Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,276)

Search Parameters:
Keywords = ctDNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 931 KB  
Article
Rare BLK, CEL, KLF11, PDX1, and PAX4 Gene Variants in Russian Patients with Monogenic Diabetes: Clinical and Molecular Characterization
by Rita I. Khusainova, Ildar R. Minniakhmetov, Dmitry N. Laptev, Mariya P. Koltakova, Roman V. Deev, Bulat I. Yalaev, Yaroslav V. Dvoryanchikov, Elena A. Sechko and Natalia G. Mokrysheva
Biomedicines 2025, 13(10), 2452; https://doi.org/10.3390/biomedicines13102452 - 9 Oct 2025
Viewed by 206
Abstract
Background: Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic diabetes forms that are frequently misclassified as type 1 or type 2 diabetes due to overlapping phenotypic features. The true prevalence of MODY is likely substantially underestimated. As DNA-based diagnostics [...] Read more.
Background: Maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic diabetes forms that are frequently misclassified as type 1 or type 2 diabetes due to overlapping phenotypic features. The true prevalence of MODY is likely substantially underestimated. As DNA-based diagnostics become increasingly accessible, an expanding number of novel genetic variants are being identified. Objectives: The aim of this study was to characterize the clinical and genetic features of patients carrying rare variants in the BLK, KLF11, PAX4, PDX1, and CEL genes, with attention to population-specific aspects, family history, and treatment outcomes. Methods: Targeted next-generation sequencing (NGS) using a custom-designed panel covering 27 genes implicated in MODY, neonatal diabetes, and related hereditary syndromes was performed on the Illumina NovaSeq 6000 platform (Illumina). Results: We identified 21 variants in five genes associated with rare MODY subtypes among 24 unrelated patients. MODY9 was diagnosed in two unrelated patients of Russian ethnicity harboring an identical heterozygous missense mutation in exon 5 of the PAX4 gene (HG38, chr7:127615049G>A, c.191C>T, p.Thr64Ile), which has not been previously described in patients with diabetes. MODY11 was diagnosed in a patient carrying the c.773-1G>A variant in the BLK gene. A patient with a de novo c.40_41dupGC (p.Val15Glnfs*41) variant in the KLF11 gene was clinically diagnosed with type 1 diabetes. Conclusion: Our findings expand the current understanding of rare MODY subtypes and contribute to the growing body of evidence on the spectrum and frequency of potentially pathogenic variants in BLK, CEL, KLF11, PDX1, and PAX4 genes across ethnically diverse populations worldwide. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

21 pages, 555 KB  
Review
Beyond Visualization: Advanced Imaging, Theragnostics and Biomarker Integration in Urothelial Bladder Cancer
by Eduardo Albers Acosta, Lira Pelari Mici, Carlos Márquez Güemez, Clara Velasco Balanza, Manuel Saavedra Centeno, Marta Pérez Pérez, Guillermo Celada Luis, Cristina Quicios Dorado, José Daniel Subiela, Rodrigo España Navarro, Patricia Toquero Diez, Nuria Romero Laorden and Luis San José Manso
Cancers 2025, 17(19), 3261; https://doi.org/10.3390/cancers17193261 - 8 Oct 2025
Viewed by 305
Abstract
Background/Objectives: Bladder cancer is characterized by high recurrence and progression rates, posing a challenge to current diagnostic and treatment strategies. This review aims to provide a comprehensive overview of emerging technologies, including novel PET tracers, AI-assisted cystoscopy, theragnostics, and molecular biomarkers. Methods: [...] Read more.
Background/Objectives: Bladder cancer is characterized by high recurrence and progression rates, posing a challenge to current diagnostic and treatment strategies. This review aims to provide a comprehensive overview of emerging technologies, including novel PET tracers, AI-assisted cystoscopy, theragnostics, and molecular biomarkers. Methods: We performed a narrative review of the recent literature focusing on innovations in imaging, AI, theragnostics, and biomarker research relevant to bladder cancer diagnosis and management. Results: Several novel PET tracers, such as 68Ga-PSMA and fibroblast activation protein inhibitor (FAPI), demonstrated potential in improving detection sensitivity. AI-enhanced cystoscopy has shown promise in real-time lesion detection, while theragnostic agents enable combined diagnostic and therapeutic applications. Advances in molecular biomarkers, including circulating Tumor DNA (ctDNA) and gene expression signatures, offer new avenues for patient stratification and monitoring. Conclusions: Integration of advanced imaging, AI, theragnostics, and biomarker analysis may transform bladder cancer management, supporting personalized and more effective care strategies. Full article
Show Figures

Figure 1

12 pages, 2020 KB  
Article
Molecular-Genetic Research of Rhodococcus rhodochrous IEGM 1362, an Active (–)-Isopulegol Biotransformer
by Polina Y. Maltseva, Natalia A. Plotnitskaya and Irina B. Ivshina
Molecules 2025, 30(19), 3976; https://doi.org/10.3390/molecules30193976 - 3 Oct 2025
Viewed by 289
Abstract
The present study aimed to identify genes encoding enzymes involved in the biotransformation of monoterpenoid (–)-isopulegol by Rhodococcus rhodochrous IEGM 1362. This strain is able to transform (–)-isopulegol with formation of two novel metabolites with promising antitumor and analeptic activities. Cell fractions of [...] Read more.
The present study aimed to identify genes encoding enzymes involved in the biotransformation of monoterpenoid (–)-isopulegol by Rhodococcus rhodochrous IEGM 1362. This strain is able to transform (–)-isopulegol with formation of two novel metabolites with promising antitumor and analeptic activities. Cell fractions of rhodococci and specific inhibitor of cytochrome P450-dependent oxygenase activity were used to establish the localization and type of biotransformation enzymes. The expression of nine CYP450 genes selected by bioinformatics analysis was analyzed by quantitative real-time PCR (qRT-PCR). Selection of optimal reference genes for normalization of qRT-PCR results was performed using BestKeeper, Normfinder, geNorm, Delta CT, and RefFinder algorithms. As a result of these studies, the role of CYP450 enzyme complexes in the biotransformation of (–)-isopulegol was confirmed, and their cytoplasmic localization was established. The genes encoding DNA gyrase subunit B (gyrB) and protein translocase subunit A (secA) were selected as the most stable reference genes. The induced expression of the gene encoding CYP450 hydroxylase in the presence of (–)-isopulegol was determined. The obtained data allow us to identify the specific CYP450 enzyme involved in (–)-isopulegol biotransformation by R. rhodochrous IEGM 1362 and lay the foundation for further studies of molecular and genetic mechanisms of monoterpenoid biotransformation. Full article
Show Figures

Figure 1

28 pages, 2183 KB  
Review
CRISPR-Powered Liquid Biopsies in Cancer Diagnostics
by Joshua R. Slattery, Noel Ye Naung, Bernd H. Kalinna and Martin Pal
Cells 2025, 14(19), 1539; https://doi.org/10.3390/cells14191539 - 1 Oct 2025
Viewed by 733
Abstract
Liquid biopsies promise major advantages for cancer screening and diagnosis. By detecting biomarkers in peripheral blood samples, liquid biopsies reduce the need for invasive techniques and provide important genetic information integral to the emerging molecular classification of cancers. Unfortunately, the concentrations of most [...] Read more.
Liquid biopsies promise major advantages for cancer screening and diagnosis. By detecting biomarkers in peripheral blood samples, liquid biopsies reduce the need for invasive techniques and provide important genetic information integral to the emerging molecular classification of cancers. Unfortunately, the concentrations of most biomarkers, particularly circulating tumour nucleic acids, are vanishingly small—beyond the sensitivity and specificity of most assays. Clustered Regularly Interspaced Short Palindromic Repeats diagnostics (herein labelled ‘CRISPR-Dx’) use gene editing tools to detect, rather than modify, nucleic acids with extremely high specificity. These tools are commonly combined with isothermal nucleic acid amplification to also achieve sensitivities comparable to high-performance laboratory-based techniques, such as digital PCR. CRISPR assays, however, are inherently well suited to adaptation for point-of-care (POC) use, and unlike antigen-based POC assays, are significantly easier and faster to develop. In this review, we summarise current CRISPR-Dx platforms and their analytical potential for cancer biomarker discovery, with an emphasis on enhancing early diagnosis, disease monitoring, point-of-care testing, and supporting cancer therapy. Full article
(This article belongs to the Special Issue CRISPR-Based Genome Editing Approaches in Cancer Therapy)
Show Figures

Figure 1

22 pages, 2225 KB  
Review
Integrating Molecular Phenotyping into Treatment Algorithms for Advanced Oestrogen Receptor-Positive Breast Cancer
by Sarah Childs, Ryoko Semba, Lucy Haggstrom and Elgene Lim
Cancers 2025, 17(19), 3174; https://doi.org/10.3390/cancers17193174 - 29 Sep 2025
Viewed by 215
Abstract
Breast cancer is the most common malignancy and leading cause of cancer-related mortality among women worldwide. Oestrogen receptor (ER)-positive disease accounts for the majority of cases, where endocrine and targeted therapies have substantially improved survival. Nevertheless, resistance to therapy remains inevitable, emphasising the [...] Read more.
Breast cancer is the most common malignancy and leading cause of cancer-related mortality among women worldwide. Oestrogen receptor (ER)-positive disease accounts for the majority of cases, where endocrine and targeted therapies have substantially improved survival. Nevertheless, resistance to therapy remains inevitable, emphasising the need for precision strategies informed by molecular profiling. The molecular landscape of ER-positive breast cancer is increasingly complex, characterised by diverse genomic alterations driving resistance and progression. Advances in next-generation sequencing and circulating tumour DNA (ctDNA) technologies enable the dynamic assessment of tumour heterogeneity and clonal evolution, informing prognostication and guiding biomarker-driven therapy. Uniquely, this review integrates molecular phenotyping with clinical treatment algorithms for advanced ER-positive breast cancer, providing a practical framework to translate genomic insights into patient care. Key genomic alterations and targeted strategies with demonstrated clinical benefit, including oral selective ER degraders (SERDs) and PI3K/AKT/mTOR inhibitors in selected biomarker populations, are highlighted. Emerging targets, such as human epidermal growth factor 2 (HER2) mutations, and the potential of ctDNA monitoring to detect resistance and guide therapeutic escalation are also discussed. Incorporating molecular profiling, as recommended by international guidelines, into routine clinical decision making can personalise therapy and optimise patient outcomes. Addressing real-world challenges, including cost and accessibility, will be critical to achieving equitable implementation of precision oncology for patients with ER-positive breast cancer worldwide. Full article
(This article belongs to the Special Issue Genomic Analysis of Breast Cancer)
Show Figures

Figure 1

31 pages, 1529 KB  
Review
Artificial Intelligence-Enhanced Liquid Biopsy and Radiomics in Early-Stage Lung Cancer Detection: A Precision Oncology Paradigm
by Swathi Priya Cherukuri, Anmolpreet Kaur, Bipasha Goyal, Hanisha Reddy Kukunoor, Areesh Fatima Sahito, Pratyush Sachdeva, Gayathri Yerrapragada, Poonguzhali Elangovan, Mohammed Naveed Shariff, Thangeswaran Natarajan, Jayarajasekaran Janarthanan, Samuel Richard, Shakthidevi Pallikaranai Venkatesaprasath, Shiva Sankari Karuppiah, Vivek N. Iyer, Scott A. Helgeson and Shivaram P. Arunachalam
Cancers 2025, 17(19), 3165; https://doi.org/10.3390/cancers17193165 - 29 Sep 2025
Cited by 1 | Viewed by 906
Abstract
Background: Lung cancer remains the leading cause of cancer-related mortality globally, largely due to delayed diagnosis in its early stages. While conventional diagnostic tools like low-dose CT and tissue biopsy are routinely used, they suffer from limitations including invasiveness, radiation exposure, cost, and [...] Read more.
Background: Lung cancer remains the leading cause of cancer-related mortality globally, largely due to delayed diagnosis in its early stages. While conventional diagnostic tools like low-dose CT and tissue biopsy are routinely used, they suffer from limitations including invasiveness, radiation exposure, cost, and limited sensitivity for early-stage detection. Liquid biopsy, a minimally invasive alternative that captures circulating tumor-derived biomarkers such as ctDNA, cfRNA, and exosomes from body fluids, offers promising diagnostic potential—yet its sensitivity in early disease remains suboptimal. Recent advances in Artificial Intelligence (AI) and radiomics are poised to bridge this gap. Objective: This review aims to explore how AI, in combination with radiomics, enhances the diagnostic capabilities of liquid biopsy for early detection of lung cancer and facilitates personalized monitoring strategies. Content Overview: We begin by outlining the molecular heterogeneity of lung cancer, emphasizing the need for earlier, more accurate detection strategies. The discussion then transitions into liquid biopsy and its key analytes, followed by an in-depth overview of AI techniques—including machine learning (e.g., SVMs, Random Forest) and deep learning models (e.g., CNNs, RNNs, GANs)—that enable robust pattern recognition across multi-omics datasets. The role of radiomics, which quantitatively extracts spatial and morphological features from imaging modalities such as CT and PET, is explored in conjunction with AI to provide an integrative, multimodal approach. This convergence supports the broader vision of precision medicine by integrating omics data, imaging, and electronic health records. Discussion: The synergy between AI, liquid biopsy, and radiomics signifies a shift from traditional diagnostics toward dynamic, patient-specific decision-making. Radiomics contributes spatial information, while AI improves pattern detection and predictive modeling. Despite these advancements, challenges remain—including data standardization, limited annotated datasets, the interpretability of deep learning models, and ethical considerations. A push toward rigorous validation and multimodal AI frameworks is necessary to facilitate clinical adoption. Conclusion: The integration of AI with liquid biopsy and radiomics holds transformative potential for early lung cancer detection. This non-invasive, scalable, and individualized diagnostic paradigm could significantly reduce lung cancer mortality through timely and targeted interventions. As technology and regulatory pathways mature, collaborative research is crucial to standardize methodologies and translate this innovation into routine clinical practice. Full article
(This article belongs to the Special Issue The Genetic Analysis and Clinical Therapy in Lung Cancer: 2nd Edition)
Show Figures

Figure 1

17 pages, 5865 KB  
Article
Detection of Targetable Genetic Abnormalities in Neuroblastoma Circulating Tumour DNA
by Marina Danilenko, Sharanya Nath, Jack Baines, Freya Gordon, Swathi Merugu, Lisa M. Allinson, Aaron Potts, Bethany Collins, Angharad Goodman, Samuel E. Kidman, Ciaron McAnulty, David Jamieson and Deborah A. Tweddle
Int. J. Mol. Sci. 2025, 26(19), 9466; https://doi.org/10.3390/ijms26199466 - 27 Sep 2025
Viewed by 364
Abstract
Neuroblastoma (NB) is an aggressive childhood cancer requiring intensive multimodal therapies in high-risk (HRNB) patients. Currently, invasive surgical biopsies are required to classify NB risk group and assign treatment based on the tumour genetic profile. Circulating tumour DNA (ctDNA) obtained from blood samples [...] Read more.
Neuroblastoma (NB) is an aggressive childhood cancer requiring intensive multimodal therapies in high-risk (HRNB) patients. Currently, invasive surgical biopsies are required to classify NB risk group and assign treatment based on the tumour genetic profile. Circulating tumour DNA (ctDNA) obtained from blood samples can be used to identify tumour biomarkers. Here we applied targeted next-generation sequencing (tNGS) using a panel of 42 genes to analyse 32 NB ctDNA samples for the presence of single-nucleotide variants and copy number changes from 28 patients in all NB risk groups. In two additional ctDNA samples, droplet digital PCR was used to detect hotspot ALK variants. Pathogenic mutations with a variant allele frequency (VAF) > 1% were identified in 13/32 (41%) ctDNA samples. ALK and PTPN11 were the most frequent, each being detected in 4/32 (13%) samples, together with oncogene amplifications. Targeted NGS of ctDNA detected actionable variants, including those absent in the diagnostic primary tumour due to spatial and temporal heterogeneity. Our findings confirm the usefulness of ctDNA in detecting genetic abnormalities in NB. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Updates and Advances in Molecular Oncology)
Show Figures

Figure 1

13 pages, 5338 KB  
Article
High-Performance Silicon Nanowire Array Biosensor for Combined Detection of Colorectal Cancer Biomarkers
by Jiaye Zeng, Mingbin Liu, Xin Chen, Jintao Yi, Wenhe Liu, Xinjian Qu, Chaoran Liu, Serestina Viriri, Guangguang Yang, Weichao Yang and Xun Yang
Micromachines 2025, 16(10), 1089; https://doi.org/10.3390/mi16101089 - 26 Sep 2025
Viewed by 406
Abstract
This study presents a high-performance silicon nanowire (SiNW) array biosensor for the combined detection of two key colorectal cancer (CRC) biomarkers: circulating tumor DNA (ctDNA) and carcinoembryonic antigen (CEA). The device was fabricated using conventional micromachining techniques, enabling the integration of dual SiNW [...] Read more.
This study presents a high-performance silicon nanowire (SiNW) array biosensor for the combined detection of two key colorectal cancer (CRC) biomarkers: circulating tumor DNA (ctDNA) and carcinoembryonic antigen (CEA). The device was fabricated using conventional micromachining techniques, enabling the integration of dual SiNW arrays on a single chip with precise control over structure and surface functionalization. Specific probe DNA and anti-CEA antibodies were immobilized on distinct array regions to facilitate targeted binding. The biosensor demonstrated exceptional performance, achieving an ultralow detection limit of 10 aM for ctDNA with a linear range from 0.1 fM to 10 pM, and a sensitivity of 1 fg/mL for CEA. It exhibited high selectivity against interfering substances, including single-base mismatched DNA and non-specific proteins, and maintained robust performance in human serum samples. The platform offers a scalable, label-free, and real-time detection solution with significant potential for application in early CRC screening and personalized medicine. Full article
(This article belongs to the Special Issue Advanced Micro- and Nano-Manufacturing Technologies, 2nd Edition)
Show Figures

Figure 1

21 pages, 1978 KB  
Article
Genotype Combinations and Genetic Risk Score Analyses of MTHFR, MTRR, and MTR Polymorphisms in Hypothyroidism Susceptibility: A Case–Control Study
by Nilgun Tan Tabakoglu, Arzu Ay, Nevra Alkanli and Mehmet Celik
Curr. Issues Mol. Biol. 2025, 47(10), 794; https://doi.org/10.3390/cimb47100794 - 25 Sep 2025
Viewed by 596
Abstract
Hypothyroidism is a multifactorial endocrine disorder where genetic predisposition plays a significant role. The MTHFR, MTRR, and MTR genes influence thyroid hormone regulation via homocysteine remethylation and DNA methylation. This study examined associations between hypothyroidism and polymorphisms in MTHFR (C677T–rs1801133, A1298C [...] Read more.
Hypothyroidism is a multifactorial endocrine disorder where genetic predisposition plays a significant role. The MTHFR, MTRR, and MTR genes influence thyroid hormone regulation via homocysteine remethylation and DNA methylation. This study examined associations between hypothyroidism and polymorphisms in MTHFR (C677T–rs1801133, A1298C–rs1801131), MTRR (A66G–rs1801394), and MTR (A2756G–rs1805087) genes. Eighty-six patients with hypothyroidism and 87 healthy controls were included. Genotyping was performed using PCR-RFLP. Post hoc analysis confirmed adequate statistical power (95% for MTRR A66G, 84.6% for MTR A2756G). The study adhered to STROBE guidelines. MTHFR polymorphisms showed no significant association when considered individually. However, the MTRR A66G AA genotype was significantly more frequent in patients and conferred a markedly increased disease risk (OR: 4.373; 95% CI: 2.174–8.797; p < 0.001), while the MTR A2756G AG genotype was also more prevalent among patients and associated with higher susceptibility (OR: 2.178; 95% CI: 1.156–4.104; p = 0.008). Genotype combination analysis revealed that CT–AA (OR = 6.898; 95% CI: 1.941–24.516; p = 0.001) and AG–AA (OR = 6.892; 95% CI: 1.494–31.797; p = 0.007) conferred high risk. Certain genotypes correlated with clinical features, including hypercholesterolemia, diabetes, and cardiovascular disease. MTRR A66G and MTR A2756G polymorphisms are associated with hypothyroidism and metabolic comorbidities, both individually and in genotype combinations. These findings underscore the value of multilocus genetic models for understanding thyroid disorders and support the potential role of genetic biomarkers in personalized risk assessment and early diagnosis. GRS analysis demonstrated that each additional risk allele increased hypothyroidism risk (OR = 1.58; 95% CI: 1.18–2.10; p = 0.0018), and the total score showed moderate predictive power (AUC = 0.665; p < 0.001). Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

15 pages, 2041 KB  
Article
Association of IL-23R rs1569922 and Other Probable Frequent Etiological Factors with Legg–Calvé–Perthes Disease in Mexican Patients
by Armando Odiseo Rodríguez-Olivas, Elba Reyes-Maldonado, Leonora Casas-Ávila, Marlene Alejandra Galicia-Alvarado, Erika Rosales-Cruz, Cesar Zavala-Hernández and Edgar Hernández-Zamora
Genes 2025, 16(10), 1126; https://doi.org/10.3390/genes16101126 - 24 Sep 2025
Viewed by 318
Abstract
Background: Legg–Calvé–Perthes disease (LCPD) is a rare avascular osteonecrosis of the proximal femoral epiphysis and typically occurs during the childhood growth phase. LCPD is a complex illness of unknown origin, which is considered the main difficulty in the study of this disease. Various [...] Read more.
Background: Legg–Calvé–Perthes disease (LCPD) is a rare avascular osteonecrosis of the proximal femoral epiphysis and typically occurs during the childhood growth phase. LCPD is a complex illness of unknown origin, which is considered the main difficulty in the study of this disease. Various theories on LCPD etiology have been proposed; however, no consensus has been reached about its origin. Our research objective was to evaluate the polymorphisms FVL rs6025, FVIII rs5987061, FIX Malmö rs6048, PAI-1 rs1799889, eNOS rs17899983/rs2070744, IL-23R rs1569922/rs154655686/7539625, and TNF-α rs180062, and their relationship with LCPD. Methods: A blood sample was taken from each study participant. Complete blood count, coagulation times and factors, antithrombotic proteins, and homocysteine (Hcy) were determined using a coagulometric method. DNA was obtained and genotyped using real-time PCR with TaqMan probes. Genotypic and allelic distributions were analyzed using comparative analysis, the Hardy–Weinberg equilibrium, and OR. Results: This study included 46 children: 23 with LCPD (cases) and 23 without (controls). Statistically significant differences were found in Prothrombin Time, Factor V, and Factor IX activity, as well as Hcy concentration; these values suggest the presence of hypercoagulable states in patients, which can cause thrombotic events. On the other hand, significant differences were also found in the neutrophil–lymphocyte ratio and systemic immune-inflammation index, showing major inflammation states in the patient group. Moreover, statistically significant differences were found in the IL-23R rs1569922 polymorphism; it was found that carriers of the T/T and C/T genotypes have an increased risk of developing LCPD. Conclusions: Our results show greater hemostatic activity and inflammation in the group of patients included in this study, supporting various theories previously proposed. Therefore, we believe that LCPD is a multifactorial condition in which hemostatic, inflammatory, and genetic factors play a central and triggering role in the disease. Full article
(This article belongs to the Collection Genetics and Genomics of Rare Disorders)
Show Figures

Figure 1

10 pages, 1018 KB  
Article
Somatic TEK Mutation Identified in a Patient with Calvarial Venous Malformations
by Baojian Fan, Evan Dennis, Neel H. Mehta, William Davalan, Carla Fortes, Aditi Swamy, William Muñoz, Camilo Jaimes, Andrew T. Hale and Kristopher T. Kahle
Genes 2025, 16(10), 1123; https://doi.org/10.3390/genes16101123 - 23 Sep 2025
Viewed by 401
Abstract
Background: Calvarial venous malformations (VMs) are rare and genetically understudied. While somatic TEK receptor tyrosine kinase (TEK) mutations drive sporadic VMs, their role in scalp–calvarial VMs is unknown. We report the first pediatric case of a calvarial VM with a [...] Read more.
Background: Calvarial venous malformations (VMs) are rare and genetically understudied. While somatic TEK receptor tyrosine kinase (TEK) mutations drive sporadic VMs, their role in scalp–calvarial VMs is unknown. We report the first pediatric case of a calvarial VM with a pathogenic somatic TEK mutation and its molecular implications. Methods: A 16-year-old female with a symptomatic parietal scalp VM underwent neurosurgical resection. Exome sequencing was performed on both lesional and blood DNA. Single-cell RNA sequencing (scRNA-seq) data from normal brain vasculature were analyzed for TEK expression and pathway enrichment. Results: A novel somatic TEK L914F mutation (chr9:27212760-C-T [GRCh38]), absent in germline DNA and population databases, was identified and predicted to be deleterious (CADD: 24). scRNA-seq data analysis revealed TEK enrichment in endothelial cells, particularly in fetal and arterial subtypes, and implicated angiogenesis and PI3K/Rho signaling as potential downstream phenotypic and molecular consequences. Conclusions: This first pediatric scalp VM with a somatic TEK L914F mutation expands the phenotypes associated with TEK-related vascular anomalies. These findings emphasize the role of somatic TEK mutation in diverse VMs and support genetic testing in sporadic cases. Further studies are needed to define therapeutic targets. Full article
(This article belongs to the Section Neurogenomics)
Show Figures

Figure 1

8 pages, 1281 KB  
Commentary
Real-World Technical Hurdles of ctDNA NGS Analysis: Lessons from Clinical Implementation
by Simon Cabello-Aguilar, Julie A. Vendrell and Jérôme Solassol
Diseases 2025, 13(10), 312; https://doi.org/10.3390/diseases13100312 - 23 Sep 2025
Viewed by 393
Abstract
Next-generation sequencing (NGS) of circulating tumor DNA (ctDNA) represents a minimally invasive alternative to conventional tissue biopsies, providing real-time genomic snapshots of heterogeneous tumors from blood draws. This liquid biopsy approach has demonstrated significant utility for early detection, molecular profiling, and monitoring treatment [...] Read more.
Next-generation sequencing (NGS) of circulating tumor DNA (ctDNA) represents a minimally invasive alternative to conventional tissue biopsies, providing real-time genomic snapshots of heterogeneous tumors from blood draws. This liquid biopsy approach has demonstrated significant utility for early detection, molecular profiling, and monitoring treatment response in cancer patients. However, significant barriers to widespread clinical implementation still remain, such as a lack of standardized methods for ctDNA content quantification and limited variant detection sensitivity at ultra-low frequencies. Herein, we discuss three key improvements: (i) reducing the limit of detection (LoD) from 0.5% to 0.1%, which would increase alteration detection from 50% to approximately 80%; (ii) developing a dynamic LoD approach calibrated to sequencing depth, thereby enhancing result reliability and confidence in clinical interpretation; and (iii) utilizing strategic bioinformatics pipelines with “allowed” and “blocked” lists to enhance accuracy while minimizing false positives. While ctDNA analysis remains approximately 30% less sensitive than tissue-based testing, addressing these limitations through technological advancement and standardization protocols could accelerate integration into routine clinical practice, potentially transforming cancer management while reducing healthcare costs. Full article
Show Figures

Figure 1

13 pages, 1412 KB  
Article
Molecular and Serological Detection of Leishmania spp. in Mediterranean Wild Carnivores and Feral Cats: Implications for Wildlife Health and One Health Surveillance
by Francesca Suita, Víctor Lizana, Jordi Aguiló-Gisbert, Jordi López-Ramon, João Torres Da Silva, Eduardo A. Díaz and Jesús Cardells
Animals 2025, 15(18), 2751; https://doi.org/10.3390/ani15182751 - 20 Sep 2025
Viewed by 518
Abstract
Leishmaniasis is a zoonotic disease caused by protozoan parasites of the genus Leishmania, transmitted by phlebotomine sandflies. While domestic dogs are the main hosts in the Mediterranean basin, wild carnivores have also been proposed as potential reservoirs. This study assessed the presence [...] Read more.
Leishmaniasis is a zoonotic disease caused by protozoan parasites of the genus Leishmania, transmitted by phlebotomine sandflies. While domestic dogs are the main hosts in the Mediterranean basin, wild carnivores have also been proposed as potential reservoirs. This study assessed the presence of Leishmania spp. in 250 animals from the Valencian Community, eastern Spain—an endemic region—using TaqMan qPCR on spleen samples from 216 wild carnivores and sera from 34 feral cats, and ELISA serology on 174 wild carnivores. DNA of Leishmania spp. was detected in 14 out of 250 individuals (5.6%), with red foxes representing most positive cases (10/102; 9.8%). Seropositivity was observed only in red foxes, with 5 out of 174 individuals testing positive (2.9%). Most qPCR-positive animals had high Ct values, consistent with low parasite loads. One fox, positive by both methods, showed advanced skin lesions and was later diagnosed with sarcoptic mange, suggesting possible interaction with Leishmania infection. The overall low prevalence and parasite burden suggest limited circulation in the surveyed wildlife. These findings contribute to understanding the epidemiological role of wild mesocarnivores and highlight the relevance of wildlife monitoring within a One Health approach. Full article
Show Figures

Graphical abstract

28 pages, 3125 KB  
Review
Molecular Insights into HPV-Driven Head and Neck Cancers: From Viral Oncoproteins to Precision Therapeutics
by Mustafa Ozdogan, Gizem Tutkun, Muharrem Okan Cakir and Gholam Hossein Ashrafi
Viruses 2025, 17(9), 1276; https://doi.org/10.3390/v17091276 - 20 Sep 2025
Viewed by 1150
Abstract
Human papillomavirus (HPV) plays a major role in the development of head and neck cancers (HNCs), particularly oropharyngeal squamous cell carcinoma. This review highlights the key molecular mechanisms of HPV-driven carcinogenesis, focusing on the oncogenic E6 and E7 proteins and their disruption of [...] Read more.
Human papillomavirus (HPV) plays a major role in the development of head and neck cancers (HNCs), particularly oropharyngeal squamous cell carcinoma. This review highlights the key molecular mechanisms of HPV-driven carcinogenesis, focusing on the oncogenic E6 and E7 proteins and their disruption of tumor suppressor pathways and epigenetic regulation. We discuss the rising prevalence of HPV-related HNCs, their distinct clinical features, and diagnostic approaches such as p16 immunohistochemistry and HPV DNA/RNA detection. HPV-positive tumors show better prognosis and response to treatment, prompting interest in therapy de-escalation. Emerging strategies including immune checkpoint inhibitors, therapeutic vaccines, CRISPR-based gene editing, and ctDNA monitoring are advancing precision oncology in this field. We also examine the preventive potential of HPV vaccination and ongoing research into its role across various HNC subtypes. A deeper understanding of HPV’s molecular impact may guide more effective, targeted, and less toxic interventions. Full article
Show Figures

Figure 1

23 pages, 1003 KB  
Review
Monitoring the Biological Impact and Therapeutic Potential of Intermittent Fasting in Oncology: Assessing Strategies and Clinical Translational Challenges
by Maria Bendykowska and Grażyna Gromadzka
Diagnostics 2025, 15(18), 2369; https://doi.org/10.3390/diagnostics15182369 - 18 Sep 2025
Viewed by 1034
Abstract
Background: Intermittent fasting (IF) is emerging as a promising non-pharmacological intervention in oncology, with the potential to modulate key biological processes including metabolic reprogramming, inflammation, autophagy, and immune function, particularly through the PI3K/AKT/mTOR pathway. However, translating IF into clinical practice requires robust tools [...] Read more.
Background: Intermittent fasting (IF) is emerging as a promising non-pharmacological intervention in oncology, with the potential to modulate key biological processes including metabolic reprogramming, inflammation, autophagy, and immune function, particularly through the PI3K/AKT/mTOR pathway. However, translating IF into clinical practice requires robust tools to monitor its biological impact and therapeutic effectiveness. Objective: This narrative review aims to present and critically evaluate current diagnostic and monitoring strategies that can support the safe and effective integration of IF into oncological care. Methods: A comprehensive literature search was conducted across PubMed/Medline, Science Direct, Scopus, Wiley Online Library, and Google Scholar using a combination of free-text and MeSH terms related to intermittent fasting, oncology, biomarkers, immunophenotyping, metabolic pathways, gut microbiome, and diagnostic imaging. Results: Two principal categories of monitoring objectives were identified. The first—mechanistic monitoring—focuses on elucidating IF-induced biological effects, including modulation of insulin/IGF-1 signaling, oxidative stress reduction, autophagy activation, immune reprogramming, and microbiome alterations. Advanced research tools such as single-cell RNA sequencing, proteomics, metabolomics, and circulating tumor DNA (ctDNA) assays offer high-resolution insights but currently remain limited to preclinical or translational settings due to cost and complexity. The second—clinical response monitoring—assesses IF’s impact on treatment outcomes, including chemotherapy and immunotherapy response, toxicity reduction, tumor dynamics, and maintenance of nutritional and functional status. This requires clinically validated, accessible, and interpretable diagnostic tools. Conclusions: A dual-layered monitoring framework that integrates both mechanistic insights and clinical applicability is essential for the personalized implementation of IF in oncology. Although preliminary findings are promising, large-scale randomized trials with standardized protocols are necessary to confirm the efficacy, safety, and feasibility of IF in routine oncological care. The integration of IF with modern diagnostics may ultimately contribute to a more individualized, biologically informed cancer treatment paradigm. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

Back to TopTop