structural stabilization of the film. After annealing, the dendritic morphologies transformed into compact quasi-spherical nanoparticles (~100 nm), which enhanced the crystallinity and optoelectronic performance of the films. The films exhibited strong absorption (>50%) in the visible and near-infrared regions and tunable direct bandgaps (1.14 to 0.96 eV, within the optimal range for single-junction solar cells. Electrical characterization revealed a fourth-order increase in conductivity after annealing (up to 4.78 Ω−1 cm−1) and confirmed stable p-type behavior associated with Co2+-induced acceptor states and defect passivation. These results demonstrate that CBD enabled the fabrication of Co-doped FeS2 thin films with synergistic structural, electrical, and optical properties. The integration of earth-abundant elements and tunable electronic properties makes these films promising absorber materials for the next-generation photovoltaic devices. Full article
(This article belongs to the Special Issue The Optical, Ferroelectric and Dielectric Properties of Thin Films)
Show Figures

Figure 1

11 pages, 10889 KB  
Article
Post-Irradiation Annealing of Bi Ion Tracks in Si3N4: In-Situ and Ex-Situ Transmission Electron Microscopy Study
by Anel Ibrayeva, Jacques O’Connell, Ruslan Rymzhanov, Arno Janse van Vuuren and Vladimir Skuratov
Crystals 2025, 15(10), 852; https://doi.org/10.3390/cryst15100852 - 30 Sep 2025
Viewed by 214
Abstract
High-energy (710 MeV) Bi ion track morphology in polycrystalline silicon nitride was investigated during post-irradiation annealing. Using both in-situ and ex-situ transmission electron microscopy, we monitored the recovery of crystallinity within initially amorphous ion track regions. In-situ annealing involved heating samples from room [...] Read more.
High-energy (710 MeV) Bi ion track morphology in polycrystalline silicon nitride was investigated during post-irradiation annealing. Using both in-situ and ex-situ transmission electron microscopy, we monitored the recovery of crystallinity within initially amorphous ion track regions. In-situ annealing involved heating samples from room temperature to 1000 °C in 50 °C increments, each held for 10 s. We observed a steady decrease in both the size and number of tracks, with only a small number of residual crystalline defects remaining at 1000 °C. Ex-situ annealing experiments were conducted at 400 °C, 700 °C, and 1000 °C for durations of 10, 20, and 30 min. Complete restoration of the crystalline lattice occurred after 30 min at 700 °C and 20 min at 1000 °C. Due to inherent differences in geometry, heat flow, and stress conditions between thin lamella and bulk specimens, in-situ and ex-situ results cannot be compared. Molecular dynamics simulations further revealed that track shrinkage begins in cells within picoseconds, supporting the notion that recrystallization can start on very short timescales. Overall, these findings demonstrate that thermal recrystallization of damage induced by swift heavy ion irradiation in polycrystalline Si3N4 is possible. This study provides a foundation for future research aimed at better understanding radiation damage recovery in this material. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

17 pages, 3397 KB  
Article
Preparation and Performance of Poly(Butylene Succinate) (PBS) Composites Reinforced with Taxus Residue and Compatibilized with Branched PBS
by Shiwanyi Chen, Shufeng Li, Bing Wang, Chen Chen and Liuchun Zheng
Polymers 2025, 17(19), 2597; https://doi.org/10.3390/polym17192597 - 25 Sep 2025
Viewed by 424
Abstract
In response to the escalating plastic pollution crisis, the development of high-performance biodegradable materials is critical. Poly(butylene succinate) (PBS) is an important biodegradable polymer as it possesses excellent biodegradability and processability. But it suffers from limitations such as low mechanical strength, poor thermal [...] Read more.
In response to the escalating plastic pollution crisis, the development of high-performance biodegradable materials is critical. Poly(butylene succinate) (PBS) is an important biodegradable polymer as it possesses excellent biodegradability and processability. But it suffers from limitations such as low mechanical strength, poor thermal stability, and high production costs. In this study, taxus residue (TF), a waste by-product, was utilized as a reinforcing filler to reduce PBS costs while enhancing its overall performance. To address the interfacial incompatibility between TF and PBS, branched PBS (T-PBS) was introduced as a compatibilizer. The TF was surface-modified via alkali treatment and silane coupling (KH550), and a series of PBS/TF/T-PBS composites with varying T-PBS viscosity grades were prepared by melt blending. The compatibilization mechanism of T-PBS and its influence on the composite structure, crystallization behavior, thermal stability, rheological, and mechanical properties were systematically investigated. Results show that the branched structure significantly enhanced T-PBS melt strength and reactivity. The introduction of T-PBS effectively improved interfacial compatibility between TF and PBS matrix, reducing phase separation and interfacial defects. Compared to uncompatibilized PBS/TF composites, those with appropriately viscous T-PBS exhibited improved tensile strength (increased by 19.7%) and elongation at break (increased by 78.8%), while flexural strength was also maintained at an enhanced level. The branched points acted as nucleating agents, increasing the onset temperature and degree of crystallinity. In the high-temperature region, the synergistic barrier effect from TF and char residue improved thermal stability (T85% reached 408.19 °C). Rheological analysis revealed enhanced viscosity and elasticity of the system. This study provides a promising strategy and theoretical foundation for the high-value utilization of taxus waste and the development of high-performance biodegradable PBS-based composites. Full article
Show Figures

Figure 1

12 pages, 804 KB  
Article
Integrating Photon-Based Techniques to Probe Structural and Phonon Dynamics in Bacterial Cellulose
by Levente Csóka and Bunsho Ohtani
Polymers 2025, 17(18), 2544; https://doi.org/10.3390/polym17182544 - 20 Sep 2025
Viewed by 305
Abstract
Bacterial cellulose, a biopolymer synthesised by microorganisms, exhibits remarkable structural, optical, and electronic properties. This study utilised a range of photon- and electron-based techniques, including X-ray diffraction, proton nuclear magnetic resonance (1H-NMR), photoacoustic spectroscopy, and scanning electron microscopy, to thoroughly characterise [...] Read more.
Bacterial cellulose, a biopolymer synthesised by microorganisms, exhibits remarkable structural, optical, and electronic properties. This study utilised a range of photon- and electron-based techniques, including X-ray diffraction, proton nuclear magnetic resonance (1H-NMR), photoacoustic spectroscopy, and scanning electron microscopy, to thoroughly characterise BC. While XRD and NMR directly employ photons to probe the structure and composition, PAS indirectly converts absorbed photons into phonons to evaluate optoelectronic features. SEM revealed a dense nanofibrillar network with fibrils measuring 10–75 nm in diameter. XRD confirmed the crystalline nature of BC, identifying characteristic peaks associated with cellulose Iα. 1H-NMR relaxation analysis differentiated between the ordered and disordered cellulose regions. PAS determined an optical bandgap of 2.97 eV and identified defect states between 3.6 and 2.9 eV, including a prominent peak at 3.35 eV, likely resulting from oxygen vacancies, hydroxyl modifications, or UV-induced rearrangements. These defects modify BC’s electronic structure, suggesting potential for bandgap engineering. The integration of these complementary techniques provides a multidimensional understanding of BC’s morphology, crystallinity, and electronic behaviour, underscoring its potential in bioelectronics, advanced composites, and biomedical applications. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

20 pages, 7801 KB  
Article
Microstructure and Mechanical Property of Thin-Walled Inconel 718 Parts Fabricated by Ultrasonic-Assisted Laser-Directed Energy Deposition
by Bo Peng, Xiaoqiang Zhang, Mengmeng Zhang, Ze Chai, Fahai Ba and Xiaoqi Chen
Crystals 2025, 15(9), 815; https://doi.org/10.3390/cryst15090815 - 18 Sep 2025
Viewed by 448
Abstract
Laser-directed energy deposition (DED) offers significant potential for the additive manufacturing of thin-walled Inconel 718 aerospace components. However, the structural defects readily formed during deposition, along with the extensive precipitation of long-chain Laves phases between coarse dendrites, can severely compromise the mechanical properties [...] Read more.
Laser-directed energy deposition (DED) offers significant potential for the additive manufacturing of thin-walled Inconel 718 aerospace components. However, the structural defects readily formed during deposition, along with the extensive precipitation of long-chain Laves phases between coarse dendrites, can severely compromise the mechanical properties of as-fabricated Inconel 718 parts. To address this, an ultrasonic-assisted DED (UDED) method was employed to reduce the deposited structural defects and refine crystalline structures, and the influences of ultrasonic energy fields on the microstructure and mechanical properties of thin-walled Inconel 718 samples were systematically investigated. The results demonstrated that ultrasonic vibration significantly enhances the microstructural quality by reducing porosity and pore size, weakening texture intensity, fragmenting long-chain Laves phases, mitigating severe elemental segregation, and refining matrix grains. Consequently, the UDED thin-walled Inconel 718 sample exhibited an approximately 15% increase in microhardness compared to the conventional DED counterpart, alongside satisfactory strength and ductility. This study highlights the superiority of UDED for microstructure tailoring and its potential for mechanical property regulations in thin-walled Inconel 718 aerospace components. Full article
(This article belongs to the Special Issue Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

17 pages, 19874 KB  
Article
Evolution of Microstructure and Performance in Polyacrylonitrile Precursor Fibers: A Comparison of Spinning Processes
by Liang Cao, Lili Zhang, Zhenbo Zhao, Shaowei Wang, Zhaowei Li, Deqi Jing and Shouchun Zhang
Polymers 2025, 17(18), 2504; https://doi.org/10.3390/polym17182504 - 17 Sep 2025
Viewed by 403
Abstract
The microstructure of polyacrylonitrile (PAN) precursor fibers has a profound influence on the performance of carbon fibers and depends on the spinning processes and processing conditions. This study compared the evolution of the microstructures and performance of PAN fibers between the wet-spinning and [...] Read more.
The microstructure of polyacrylonitrile (PAN) precursor fibers has a profound influence on the performance of carbon fibers and depends on the spinning processes and processing conditions. This study compared the evolution of the microstructures and performance of PAN fibers between the wet-spinning and dry-jet wet-spinning processes, utilizing scanning electron microscopy, small/wide-angle X-ray scattering, dynamic mechanical analysis, and single-fiber tensile testing. Both spinning processes promoted the oriented alignment of microfibrils and fibrils, improved the crystal arrangement and molecular regularity, and facilitated the transition from a two-phase (crystalline/amorphous) structure to a single-phase structure, thereby gradually improving the fibers’ elastic character and mechanical properties. However, wet-spun fibers exhibited inherent defects (skin-core structure and large voids), which caused surface grooves, radial mechanical heterogeneity, and low breaking elongation during post-spinning. In contrast, dry-jet wet-spun fibers initially had a smooth surface and a homogeneous radial structure, which evolved into well-oriented, radially homogeneous structures during post-spinning. Furthermore, the dry-jet wet-spinning process produced greater increases in crystallinity (46%), crystal size (258%), and orientation index (146%) than the wet-spinning process did. The dry-jet wet-spinning process’s superiority in forming and optimizing the fiber microstructure gives it greater potential for producing high-quality PAN precursor fibers. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

17 pages, 5216 KB  
Article
Structural Characterization of Single-Crystalline Cored Turbine Blade Airfoils
by Jacek Krawczyk and Kamil Gancarczyk
Crystals 2025, 15(9), 806; https://doi.org/10.3390/cryst15090806 - 13 Sep 2025
Viewed by 432
Abstract
Turbine blades are the most critical parts of aircraft engines. They are exposed to complex forces at the highest temperature and an aggressive environment. For this reason, the highest demands are placed on their structural quality. In single-crystalline nickel-based superalloy blades, the quality [...] Read more.
Turbine blades are the most critical parts of aircraft engines. They are exposed to complex forces at the highest temperature and an aggressive environment. For this reason, the highest demands are placed on their structural quality. In single-crystalline nickel-based superalloy blades, the quality of the dendritic structure, crystal orientation, and local lattice parameter homogeneity is important because such properties affect the strength properties of the casting. For this reason, the structural attributes mentioned above were studied for novel, model-cored blades made of Ni-based superalloy. The blades were studied using scanning electron microscopy, the dedicated original X-ray Ω-scan method, the Laue diffraction, and the X-ray diffraction topography. The differences in the dendrites’ morphology and their array, revealing changes in dendrites’ arm size and arrangement, and changes in dendrites’ symmetry, were observed. Misoriented areas were identified, forming subgrains separated by low-angle boundaries. The location of the subgrains concerning the blade geometry and reasons for their creation were analyzed. The relation between the observed local changes in the lattice parameter and the creation of structural defects was determined. Aspects influencing the formation of structural defects that may reduce the durability of castings in specific areas of the cored blade airfoils have been discussed. Full article
(This article belongs to the Special Issue Emerging Topics of High-Performance Alloys (2nd Edition))
Show Figures

Figure 1

13 pages, 2233 KB  
Article
Interfacial Defect Suppression and Enhanced Optical Properties in InP Quantum Dots via Two-Step ZnSe Shelling Strategy
by Jaehyeong Yoo, Sung-Yoon Joe and Jae-Hyeon Ko
Materials 2025, 18(17), 4172; https://doi.org/10.3390/ma18174172 - 5 Sep 2025
Viewed by 850
Abstract
This study investigates the interfacial structural origin of enhanced optical performance in InP-based quantum dots (QDs) employing a 2-step ZnSe shelling strategy. By comparing InP/ZnSe/ZnS QDs synthesized via 1-step and 2-step shelling methods using identical InP cores, we demonstrate that the 2-step approach [...] Read more.
This study investigates the interfacial structural origin of enhanced optical performance in InP-based quantum dots (QDs) employing a 2-step ZnSe shelling strategy. By comparing InP/ZnSe/ZnS QDs synthesized via 1-step and 2-step shelling methods using identical InP cores, we demonstrate that the 2-step approach results in improved core–shell lattice matching, more favorable carrier dynamics, and enhanced thermal stability. These enhancements are attributed to the formation of an initial thin ZnSe interfacial layer, which facilitates uniform shell growth and suppresses interfacial defect formation. High-resolution transmission electron microscopy and elemental mapping via energy-dispersive X-ray spectroscopy analyses confirm the improved crystallinity and reduced oxygen-related trap states in the 2-step samples. The findings highlight the critical role of interfacial control in determining QD performance and establish the 2-step ZnSe shelling strategy as an effective route to achieving structurally and optically robust QD emitters for advanced optoelectronic applications. Full article
Show Figures

Figure 1

35 pages, 53404 KB  
Article
Morphological and Optical Properties of RE-Doped ZnO Thin Films Fabricated Using Nanostructured Microclusters Grown by Electrospinning–Calcination
by Marina Manica, Mirela Petruta Suchea, Dumitru Manica, Petronela Pascariu, Oana Brincoveanu, Cosmin Romanitan, Cristina Pachiu, Adrian Dinescu, Raluca Muller, Stefan Antohe, Daniel Marcel Manoli and Emmanuel Koudoumas
Nanomaterials 2025, 15(17), 1369; https://doi.org/10.3390/nano15171369 - 4 Sep 2025
Viewed by 704
Abstract
In this study, we report the fabrication and multi-technique characterization of pure and rare-earth (RE)-doped ZnO thin films using nanostructured microclusters synthesized via electrospinning followed by calcination. Lanthanum (La), erbium (Er), and samarium (Sm) were each incorporated at five concentrations (0.1–5 at.%) into [...] Read more.
In this study, we report the fabrication and multi-technique characterization of pure and rare-earth (RE)-doped ZnO thin films using nanostructured microclusters synthesized via electrospinning followed by calcination. Lanthanum (La), erbium (Er), and samarium (Sm) were each incorporated at five concentrations (0.1–5 at.%) into ZnO, and the resulting powders were drop-cast as thin films on glass substrates. This approach enables the transfer of pre-engineered nanoscale morphologies into the final thin-film architecture. The morphological analysis by scanning electron microscopy (SEM) revealed a predominance of spherical nanoparticles and nanorods, with distinct variations in size and aspect ratio depending on dopant type and concentration. X-ray diffraction (XRD) and Rietveld analysis confirmed the wurtzite ZnO structure with increasing evidence of secondary phase formation at high dopant levels (e.g., Er2O3, Sm2O3, and La(OH)3). Raman spectroscopy showed peak shifts, broadening, and defect-related vibrational modes induced by RE incorporation, in agreement with the lattice strain and crystallinity variations observed in XRD. Elemental mapping (EDX) confirmed uniform dopant distribution. Optical transmittance exceeded 70% for all films, with Tauc analysis revealing slight bandgap narrowing (Eg = 2.93–2.97 eV) compared to pure ZnO. This study demonstrates that rare-earth doping via electrospun nanocluster precursors is a viable route to engineer ZnO thin films with tunable structural and optical properties. Despite current limitations in film-substrate adhesion, the method offers a promising pathway for future transparent optoelectronic, sensing, or UV detection applications, where further interface engineering could unlock their full potential. Full article
Show Figures

Graphical abstract

52 pages, 2983 KB  
Systematic Review
Niobium-Based Catalysts in Advanced Oxidation Processes: A Systematic Review of Mechanisms, Material Engineering, and Environmental Applications
by Michel Z. Fidelis, Julia Faria, William Santacruz, Thays S. Lima, Giane G. Lenzi and Artur J. Motheo
Environments 2025, 12(9), 311; https://doi.org/10.3390/environments12090311 - 4 Sep 2025
Viewed by 1151
Abstract
Water contamination by emerging pollutants poses a significant environmental challenge, demanding innovative treatment technologies beyond conventional methods. Advanced oxidation processes (AOPs) utilizing niobium-based catalysts, particularly niobium oxide (Nb2O5) and its modified forms, are prominent due to their high chemical [...] Read more.
Water contamination by emerging pollutants poses a significant environmental challenge, demanding innovative treatment technologies beyond conventional methods. Advanced oxidation processes (AOPs) utilizing niobium-based catalysts, particularly niobium oxide (Nb2O5) and its modified forms, are prominent due to their high chemical stability, effective reactive oxygen species (ROS) generation, and versatility. This review systematically examines recent advancements in Nb2O5-based catalysts across various AOPs, including heterogeneous photocatalysis, electrocatalysis, and Fenton-like reactions, highlighting their mechanisms, material modifications, and performance. Following PRISMA and InOrdinatio guidelines, 381 papers were selected for this synthesis. The main findings indicate that niobium incorporation enhances pollutant degradation by extending light absorption, reducing electron–hole recombination, and increasing ROS generation. Structural modifications such as crystalline phase tuning, defect engineering, and the formation of heterostructures further amplify catalytic efficiency and stability. These catalysts demonstrate considerable potential for water treatment, effectively degrading a broad range of persistent contaminants such as dyes, pharmaceuticals, pesticides, and personal care products. This review underscores the environmental benefits and practical relevance of Nb2O5-based systems, identifying critical areas for future research to advance sustainable water remediation technologies. Full article
(This article belongs to the Special Issue Advanced Research on Micropollutants in Water, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 3291 KB  
Article
Aging-Induced Microstructural Transformations and Performance Enhancement of Cr/DLC Coatings on ECAP-7075 Aluminum Alloy
by Yuqi Wang, Tao He, Xiangyang Du, Artem Okulov, Alexey Vereschaka, Jian Li, Yang Ding, Kang Chen and Peiyu He
Coatings 2025, 15(9), 1017; https://doi.org/10.3390/coatings15091017 - 1 Sep 2025
Viewed by 689
Abstract
This study systematically investigates the effects of aging treatment (AT) on the microstructure and properties of Cr/DLC coatings deposited via cathodic arc ion plating onto the surface of ECAP-7075 aluminum alloy. Utilizing a comprehensive approach combining performance tests (nanoindentation, nanoscratch testing, dynamic polarization [...] Read more.
This study systematically investigates the effects of aging treatment (AT) on the microstructure and properties of Cr/DLC coatings deposited via cathodic arc ion plating onto the surface of ECAP-7075 aluminum alloy. Utilizing a comprehensive approach combining performance tests (nanoindentation, nanoscratch testing, dynamic polarization analysis) with characterization tests (scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy), the synergistic effects of equal channel angular pressing (ECAP) and aging treatment(AT) were elucidated. The results demonstrate that the combined ECAP and AT significantly enhance the coating’s performance. Specifically, AT promotes the precipitation of η’ phase within the 7075 aluminum alloy substrate, increases the size of Cr7C3 crystallites in the Cr-based interlayer, improves the crystallinity of the Cr7C3 phase on the (060) or (242) crystal planes, and elevates the sp3-C/sp2-C ratio in the diamond-like carbon(DLC) top layer, leading to partial healing of defects and a denser overall coating structure. These microstructural transformations, induced by AT, result in substantial improvements in the mechanical properties (hardness reaching 5.2 GPa, bond strength achieving 15.1 N) and corrosion resistance (corrosion potential increasing to -0.698 V) of the Cr/DLC-coated ECAP-7075 aluminum alloy. This enhanced combination of properties makes these coatings particularly well-suited for high-performance aerospace components requiring both wear resistance and corrosion protection in demanding environments. Full article
(This article belongs to the Special Issue Innovative Coatings for Corrosion Protection of Alloy Surfaces)
Show Figures

Figure 1

20 pages, 4419 KB  
Article
Comparing Sustainable and Conventional Methods for Synthesizing Copper Oxide Nanoparticles: Implications for Hydrogen Evolution
by Ebtsam Khalefah Alenezy, Ibraheem Othman Ali, Nady Hashem and Tarek Mohamed Salama
Catalysts 2025, 15(9), 823; https://doi.org/10.3390/catal15090823 - 30 Aug 2025
Viewed by 682
Abstract
This study explores the synthesis of copper oxide nanoparticles (CuO NPs) via green and conventional methods, with emphasis on their performance in hydrogen evolution reactions (HERs). CuO NPs synthesized using okra extract (CuOokra) and hydrazine hydrate (CuOhyd) were characterized [...] Read more.
This study explores the synthesis of copper oxide nanoparticles (CuO NPs) via green and conventional methods, with emphasis on their performance in hydrogen evolution reactions (HERs). CuO NPs synthesized using okra extract (CuOokra) and hydrazine hydrate (CuOhyd) were characterized using XRD, FTIR, SEM, HRTEM, and electrochemical techniques. Structural analysis revealed that CuOokra NPs have smaller crystallite sizes (39.8 nm) and higher defect densities than CuOhyd NPs (56.8 nm), while CuOhyd exhibited superior porosity and crystallinity. In HER studies, CuOhyd outperformed CuOokra, achieving a significantly lower overpotential (342.2 mV vs. 408.49 mV at 20 mA cm−2) and higher cathodic current density (15.9 vs. 11.3 mA cm−2 at −1.3 V). Electrochemical impedance spectroscopy (EIS) further confirmed the superior catalytic activity of CuOhyd NPs, showing minimal polarization resistance compared to CuOokra. Full article
Show Figures

Figure 1

Back to TopTop