Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (415)

Search Parameters:
Keywords = cutting insert

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 5042 KB  
Review
A Review of the Role of Modeling and Optimization Methods in Machining Ni-Cr Super-Alloys
by Shovon Biswas, Chinmoy Shekhar Saikat, Nafisa Anzum Sristi and Prianka Binte Zaman
J. Manuf. Mater. Process. 2025, 9(9), 289; https://doi.org/10.3390/jmmp9090289 (registering DOI) - 25 Aug 2025
Abstract
Ni-Cr alloys are some of the most important materials being utilized in the manufacturing industry. Their unique properties make them attractive for various applications, especially in the aerospace and automobile industries. Since machining these materials is challenging due to their properties, it is [...] Read more.
Ni-Cr alloys are some of the most important materials being utilized in the manufacturing industry. Their unique properties make them attractive for various applications, especially in the aerospace and automobile industries. Since machining these materials is challenging due to their properties, it is necessary to understand their machining processes and how to improve them. As a result, time and again, effort has been made to understand and model the machining of Ni-Cr alloys. In this action, different approaches, i.e., neural networks, fuzzy systems, simulations, etc., have been of great help. At the same time, efforts have been made to optimize the machining processes to find how to obtain the best outputs from the processes. Different methods, such as multi-criteria decision-making, meta-heuristic algorithms, desirability functions, etc., have been utilized in this respect. This work aims to prepare an exhaustive review of the methods used for modeling and optimization of the machining of Ni-Cr alloys. It considers five major machining operations and collects data on how these methods or algorithms have been used to improve the machining and to what extent. The use of newer advanced algorithms in manufacturing processes is on the rise, and this manuscript aims to record the methods used, their effectiveness, and their shortcomings. It also provides an insight into the methods and their compatibility. Suggestions for future work are also discussed at the end of this study. Full article
Show Figures

Figure 1

15 pages, 3768 KB  
Article
Application of MWD Sensor System in Auger for Real-Time Monitoring of Soil Resistance During Pile Drilling
by Krzysztof Trojnar and Aleksander Siry
Sensors 2025, 25(16), 5095; https://doi.org/10.3390/s25165095 - 16 Aug 2025
Viewed by 343
Abstract
Measuring-while-drilling (MWD) techniques have great potential for use in geotechnical engineering research. This study first addresses the current use of MWD, which consists of recording data using sensors in a drilling machine operating on site. It then addresses the currently unsolved problems of [...] Read more.
Measuring-while-drilling (MWD) techniques have great potential for use in geotechnical engineering research. This study first addresses the current use of MWD, which consists of recording data using sensors in a drilling machine operating on site. It then addresses the currently unsolved problems of quality control in drilled piles and assessments of their interaction with the soil under load. Next, an original method of drilling displacement piles using a special EGP auger (Electro-Geo-Probe) is presented. The innovation of this new drilling system lies in the placement of the sensors inside the EGP auger in the soil. These innovative sensors form an integrated measurement system, enabling improved real-time control during pile drilling. The most original idea is the use of a Cone Penetration Test (CPT) probe that can be periodically and remotely inserted at a specific depth below the pile base being drilled. This new MWD-EGP system with cutting-edge sensors to monitor the soil’s impact on piles during drilling revolutionizes pile drilling quality control. Furthermore, implementing this in-auger sensor system is a step towards the development of digital drilling rigs, which will provide better pile quality thanks to solutions based on the results of real-time, on-site soil testing. Finally, examples of measurements taken with the new sensor-equipped auger and a preliminary interpretation of the results in non-cohesive soils are presented. The obtained data confirm the usefulness of the new drilling system for improving the quality of piles and advancing research in geotechnical engineering. Full article
Show Figures

Figure 1

14 pages, 10994 KB  
Article
Novel Cemented Carbide Inserts for Metal Grooving Applications
by Janusz Konstanty, Albir Layyous and Łukasz Furtak
Materials 2025, 18(15), 3674; https://doi.org/10.3390/ma18153674 - 5 Aug 2025
Viewed by 280
Abstract
Although cemented carbides have been manufactured by the powder metallurgy (P/M) technology for over a century now, systematic developmental efforts are still underway. In the present study, tool life improvements in metal grooving applications are the key objective. Four PVD-coated cemented carbides compositions, [...] Read more.
Although cemented carbides have been manufactured by the powder metallurgy (P/M) technology for over a century now, systematic developmental efforts are still underway. In the present study, tool life improvements in metal grooving applications are the key objective. Four PVD-coated cemented carbides compositions, dedicated to groove steel, stainless steel, cast iron, and aluminium alloys, have been newly designed, along with their manufacturing conditions. Physical, mechanical and chemical characteristics—such as sintered density, modulus of elasticity, hardness, fracture toughness, WC grain size, and the chemical composition of the substrate material, as well as the chemical composition, microhardness, structure, and thickness of the coatings—have been studied. A series of grooving tests have also been conducted to assess whether modifications to the thus far marketed tool materials, tool geometries, and coatings can improve cutting performance. In order to compare the laboratory and application properties of the investigated materials with currently produced by reputable companies, commercial inserts have also been tested. The experimental results obtained indicate that the newly developed grooving inserts exhibit excellent microstructural characteristics, high hardness, fracture toughness, and wear resistance and that they show slightly longer tool life compared to the commercial ones. Full article
Show Figures

Figure 1

22 pages, 6962 KB  
Article
Suppression of Delamination in CFRP Laminates with Ply Discontinuity Using Polyamide Mesh
by M. J. Mohammad Fikry, Keisuke Iizuka, Hayato Nakatani, Satoru Yoneyama, Vladimir Vinogradov, Jun Koyanagi and Shinji Ogihara
J. Compos. Sci. 2025, 9(8), 414; https://doi.org/10.3390/jcs9080414 - 4 Aug 2025
Viewed by 490
Abstract
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in [...] Read more.
Carbon fiber-reinforced plastics (CFRPs) offer excellent in-plane mechanical performance, but their relatively low interlaminar fracture toughness makes them vulnerable to delamination, particularly around intralaminar discontinuities such as resin-rich regions or fiber gaps. This study investigates the effectiveness of polyamide (PA) mesh inserts in improving interlaminar toughness and suppressing delamination in CFRP laminates with such features. Two PA mesh configurations were evaluated: a fully embedded continuous layer and a 20 mm cut mesh strip placed between continuous and discontinuous plies near critical regions. Fracture toughness tests showed that PA mesh insertion improved interlaminar toughness approximately 2.4-fold compared to neat CFRP, primarily due to a mechanical interlocking mechanism that disrupts crack propagation and enhances energy dissipation. Uniaxial tensile tests with digital image correlation revealed that while initial matrix cracking occurred at similar stress levels, the stress at which complete delamination occurred was approximately 60% higher in specimens with a 20 mm mesh and up to 92% higher in specimens with fully embedded mesh. The fully embedded mesh provided consistent delamination resistance across the laminate, while the 20 mm insert localized strain redistribution and preserved global mechanical performance. These findings demonstrate that PA mesh is an effective interleaving material for enhancing damage tolerance in CFRP laminates with internal discontinuities. Full article
Show Figures

Figure 1

21 pages, 3008 KB  
Article
Dry Machining of AISI 316 Steel Using Textured Ceramic Tool Inserts: Investigation of Surface Roughness and Chip Morphology
by Shailendra Pawanr and Kapil Gupta
Ceramics 2025, 8(3), 97; https://doi.org/10.3390/ceramics8030097 - 31 Jul 2025
Viewed by 348
Abstract
Stainless steel is recognized for its excellent durability and anti-corrosion properties, which are essential qualities across various industrial applications. The machining of stainless steel, particularly under a dry environment to attain sustainability, poses several challenges. The poor heat conductivity and high ductility of [...] Read more.
Stainless steel is recognized for its excellent durability and anti-corrosion properties, which are essential qualities across various industrial applications. The machining of stainless steel, particularly under a dry environment to attain sustainability, poses several challenges. The poor heat conductivity and high ductility of stainless steel results in poor heat distribution, accelerating tool wear and problematic chip formation. To mitigate these challenges, the implementation of surface texturing has been identified as a beneficial strategy. This study investigates the impact of wave-type texturing patterns, developed on the flank surface of tungsten carbide ceramic tool inserts, on the machinability of AISI 316 stainless steel under dry cutting conditions. In this investigation, chip morphology and surface roughness were used as key indicators of machinability. Analysis of Variance (ANOVA) was conducted for chip thickness, chip thickness ratio, and surface roughness, while Taguchi mono-objective optimization was applied to chip thickness. The ANOVA results showed that linear models accounted for 71.92%, 83.13%, and 82.86% of the variability in chip thickness, chip thickness ratio, and surface roughness, respectively, indicating a strong fit to the experimental data. Microscopic analysis confirmed a substantial reduction in chip thickness, with a minimum observed value of 457.64 µm. The corresponding average surface roughness Ra value 1.645 µm represented the best finish across all experimental runs, highlighting the relationship between thinner chips and enhanced surface quality. In conclusion, wave textures on the cutting tool’s flank face have the potential to facilitate the dry machining of AISI 316 stainless steel to obtain favorable machinability. Full article
Show Figures

Graphical abstract

17 pages, 3811 KB  
Article
Enhanced Cooling Performance in Cutting Tools Using TPMS-Integrated Toolholders: A CFD-Based Thermal-Fluidic Study
by Haiyang Ji, Zhanqiang Liu, Jinfu Zhao and Bing Wang
Modelling 2025, 6(3), 73; https://doi.org/10.3390/modelling6030073 - 28 Jul 2025
Viewed by 400
Abstract
The efficient thermal management of cutting tools is critical for ensuring dimensional accuracy, surface integrity, and tool longevity, especially in the high-speed dry machining process. However, conventional cooling methods often fall short in reaching the heat-intensive zones near the cutting inserts. This study [...] Read more.
The efficient thermal management of cutting tools is critical for ensuring dimensional accuracy, surface integrity, and tool longevity, especially in the high-speed dry machining process. However, conventional cooling methods often fall short in reaching the heat-intensive zones near the cutting inserts. This study proposes a novel internal cooling strategy that integrates triply periodic minimal surface (TPMS) structures into the toolholder, aiming to enhance localized heat removal from the cutting region. The thermal-fluidic behaviors of four TPMS topologies (Gyroid, Diamond, I-WP, and Fischer–Koch S) were systematically analyzed under varying coolant velocities using computational fluid dynamics (CFD). Several key performance indicators, including the convective heat transfer coefficient, Nusselt number, friction factor, and thermal resistance, were evaluated. The Diamond and Gyroid structures exhibited the most favorable balance between heat transfer enhancement and pressure loss. The experimental validation confirmed the CFD prediction accuracy. The results establish a new design paradigm for integrating TPMS structures into toolholders, offering a promising solution for efficient, compact, and sustainable cooling in advanced cutting applications. Full article
Show Figures

Figure 1

28 pages, 25758 KB  
Article
Cam Design and Pin Defect Detection of Cam Pin Insertion Machine in IGBT Packaging
by Wenchao Tian, Pengchao Zhang, Mingfang Tian, Si Chen, Haoyue Ji and Bingxu Ma
Micromachines 2025, 16(7), 829; https://doi.org/10.3390/mi16070829 - 20 Jul 2025
Viewed by 398
Abstract
Packaging equipment plays a crucial role in the semiconductor industry by enhancing product quality and reducing labor costs through automation. Research was conducted on IGBT module packaging equipment (an automatic pin insertion machine) during the pin assembly process of insulated gate bipolar transistor [...] Read more.
Packaging equipment plays a crucial role in the semiconductor industry by enhancing product quality and reducing labor costs through automation. Research was conducted on IGBT module packaging equipment (an automatic pin insertion machine) during the pin assembly process of insulated gate bipolar transistor (IGBT) modules to improve productivity and product quality. First, the manual pin assembly process was divided into four stages: feeding, stabilizing, clamping, and inserting. Each stage was completed by separate cams, and corresponding step timing diagrams are drawn. The profiles of the four cams were designed and verified through theoretical calculations and kinematic simulations using a seventh-degree polynomial curve fitting method. Then, image algorithms were developed to detect pin tilt defects, pin tip defects, and to provide visual guidance for pin insertion. Finally, a pin insertion machine and its human–machine interaction interface were constructed. On-machine results show that the pin cutting pass rate reached 97%, the average insertion time for one pin was 2.84 s, the pass rate for pin insertion reached 99.75%, and the pin image guidance accuracy was 0.02 mm. Therefore, the designed pin assembly machine can reliably and consistently perform the pin insertion task, providing theoretical and experimental insights for the automated production of IGBT modules. Full article
Show Figures

Figure 1

24 pages, 15762 KB  
Article
Performance of TiSiN/TiAlN-Coated Carbide Tools in Slot Milling of Hastelloy C276 with Various Cooling Strategies
by Ly Chanh Trung and Tran Thien Phuc
Lubricants 2025, 13(7), 316; https://doi.org/10.3390/lubricants13070316 - 19 Jul 2025
Viewed by 713
Abstract
Nickel-based superalloy Hastelloy C276 is widely used in high-performance industries due to its strength, corrosion resistance, and thermal stability. However, these same properties pose substantial challenges in machining, resulting in high tool wear, surface defects, and dimensional inaccuracies. This study investigates methods to [...] Read more.
Nickel-based superalloy Hastelloy C276 is widely used in high-performance industries due to its strength, corrosion resistance, and thermal stability. However, these same properties pose substantial challenges in machining, resulting in high tool wear, surface defects, and dimensional inaccuracies. This study investigates methods to enhance machining performance and surface quality by evaluating the tribological behavior of TiSiN/TiAlN-coated carbide inserts under six cooling and lubrication conditions: dry, MQL with coconut oil, Cryo-LN2, Cryo-LCO2, MQL–Cryo-LN2, and MQL–Cryo-LCO2. Open-slot finishing was performed at constant cutting parameters, and key indicators such as cutting zone temperature, tool wear, surface roughness, chip morphology, and microhardness were analyzed. The hybrid MQL–Cryo-LN2 approach significantly outperformed other methods, reducing cutting zone temperature, tool wear, and surface roughness by 116.4%, 94.34%, and 76.11%, respectively, compared to dry machining. SEM and EDS analyses confirmed abrasive, oxidative, and adhesive wear as the dominant mechanisms. The MQL–Cryo-LN2 strategy also lowered microhardness, in contrast to a 39.7% increase observed under dry conditions. These findings highlight the superior performance of hybrid MQL–Cryo-LN2 in improving machinability, offering a promising solution for precision-driven applications. Full article
(This article belongs to the Special Issue High Performance Machining and Surface Tribology)
Show Figures

Figure 1

17 pages, 1886 KB  
Review
Random Insertion Reporter Gimmicks Powered by Cut-and-Paste DNA Transposons
by Yamato Kasahara, Kentaro Semba, Shinya Watanabe and Kosuke Ishikawa
Biomedicines 2025, 13(7), 1682; https://doi.org/10.3390/biomedicines13071682 - 9 Jul 2025
Viewed by 473
Abstract
Transposons are mobile genetic elements capable of moving within the genome. Leveraging this property—particularly the cut-and-paste mechanism of DNA transposons—has enabled the development of technologies for inserting exogenous DNA fragments into host genomes. While targeted integration is a key goal for therapeutic applications, [...] Read more.
Transposons are mobile genetic elements capable of moving within the genome. Leveraging this property—particularly the cut-and-paste mechanism of DNA transposons—has enabled the development of technologies for inserting exogenous DNA fragments into host genomes. While targeted integration is a key goal for therapeutic applications, this review highlights the value of their intrinsic randomness. By combining the ability to freely design the DNA cargo with the stochastic nature of transposon integration, it becomes possible to generate highly sensitive reporter cells. These can be used to efficiently identify functional markers, uncover novel signaling pathways, and establish innovative platforms for drug screening. As more subfamilies of transposons become available for research use, their complementary biases may enhance the coverage and diversity of genome-wide screening approaches. Although inherently unpredictable, this strategy embraces randomness as a strength, and we propose that it holds great promise for driving new advances in biology, cellular engineering, and medical research. Full article
(This article belongs to the Special Issue Gene Delivery and Gene Editing)
Show Figures

Figure 1

14 pages, 5034 KB  
Article
Topology Optimization of a Milling Cutter Head for Additive Manufacturing
by Ilídio Brito Costa, Bruno Rafael Cunha, João Marouvo, Daniel Figueiredo, Bruno Miguel Guimarães, Manuel Fernando Vieira and José Manuel Costa
Metals 2025, 15(7), 729; https://doi.org/10.3390/met15070729 - 29 Jun 2025
Viewed by 583
Abstract
The rapid growth of the machining market and advancements in additive manufacturing (AM) present new opportunities for innovative tool designs. This preliminary study proposes a design for additive manufacturing (DfAM) approach to redesign a milling cutter head in 17-4 PH stainless steel by [...] Read more.
The rapid growth of the machining market and advancements in additive manufacturing (AM) present new opportunities for innovative tool designs. This preliminary study proposes a design for additive manufacturing (DfAM) approach to redesign a milling cutter head in 17-4 PH stainless steel by integrating topology optimization (TO) and internal coolant channel optimization, enabled by laser powder bed fusion (LPBF). An industrial eight-insert milling cutting tool was reimagined with conformal cooling channels and a lightweight topology-optimized structure. The design process considered LPBF constraints and was iteratively refined using computational fluid dynamics (CFD) and finite element analysis (FEA) to validate fluid flow and structural performance. The optimized milling head achieved approximately 10% weight reduction while improving stiffness (reducing maximum deformation under load from 160 μm to 151 μm) and providing enhanced coolant distribution to the cutting inserts. The results demonstrate that combining TO with internal channel design can yield a high-performance and lightweight milling tool that leverages the freedom of additive manufacturing. As proof of concept, this integrated CFD–FEA validation approach under DfAM guidelines highlights a promising pathway toward superior cutting tool designs for industrial applications. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

10 pages, 1572 KB  
Article
Correlation Between Homogeneity of Different Composite Resins and Their Adhesion to Glass Fiber Posts: In Vitro Assessment
by Živilė Oleinikaitė, Gediminas Skirbutis and Greta Rutkauskaitė
Dent. J. 2025, 13(7), 290; https://doi.org/10.3390/dj13070290 - 27 Jun 2025
Viewed by 287
Abstract
Background and Objectives: This in vitro trial aimed to investigate if there is a correlation between the homogeneities of different composite materials and their adhesion to glass fiber posts (GFPs). Materials and Methods: Twenty intact human upper jaw central incisors extracted due to [...] Read more.
Background and Objectives: This in vitro trial aimed to investigate if there is a correlation between the homogeneities of different composite materials and their adhesion to glass fiber posts (GFPs). Materials and Methods: Twenty intact human upper jaw central incisors extracted due to periodontal diseases were selected for this trial. Endodontic treatment was performed according to ISO recommendations. A total of 4 mm of guttapercha was left in the apical region. Canals were prepared for post insertion. Teeth were randomly allocated into the two following groups depending on the core restorative material (n = 10): I—cores build up with light cured composite; II—cores build up with dual cured composite resin. GFPs were inserted and cores were rebuilt with different composite resins. Longitudinal cuts were made across the axis of the teeth and examined under a scanning electron microscope (SEM). Statistical analysis was accomplished using Mann–Whitney U and Spearman tests (p < 0.05). Results: In the group where the number and size of pores at the interface of GFPs were analyzed, pores were found only in the specimens restored with the light-cured “bulk-filled” composite. In the group where the number and size of pores in the core material were analyzed, pores were found in specimens restored with both the light-cured “bulk-filled” composite and dual-cured resin composite. However, the dual-cured resin composite yielded better results in terms of core integration. Conclusions: There is no statistically significant correlation between the homogeneities of different composite materials and their adhesion to GFP. Full article
(This article belongs to the Topic Advances in Dental Materials)
Show Figures

Figure 1

20 pages, 13699 KB  
Article
Modeling and Cutting Mechanics in the Milling of Polymer Matrix Composites
by Krzysztof Ciecieląg, Andrzej Kawalec, Michał Gdula and Piotr Żurek
Materials 2025, 18(13), 3017; https://doi.org/10.3390/ma18133017 - 25 Jun 2025
Viewed by 352
Abstract
The study investigates the problem of modeling cutting-force components through response surface methodology and reports the results of an investigation into the impact of machining parameters on the cutting mechanics of polymer–matrix composites. The novelty of this study is the modeling of cutting [...] Read more.
The study investigates the problem of modeling cutting-force components through response surface methodology and reports the results of an investigation into the impact of machining parameters on the cutting mechanics of polymer–matrix composites. The novelty of this study is the modeling of cutting forces and the determination of mathematical models of these forces. The models describe the values of forces as a function of the milling parameters. In addition, the cutting resistance of the composites was determined. The influence of the material and rake angle of individual tools on the cutting force components was also determined. Measurements of the main (tangential) cutting force showed that, using large rake angles for uncoated carbide tools, one could obtain maximum force values that were similar to those obtained with polycrystalline diamond tools with a small rake angle. The results of the analysis of the tangential component of cutting resistance showed that, regardless of the rake angle, the values range from 140 N to 180 N. An analysis of the feed component of cutting resistance showed that the maximum values of this force ranged from 46 N to 133 N. The results showed that the highest values of the feed component of cutting resistance occurred during the machining of polymer composites with carbon fibers and that they were most affected by feed per tooth. It was also shown that the force models determined during milling with diamond insert tools had the highest coefficient of determination in the range of 0.90–0.99. The cutting resistance analysis showed that the values tested are in the range of 3.8 N/mm2 to 15.5 N/mm2. Full article
(This article belongs to the Special Issue Cutting Processes for Materials in Manufacturing—Second Edition)
Show Figures

Figure 1

19 pages, 6315 KB  
Article
Age-Friendly Public-Space Retrofit in Peri-Urban Villages Using Space Syntax and Exploratory Factor Analysis
by Qin Li, Zhenze Yang, Jingya Cui, Xingping Wu, Jiao Liu, Wenlong Li and Yijun Liu
Buildings 2025, 15(13), 2219; https://doi.org/10.3390/buildings15132219 - 24 Jun 2025
Cited by 1 | Viewed by 652
Abstract
Population ageing is revealing acute mismatches between inherited village layouts and older residents’ everyday needs in China’s peri-urban fringe. This study combines space-syntax diagnostics with an exploratory factor analysis to create a building-oriented retrofit workflow. Using Liulin Village, Beijing, as a test bed, [...] Read more.
Population ageing is revealing acute mismatches between inherited village layouts and older residents’ everyday needs in China’s peri-urban fringe. This study combines space-syntax diagnostics with an exploratory factor analysis to create a building-oriented retrofit workflow. Using Liulin Village, Beijing, as a test bed, axial-line modelling pinpoints the low-integration alleys and mono-functional retail strips, while elder-user surveys distil four latent demand factors, led by personal convenience. Overlaying these two layers highlights the “high-demand/low-fit” segments for intervention. Prefabricated 3 m × 6 m health kiosks, sunrooms and rest pergolas—constructed from light-gauge steel frames and assembled with dry joints—are then inserted along a newly permeated corridor–core walking loop. The modules follow a 600 mm dimensional grid and can be installed or removed within a single working day, cutting the on-site labour by roughly one-third relative to that required for conventional masonry kiosks and enabling their future relocation or reuse. The workflow shows how small-scale, low-carbon building interventions can simultaneously improve accessibility, social interaction and functional diversity, providing a transferable template for ageing-responsive public-space retrofits in rapidly transforming village contexts. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

31 pages, 5464 KB  
Review
Alumina-Based Cutting Tools—A Review of Recent Progress
by Irena Žmak, Sonja Jozić, Lidija Ćurković and Tomislav Filetin
Materials 2025, 18(12), 2813; https://doi.org/10.3390/ma18122813 - 16 Jun 2025
Viewed by 791
Abstract
Choosing the appropriate cutting tool material is essential for enhancing machining processes because it directly affects product quality, surface finish, dimensional accuracy, tool longevity, and overall efficiency. Different materials are used for cutting tools, i.e., for cutting inserts. Due to their high hardness [...] Read more.
Choosing the appropriate cutting tool material is essential for enhancing machining processes because it directly affects product quality, surface finish, dimensional accuracy, tool longevity, and overall efficiency. Different materials are used for cutting tools, i.e., for cutting inserts. Due to their high hardness and high temperature resistance, ceramics cutting inserts allow for increased cutting speeds, resulting in shorter manufacturing times and reduced costs, despite being pricier than traditional cemented carbide and facing certain technical challenges due to their brittleness. Alumina-based ceramics dominate the market, accounting for about two-thirds of usage, followed by silicon nitride and zirconia. This paper provides a comprehensive overview of recent advances in alumina ceramic materials used as cutting inserts, focusing on research conducted in the last five years to optimize static and dynamic mechanical and thermal properties, wear resistance, density, etc. They ways in which the properties are altered through the incorporation of whiskers, nanoparticles, or nanotubes; the modification of the structure; the optimization of sintering parameters; and the application of advanced sintering techniques are demonstrated. The paper also addresses sustainability, environmental impact, and the management of critical raw materials associated with cutting inserts, which pertains to the future development of cutting insert materials. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

14 pages, 3037 KB  
Article
The Effect of Three-Dimensional Stabilization Thread Design on Biomechanical Fixation and Osseointegration in Type IV Bone
by Nicholas J. Iglesias, Vasudev Vivekanand Nayak, Arthur Castellano, Lukasz Witek, Bruno Martins de Souza, Edmara T. P. Bergamo, Ricky Almada, Blaire V. Slavin, Estevam A. Bonfante and Paulo G. Coelho
Biomimetics 2025, 10(6), 395; https://doi.org/10.3390/biomimetics10060395 - 12 Jun 2025
Viewed by 606
Abstract
Achieving the appropriate primary stability for immediate or early loading in areas with low-density bone, such as the posterior maxilla, is challenging. A three-dimensional (3D) stabilization implant design featuring a tapered body with continuous cutting flutes along the length of the external thread [...] Read more.
Achieving the appropriate primary stability for immediate or early loading in areas with low-density bone, such as the posterior maxilla, is challenging. A three-dimensional (3D) stabilization implant design featuring a tapered body with continuous cutting flutes along the length of the external thread form, with a combination of curved and linear geometric surfaces on the thread’s crest, has the capacity to enhance early biomechanical and osseointegration outcomes compared to implants with traditional buttressed thread profiles. Commercially available implants with a buttress thread design (TP), and an experimental implant that incorporated the 3D stabilization trimmed-thread design (TP 3DS) were used in this study. Six osteotomies were surgically created in the ilium of adult sheep (N = 14). Osteotomy sites were randomized to receive either the TP or TP 3DS implant to reduce site bias. Subjects were allowed to heal for either 3 or 12 weeks (N = 7 sheep/time point), after which samples were collected en bloc (including the implants and surrounding bone) and implants were either subjected to bench-top biomechanical testing (e.g., lateral loading), histological/histomorphometric analysis, or nanoindentation testing. Both implant designs yielded high insertion torque (ITV ≥ 30 N⋅cm) and implant stability quotient (ISQ ≥ 70) values, indicative of high primary stability. Qualitative histomorphological analysis revealed that the TP 3DS group exhibited a continuous bone–implant interface along the threaded region, in contrast to the TP group at the early, 3-week, healing time point. Furthermore, TP 3DS’s cutting flutes along the entire length of the implant permitted the distribution of autologous bone chips within the healing chambers. Histological evaluation at 12 weeks revealed an increase in woven bone containing a greater presence of lacunae within the healing chambers in both groups, consistent with an intramembranous-like healing pattern and absence of bone dieback. The TP 3DS macrogeometry yielded a ~66% increase in average lateral load during pushout testing at baseline (T = 0 weeks, p = 0.036) and significantly higher bone-to-implant contact (BIC) values at 3 weeks post-implantation (p = 0.006), relative to the traditional TP implant. In a low-density (Type IV) bone model, the TP 3DS implant demonstrated improved performance compared to the conventional TP, as evidenced by an increase in baseline lateral loading capacity and increased BIC during the early stages of osseointegration. These findings indicate that the modified implant configuration of the TP 3DS facilitates more favorable biomechanical integration and may promote more rapid and stable bone anchorage under compromised bone quality conditions. Therefore, such improvements could have important clinical implications for the success and longevity of dental implants placed in regions with low bone density. Full article
Show Figures

Figure 1

Back to TopTop