Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (190)

Search Parameters:
Keywords = cubic map

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 7177 KB  
Article
Performance Optimization Analysis of Partial Discharge Detection Manipulator Based on STPSO-BP and CM-SA Algorithms
by Lisha Luo, Junjie Huang, Yuyuan Chen, Yujing Zhao, Jufang Hu and Chunru Xiong
Sensors 2025, 25(16), 5214; https://doi.org/10.3390/s25165214 - 21 Aug 2025
Viewed by 417
Abstract
In high-voltage switchgear, partial discharge (PD) detection using six-degree-of-freedom (6-DOF) manipulators presents challenges. However, these involve inverse kinematics (IK) solution redundancy and the lack of synergistic optimization between end-effector positioning accuracy and energy consumption. To address these issues, a dual-layer adaptive optimization model [...] Read more.
In high-voltage switchgear, partial discharge (PD) detection using six-degree-of-freedom (6-DOF) manipulators presents challenges. However, these involve inverse kinematics (IK) solution redundancy and the lack of synergistic optimization between end-effector positioning accuracy and energy consumption. To address these issues, a dual-layer adaptive optimization model integrating multiple algorithms is proposed. In the first layer, a spatio-temporal correlation particle memory-based particle swarm optimization BP neural network (STPSO-BP) is employed. It replaces traditional IK, while long short-term memory (LSTM) predicts particle movement trends, and trajectory similarity penalties constrain search trajectories. Thereby, positioning accuracy and adaptability are enhanced. In the second layer, a chaotic mapping-based simulated annealing (CM-SA) algorithm is utilized. Chaotic joint angle constraints, dynamic weight adjustment, and dynamic temperature regulation are incorporated. This approach achieves collaborative optimization of energy consumption and positioning error, utilizing cubic spline interpolation to smooth the joint trajectory. Specifically, the positioning error decreases by 68.9% compared with the traditional BP neural network algorithm. Energy consumption is reduced by 60.18% in contrast to the pre-optimization state. Overall, the model achieves significant optimization. An innovative solution for synergistic accuracy–energy control in 6-DOF manipulators for PD detection is offered. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

32 pages, 14643 KB  
Article
Image Encryption Algorithm Based on Dynamic Rhombus Transformation and Digital Tube Model
by Xiaoqiang Zhang, Yupeng Song and Ke Huang
Entropy 2025, 27(8), 874; https://doi.org/10.3390/e27080874 - 18 Aug 2025
Viewed by 337
Abstract
With the rapid advancement of information technology, as critical information carriers, images are confronted with significant security risks. To ensure the image security, this paper proposes an image encryption algorithm based on a dynamic rhombus transformation and digital tube model. Firstly, a two-dimensional [...] Read more.
With the rapid advancement of information technology, as critical information carriers, images are confronted with significant security risks. To ensure the image security, this paper proposes an image encryption algorithm based on a dynamic rhombus transformation and digital tube model. Firstly, a two-dimensional hyper-chaotic system is constructed by combining the Sine map, Cubic map and May map. The analysis results demonstrate that the constructed hybrid chaotic map exhibits superior chaotic characteristics in terms of bifurcation diagrams, Lyapunov exponents, sample entropy, etc. Secondly, a dynamic rhombus transformation is proposed to scramble pixel positions, and chaotic sequences are used to dynamically select transformation centers and traversal orders. Finally, a digital tube model is designed to diffuse pixel values, which utilizes chaotic sequences to dynamically control the bit reversal and circular shift operations, and the exclusive OR operation to diffuse pixel values. The performance analyses show that the information entropy of the cipher image is 7.9993, and the correlation coefficients in horizontal, vertical, and diagonal directions are 0.0008, 0.0001, and 0.0005, respectively. Moreover, the proposed algorithm has strong resistance against noise attacks, cropping attacks, and exhaustive attacks, effectively ensuring the security of images during storage and transmission. Full article
(This article belongs to the Section Signal and Data Analysis)
Show Figures

Figure 1

33 pages, 10397 KB  
Article
Multi-AUV Dynamic Cooperative Path Planning with Hybrid Particle Swarm and Dynamic Window Algorithm in Three-Dimensional Terrain and Ocean Current Environment
by Bing Sun and Ziang Lv
Biomimetics 2025, 10(8), 536; https://doi.org/10.3390/biomimetics10080536 - 15 Aug 2025
Viewed by 505
Abstract
Aiming at the cooperative path-planning problem of multiple autonomous underwater vehicles in underwater three-dimensional terrain and dynamic ocean current environments, a hybrid algorithm based on the Improved Multi-Objective Particle Swarm Optimization (IMOPSO) and Dynamic Window (DWA) is proposed. The traditional particle swarm optimization [...] Read more.
Aiming at the cooperative path-planning problem of multiple autonomous underwater vehicles in underwater three-dimensional terrain and dynamic ocean current environments, a hybrid algorithm based on the Improved Multi-Objective Particle Swarm Optimization (IMOPSO) and Dynamic Window (DWA) is proposed. The traditional particle swarm optimization algorithm is prone to falling into local optimization in high-dimensional and complex marine environments. It is difficult to meet multiple constraint conditions, the particle distribution is uneven, and the adaptability to dynamic environments is poor. In response to these problems, a hybrid initialization method based on Chebyshev chaotic mapping, pre-iterative elimination, and boundary particle injection (CPB) is proposed, and the particle swarm optimization algorithm is improved by combining dynamic parameter adjustment and a hybrid perturbation mechanism. On this basis, the Dynamic Window Method (DWA) is introduced as the local path optimization module to achieve real-time avoidance of dynamic obstacles and rolling path correction, thereby constructing a globally and locally coupled hybrid path-planning framework. Finally, cubic spline interpolation is used to smooth the planned path. Considering factors such as path length, smoothness, deflection Angle, and ocean current kinetic energy loss, the dynamic penalty function is adopted to optimize the multi-AUV cooperative collision avoidance and terrain constraints. The simulation results show that the proposed algorithm can effectively plan the dynamic safe path planning of multiple AUVs. By comparing it with other algorithms, the efficiency and security of the proposed algorithm are verified, meeting the navigation requirements in the current environment. Experiments show that the IMOPSO–DWA hybrid algorithm reduces the path length by 15.5%, the threat penalty by 8.3%, and the total fitness by 3.2% compared with the traditional PSO algorithm. Full article
(This article belongs to the Special Issue Computer-Aided Biomimetics: 3rd Edition)
Show Figures

Figure 1

25 pages, 4865 KB  
Article
Mathematical Modeling, Bifurcation Theory, and Chaos in a Dusty Plasma System with Generalized (r, q) Distributions
by Beenish, Maria Samreen and Fehaid Salem Alshammari
Axioms 2025, 14(8), 610; https://doi.org/10.3390/axioms14080610 - 5 Aug 2025
Viewed by 265
Abstract
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. [...] Read more.
This study investigates the dynamics of dust acoustic periodic waves in a three-component, unmagnetized dusty plasma system using generalized (r,q) distributions. First, boundary conditions are applied to reduce the model to a second-order nonlinear ordinary differential equation. The Galilean transformation is subsequently applied to reformulate the second-order ordinary differential equation into an unperturbed dynamical system. Next, phase portraits of the system are examined under all possible conditions of the discriminant of the associated cubic polynomial, identifying regions of stability and instability. The Runge–Kutta method is employed to construct the phase portraits of the system. The Hamiltonian function of the unperturbed system is subsequently derived and used to analyze energy levels and verify the phase portraits. Under the influence of an external periodic perturbation, the quasi-periodic and chaotic dynamics of dust ion acoustic waves are explored. Chaos detection tools confirm the presence of quasi-periodic and chaotic patterns using Basin of attraction, Lyapunov exponents, Fractal Dimension, Bifurcation diagram, Poincaré map, Time analysis, Multi-stability analysis, Chaotic attractor, Return map, Power spectrum, and 3D and 2D phase portraits. In addition, the model’s response to different initial conditions was examined through sensitivity analysis. Full article
(This article belongs to the Special Issue Trends in Dynamical Systems and Applied Mathematics)
Show Figures

Figure 1

16 pages, 5555 KB  
Article
Optimization of a Navigation System for Autonomous Charging of Intelligent Vehicles Based on the Bidirectional A* Algorithm and YOLOv11n Model
by Shengkun Liao, Lei Zhang, Yunli He, Junhui Zhang and Jinxu Sun
Sensors 2025, 25(15), 4577; https://doi.org/10.3390/s25154577 - 24 Jul 2025
Viewed by 384
Abstract
Aiming to enable intelligent vehicles to achieve autonomous charging under low-battery conditions, this paper presents a navigation system for autonomous charging that integrates an improved bidirectional A* algorithm for path planning and an optimized YOLOv11n model for visual recognition. The system utilizes the [...] Read more.
Aiming to enable intelligent vehicles to achieve autonomous charging under low-battery conditions, this paper presents a navigation system for autonomous charging that integrates an improved bidirectional A* algorithm for path planning and an optimized YOLOv11n model for visual recognition. The system utilizes the improved bidirectional A* algorithm to generate collision-free paths from the starting point to the charging area, dynamically adjusting the heuristic function by combining node–target distance and search iterations to optimize bidirectional search weights, pruning expanded nodes via a greedy strategy and smoothing paths into cubic Bézier curves for practical vehicle motion. For precise localization of charging areas and piles, the YOLOv11n model is enhanced with a CAFMFusion mechanism to bridge semantic gaps between shallow and deep features, enabling effective local–global feature fusion and improving detection accuracy. Experimental evaluations in long corridors and complex indoor environments showed that the improved bidirectional A* algorithm outperforms the traditional improved A* algorithm in all metrics, particularly in that it reduces computation time significantly while maintaining robustness in symmetric/non-symmetric and dynamic/non-dynamic scenarios. The optimized YOLOv11n model achieves state-of-the-art precision (P) and mAP@0.5 compared to YOLOv5, YOLOv8n, and the baseline model, with a minor 0.9% recall (R) deficit compared to YOLOv5 but more balanced overall performance and superior capability for small-object detection. By fusing the two improved modules, the proposed system successfully realizes autonomous charging navigation, providing an efficient solution for energy management in intelligent vehicles in real-world environments. Full article
(This article belongs to the Special Issue Vision-Guided System in Intelligent Autonomous Robots)
Show Figures

Figure 1

27 pages, 6541 KB  
Article
Multi-Object-Based Efficient Traffic Signal Optimization Framework via Traffic Flow Analysis and Intensity Estimation Using UCB-MRL-CSFL
by Zainab Saadoon Naser, Hend Marouane and Ahmed Fakhfakh
Vehicles 2025, 7(3), 72; https://doi.org/10.3390/vehicles7030072 - 11 Jul 2025
Viewed by 561
Abstract
Traffic congestion has increased significantly in today’s rapidly urbanizing world, influencing people’s daily lives. Traffic signal control systems (TSCSs) play an important role in alleviating congestion by optimizing traffic light timings and improving road efficiency. Yet traditional TSCSs neglected pedestrians, cyclists, and other [...] Read more.
Traffic congestion has increased significantly in today’s rapidly urbanizing world, influencing people’s daily lives. Traffic signal control systems (TSCSs) play an important role in alleviating congestion by optimizing traffic light timings and improving road efficiency. Yet traditional TSCSs neglected pedestrians, cyclists, and other non-monitored road users, degrading traffic signal optimization (TSO). Therefore, this framework proposes a multi-object-based traffic flow analysis and intensity estimation model for efficient TSO using Upper Confidence Bound Multi-agent Reinforcement Learning Cubic Spline Fuzzy Logic (UCB-MRL-CSFL). Initially, the real-time traffic videos undergo frame conversion and redundant frame removal, followed by preprocessing. Then, the lanes are detected; further, the objects are detected using Temporal Context You Only Look Once (TC-YOLO). Now, the object counting in each lane is carried out using the Cumulative Vehicle Motion Kalman Filter (CVMKF), followed by queue detection using Vehicle Density Mapping (VDM). Next, the traffic flow is analyzed by Feature Variant Optical Flow (FVOF), followed by traffic intensity estimation. Now, based on the siren flashlight colors, emergency vehicles are separated. Lastly, UCB-MRL-CSFL optimizes the Traffic Signals (TSs) based on the separated emergency vehicle, pedestrian information, and traffic intensity. Therefore, the proposed framework outperforms the other conventional methodologies for TSO by considering pedestrians, cyclists, and so on, with higher computational efficiency (94.45%). Full article
Show Figures

Figure 1

17 pages, 3854 KB  
Article
Research on Signal Processing Algorithms Based on Wearable Laser Doppler Devices
by Yonglong Zhu, Yinpeng Fang, Jinjiang Cui, Jiangen Xu, Minghang Lv, Tongqing Tang, Jinlong Ma and Chengyao Cai
Electronics 2025, 14(14), 2761; https://doi.org/10.3390/electronics14142761 - 9 Jul 2025
Viewed by 310
Abstract
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise [...] Read more.
Wearable laser Doppler devices are susceptible to complex noise interferences, such as Gaussian white noise, baseline drift, and motion artifacts, with motion artifacts significantly impacting clinical diagnostic accuracy. Addressing the limitations of existing denoising methods—including traditional adaptive filtering that relies on prior noise information, modal decomposition techniques that depend on empirical parameter optimization and are prone to modal aliasing, wavelet threshold functions that struggle to balance signal preservation with smoothness, and the high computational complexity of deep learning approaches—this paper proposes an ISSA-VMD-AWPTD denoising algorithm. This innovative approach integrates an improved sparrow search algorithm (ISSA), variational mode decomposition (VMD), and adaptive wavelet packet threshold denoising (AWPTD). The ISSA is enhanced through cubic chaotic mapping, butterfly optimization, and sine–cosine search strategies, targeting the minimization of the envelope entropy of modal components for adaptive optimization of VMD’s decomposition levels and penalty factors. A correlation coefficient-based selection mechanism is employed to separate target and mixed modes effectively, allowing for the efficient removal of noise components. Additionally, an exponential adaptive threshold function is introduced, combining wavelet packet node energy proportion analysis to achieve efficient signal reconstruction. By leveraging the rapid convergence property of ISSA (completing parameter optimization within five iterations), the computational load of traditional VMD is reduced while maintaining the denoising accuracy. Experimental results demonstrate that for a 200 Hz test signal, the proposed algorithm achieves a signal-to-noise ratio (SNR) of 24.47 dB, an improvement of 18.8% over the VMD method (20.63 dB), and a root-mean-square-error (RMSE) of 0.0023, a reduction of 69.3% compared to the VMD method (0.0075). The processing results for measured human blood flow signals achieve an SNR of 24.11 dB, a RMSE of 0.0023, and a correlation coefficient (R) of 0.92, all outperforming other algorithms, such as VMD and WPTD. This study effectively addresses issues related to parameter sensitivity and incomplete noise separation in traditional methods, providing a high-precision and low-complexity real-time signal processing solution for wearable devices. However, the parameter optimization still needs improvement when dealing with large datasets. Full article
Show Figures

Figure 1

18 pages, 2148 KB  
Article
Structural and Dielectric Impedance Studies of Mixed Ionic–Electronic Conduction in SrLaFe1−xMnxTiO6 (x = 0, 0.33, 0.67, and 1.0) Double Perovskites
by Abdelrahman A. Elbadawi, Elsammani A. Shokralla, Mohamed A. Siddig, Obaidallah A. Algethami, Abdullah Ahmed Alghamdi and Hassan H. E. Idris
Ceramics 2025, 8(3), 87; https://doi.org/10.3390/ceramics8030087 - 7 Jul 2025
Viewed by 411
Abstract
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor [...] Read more.
The structural and electrical properties of double perovskite compounds SrLaFe1−xMnxTiO6−δ (x = 0, 0.33, 0.67, and 1.0) were studied using X-ray diffraction (XRD) and dielectric impedance measurements. The reparation of perovskite compounds was successfully achieved through the precursor solid-state reaction in air at 1250 °C. The purity phase and crystal structures of perovskite compounds were determined by means of the standard Rietveld refinement method using the FullProf suite. The best fitting results showed that SrLaFeTiO6−δ was orthorhombic with space group Pnma, and both SrLaFe0.67Mn0.33TiO6−δ and SrLaFe0.33Mn0.67TiO6−δ were cubic structures with space group Fm3m, while SrLaMnTiO6−δ was tetragonal with a I/4m space group. The charge density maps obtained for these structures indicated that the compounds show an ionic and mixed ionic–electronic conduction. The dielectric impedance measurements were carried out in the range of 20 Hz to 1 MHz, and the analysis showed that there is more than one relaxation mechanism of Debye type. Doping with Mn was found to reduce the dielectric impedance of the samples, and the major contribution to the dielectric impedance was established to change from a capacitive for SrLaFeTiO6−δ to a resistive for SrLaMnTiO6−δ. The fall in values of electrical resistance may be related to the possible occurrence of the double exchange (DEX) mechanism among the Mn ions, provided there is oxygen deficiency in the samples. DC-resistivity measurements revealed that SrLaFeTiO6−δ was an insulator while SrLaMnTiO6−δ was showing a semiconductor–metallic transition at ~250 K, which is in support of the DEX interaction. The dielectric impedance of SrLaFe0.67Mn0.33TiO6−δ was found to be similar to that of (La,Sr)(Co,Fe)O3-δ, the mixed ionic–electronic conductor (MIEC) model. The occurrence of a mixed ionic–electronic state in these compounds may qualify them to be used in free lead solar cells and energy storage technology. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

27 pages, 2813 KB  
Article
Study of Optical Solitons and Quasi-Periodic Behaviour for the Fractional Cubic Quintic Nonlinear Pulse Propagation Model
by Lotfi Jlali, Syed T. R. Rizvi, Sana Shabbir and Aly R. Seadawy
Mathematics 2025, 13(13), 2117; https://doi.org/10.3390/math13132117 - 28 Jun 2025
Cited by 1 | Viewed by 310
Abstract
This study explores analytical soliton solutions for the cubic–quintic time-fractional nonlinear non-paraxial pulse transmission model. This versatile model finds numerous uses in fiber optic communication, nonlinear optics, and optical signal processing. The strength of the quintic and cubic nonlinear components plays a crucial [...] Read more.
This study explores analytical soliton solutions for the cubic–quintic time-fractional nonlinear non-paraxial pulse transmission model. This versatile model finds numerous uses in fiber optic communication, nonlinear optics, and optical signal processing. The strength of the quintic and cubic nonlinear components plays a crucial role in nonlinear processes, such as self-phase modulation, self-focusing, and wave combining. The fractional nonlinear Schrödinger equation (FNLSE) facilitates precise control over the dynamic properties of optical solitons. Exact and methodical solutions include those involving trigonometric functions, Jacobian elliptical functions (JEFs), and the transformation of JEFs into solitary wave (SW) solutions. This study reveals that various soliton solutions, such as periodic, rational, kink, and SW solitons, are identified using the complete discrimination polynomial methods (CDSPM). The concepts of chaos and bifurcation serve as the framework for investigating the system qualitatively. We explore various techniques for detecting chaos, including three-dimensional and two-dimensional graphs, time-series analysis, and Poincarè maps. A sensitivity analysis is performed utilizing a variety of initial conditions. Full article
Show Figures

Figure 1

22 pages, 8629 KB  
Article
3D UAV Route Optimization in Complex Environments Using an Enhanced Artificial Lemming Algorithm
by Yuxuan Xie, Zhe Sun, Kai Yuan and Zhixin Sun
Symmetry 2025, 17(6), 946; https://doi.org/10.3390/sym17060946 - 13 Jun 2025
Cited by 1 | Viewed by 405
Abstract
The use of UAVs for logistics delivery has become a hot topic in current research, and how to plan a reasonable delivery route is the key to the problem. Therefore, this paper proposes a multi-environment logistics delivery route planning model that is based [...] Read more.
The use of UAVs for logistics delivery has become a hot topic in current research, and how to plan a reasonable delivery route is the key to the problem. Therefore, this paper proposes a multi-environment logistics delivery route planning model that is based on UAVs, is characterized by a 3D environment model, and aims at the shortest delivery route with minimum flight undulation. In order to find the optimal route in various environments, a multi-strategy improved artificial lemming algorithm, which integrates the Cubic chaotic map initialization, double adaptive t-distribution perturbation, and population dynamic optimization, is proposed. The symmetric nature of the t-distribution ensures that the lemmings conduct extensive searches in both directions within the solution space, thus improving the convergence speed and preventing them from falling into local optimal solutions. Through data experiments and simulation analysis, the improved algorithm can be successfully applied to the 3D route planning model, and the route quality is superior. Full article
(This article belongs to the Special Issue Symmetry in Mathematical Optimization Algorithm and Its Applications)
Show Figures

Figure 1

1 pages, 121 KB  
Correction
Correction: El-hady et al. On Approximate Multi-Cubic Mappings in 2-Banach Spaces. Symmetry 2025, 17, 475
by El-sayed El-hady, Ghazyiah Alsahli, Abasalt Bodaghi and Mehdi Dehghanian
Symmetry 2025, 17(6), 909; https://doi.org/10.3390/sym17060909 - 9 Jun 2025
Viewed by 253
Abstract
In the published publication [...] Full article
16 pages, 48638 KB  
Article
Epitaxial Growth of Ni-Mn-Ga on Al2O3(112¯0) Single-Crystal Substrates by Pulsed Laser Deposition
by Manuel G. Pinedo-Cuba, José M. Caicedo-Roque, Jessica Padilla-Pantoja, Justiniano Quispe-Marcatoma, Carlos V. Landauro, Víctor A. Peña-Rodríguez and José Santiso
Surfaces 2025, 8(2), 35; https://doi.org/10.3390/surfaces8020035 - 30 May 2025
Viewed by 2909
Abstract
Magnetic shape memory alloys have attracted considerable attention due to their multifunctional properties. Among these materials, Ni-Mn-Ga alloys are distinguished by their ability to achieve up to 10% strain when exposed to a magnetic field, a characteristic predominantly observed in single-crystal samples. Consequently, [...] Read more.
Magnetic shape memory alloys have attracted considerable attention due to their multifunctional properties. Among these materials, Ni-Mn-Ga alloys are distinguished by their ability to achieve up to 10% strain when exposed to a magnetic field, a characteristic predominantly observed in single-crystal samples. Consequently, it is essential to develop nanomaterials with a crystal structure closely resembling that of a single crystal. In this study, an epitaxial Ni-Mn-Ga thin film was fabricated using Pulsed Laser Deposition on an Al2O3 (112¯0) single-crystal substrate. The crystal structure was characterised through X-ray diffraction methodologies, such as symmetrical 2θω scans, pole figures, and reciprocal space maps. The results indicated that the sample was mainly in a slightly distorted cubic austenite phase, and some incipient martensite phase also appeared. A detailed microstructural analysis, performed by transmission electron microscopy, confirmed that certain regions of the sample exhibited an incipient transformation to the martensite phase. Regions closer to the substrate retained the austenite phase, suggesting that the constraint imposed by the substrate inhibits the phase transition. These results indicate that it is possible to grow high crystalline quality thin films of Ni-Mn-Ga by Pulsed Laser Deposition. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Figure 1

29 pages, 12630 KB  
Article
LPBF-Produced Elastomeric Lattice Structures for Personal Protection Equipment: Mechanical Performance Versus Comfort-Related Attributes
by William Turnier Trottier, Antoine Collin, Thierry Krick and Vladimir Brailovski
J. Manuf. Mater. Process. 2025, 9(6), 182; https://doi.org/10.3390/jmmp9060182 - 29 May 2025
Viewed by 1400
Abstract
This study focuses on the energy absorption and wearer comfort attributes of regular lattice structures fabricated by laser powder bed fusion from two elastomeric materials, namely TPU1301 and TPE300, for use in personal protective equipment (PPE). This study compares Body-Centered Cubic (BCC), Face-Centered [...] Read more.
This study focuses on the energy absorption and wearer comfort attributes of regular lattice structures fabricated by laser powder bed fusion from two elastomeric materials, namely TPU1301 and TPE300, for use in personal protective equipment (PPE). This study compares Body-Centered Cubic (BCC), Face-Centered Cubic (FCC) and Kelvin (KE) lattice structures with density varying from 0.15 to 0.25 g/cm3, cell size varying from 10 to 14 mm and feature size varying from 1 to 3 mm. Quasi-static and dynamic compression testing confirmed that among the studied geometries, KE structures printed with TPE300 powders provide the best combination of reduced peak acceleration and increased compliance, thereby improving both safety and comfort. Using the protection–comfort maps built on the basis of this study enables the design of lightweight and compact protective structures. For example, if a safety layer protecting a 100 mm2 surface area can be manufactured from either TPE300 or TPU1100 powders using either KE or FCC structures, the KE TPE300 layer will be 1.5 times thinner and 2.5 times lighter than its FCC TPU1301 equivalent. The results of this study thus provide a basis for the optimization of lattice structures in 3D-printed PPE to meet both service and manufacturing requirements. Full article
Show Figures

Graphical abstract

19 pages, 5124 KB  
Article
Valorization of Steel Slag and Fly Ash in Mortar: Modeling Age-Dependent Strength with Response Surface Methodology
by Xiaofeng Li, Chia-Min Ho, Huawei Li, Huaming Guo, Deliang Wang, Dan Zhao and Kun Zhang
Materials 2025, 18(10), 2203; https://doi.org/10.3390/ma18102203 - 10 May 2025
Viewed by 460
Abstract
This study evaluates the effects of steel slag powder (SSP), fly ash (FA), and steel slag sand (SSS) on mortar compressive strength. A response surface methodology (RSM) based on central composite design (CCD) was employed to model 7-day, 28-day, and 91-day strength development, [...] Read more.
This study evaluates the effects of steel slag powder (SSP), fly ash (FA), and steel slag sand (SSS) on mortar compressive strength. A response surface methodology (RSM) based on central composite design (CCD) was employed to model 7-day, 28-day, and 91-day strength development, considering three quantitative variables: SSP, FA, and SSS. Statistical results confirmed the reduced cubic models were significant and predictive (R2 > 0.97), with non-significant lack of fit and adequate precision. Experimental results revealed that SSP and FA negatively affected early-age strength due to dilution effects and low initial reactivity, whereas SSS slightly improved it by enhancing particle packing. At later ages, SSP exhibited nonlinear effects, where moderate dosages enhanced strength, while excessive replacement led to strength reduction. SSS showed a continuously positive contribution across all ages, particularly at 91 days. Perturbation plots, contour maps, and gradient analyses indicated that SSS played a dominant role at later stages and that maintaining a proper balance among supplementary cementitious materials (SCMs) and aggregate replacements is crucial. The developed models and response surfaces provide practical guidance for designing slag-based mortars with improved mechanical properties and enhanced sustainability. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 463 KB  
Article
Cubic Shaping of Lattice Constellations from Multi-Level Constructions from Codes
by Perathorn Pooksombat and Wittawat Kositwattanarerk
Mathematics 2025, 13(10), 1562; https://doi.org/10.3390/math13101562 - 9 May 2025
Viewed by 331
Abstract
Lattice codes play an important role in wireless communication and are closely related to linear codes. Multi-level constructions of complex lattices from codes are known to produce lattice codes with desirable parameters and efficient encoding and decoding of information bits. However, their constellation [...] Read more.
Lattice codes play an important role in wireless communication and are closely related to linear codes. Multi-level constructions of complex lattices from codes are known to produce lattice codes with desirable parameters and efficient encoding and decoding of information bits. However, their constellation usually involves superfluous elements that need to be mapped to a representative within the same coset to reduce average transmission power. One such elegant shaping function is a componentwise modulo, which is known to produce a cubic shaping for Barnes–Wall lattices. In this paper, we generalize this result to lattices over quadratic rings of integers, thus encompassing constructions from p-ary codes, where p is a prime number. We identify all bases that permit cubic modulo shaping. This provides useful insights into practical encoding and decoding of lattice codes from multi-level constructions. Full article
Show Figures

Figure 1

Back to TopTop