Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (560)

Search Parameters:
Keywords = cyber–physical security

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 955 KB  
Article
A Simulation Study on the Theoretical Potential of Quantum-Enhanced Federated Security Operations
by Robert Campbell
Sensors 2025, 25(19), 5949; https://doi.org/10.3390/s25195949 - 24 Sep 2025
Viewed by 95
Abstract
This paper makes two distinct contributions to the security and federated learning communities. First, we identify and empirically demonstrate a critical vulnerability in Krum, a widely deployed Byzantine-resilient aggregation algorithm, showing catastrophic failure (44.7% accuracy degradation) when applied to high-dimensional neural networks. We [...] Read more.
This paper makes two distinct contributions to the security and federated learning communities. First, we identify and empirically demonstrate a critical vulnerability in Krum, a widely deployed Byzantine-resilient aggregation algorithm, showing catastrophic failure (44.7% accuracy degradation) when applied to high-dimensional neural networks. We provide comprehensive analysis of five alternative algorithms and validate FLTrust as a more resilient solution, though requiring trusted infrastructure. This finding has immediate implications for production federated learning systems. Second, we present a rigorous feasibility analysis of quantum-enhanced security operations through simulation-based exploration. We document fundamental deployment barriers including (1) environmental electromagnetic interference exceeding sensor capabilities by 6-9 orders of magnitude, (2) infrastructure costs of USD 3–5M with unproven benefits, (3) an absence of validated correlation mechanisms between quantum measurements and cyber threats, and (4) O(n2) scalability constraints limiting deployments to 20 nodes. This is purely theoretical research using simulated data without physical quantum sensors. Physical validation through empirical noise characterization and sensor deployment in operational environments represents the critical next step, though faces significant challenges from EMI shielding requirements and calibration procedures. Together, these contributions provide actionable insights for current federated learning deployments while preventing premature investment in quantum sensing for cybersecurity. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

19 pages, 5116 KB  
Article
Development and Evaluation of a Novel IoT Testbed for Enhancing Security with Machine Learning-Based Threat Detection
by Waleed Farag, Xin-Wen Wu, Soundararajan Ezekiel, Drew Rado and Jaylee Lassinger
Sensors 2025, 25(18), 5870; https://doi.org/10.3390/s25185870 - 19 Sep 2025
Viewed by 255
Abstract
The Internet of Things (IoT) has revolutionized industries by enabling seamless data exchange between billions of connected devices. However, the rapid proliferation of IoT devices has introduced significant security challenges, as many of these devices lack robust protection against cyber threats such as [...] Read more.
The Internet of Things (IoT) has revolutionized industries by enabling seamless data exchange between billions of connected devices. However, the rapid proliferation of IoT devices has introduced significant security challenges, as many of these devices lack robust protection against cyber threats such as data breaches and denial-of-service attacks. Addressing these vulnerabilities is critical to maintaining the integrity and trust of IoT ecosystems. Traditional cybersecurity solutions often fail in dynamic, heterogeneous IoT environments due to device diversity, limited computational resources, and inconsistent communication protocols, which hinder the deployment of uniform and scalable security mechanisms. Moreover, there is a notable lack of realistic, high-quality datasets for training and evaluating machine learning (ML) models for IoT security, limiting their effectiveness in detecting complex and evolving threats. This paper presents the development and implementation of a novel physical smart office/home testbed designed to evaluate ML algorithms for detecting and mitigating IoT security vulnerabilities. The testbed replicates a real-world office environment, integrating a variety of IoT devices, such as different types of sensors, cameras, smart plugs, and workstations, within a network generating authentic traffic patterns. By simulating diverse attack scenarios including unauthorized access and network intrusions, the testbed provides a controlled platform to train, test, and validate ML-based anomaly detection systems. Experimental results show that the XGBoost model achieved a balanced accuracy of up to 99.977% on testbed-generated data, comparable to 99.985% on the benchmark IoT-23 dataset. Notably, the SVM model achieved up to 96.71% accuracy using our testbed data, outperforming its results on IoT-23, which peaked at 94.572%. The findings demonstrate the testbed’s effectiveness in enabling realistic security evaluations and ability to generate real-world datasets, highlighting its potential as a valuable tool for advancing IoT security research. This work contributes to the development of more resilient and adaptive security frameworks, offering valuable insights for safeguarding critical IoT infrastructures against evolving threats. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

16 pages, 623 KB  
Review
A Digital Twin Architecture for Forest Restoration: Integrating AI, IoT, and Blockchain for Smart Ecosystem Management
by Nophea Sasaki and Issei Abe
Future Internet 2025, 17(9), 421; https://doi.org/10.3390/fi17090421 - 15 Sep 2025
Viewed by 564
Abstract
Meeting global forest restoration targets by 2030 requires a transition from labor-intensive and opaque practices to scalable, intelligent, and verifiable systems. This paper introduces a cyber–physical digital twin architecture for forest restoration, structured across four layers: (i) a Physical Layer with drones and [...] Read more.
Meeting global forest restoration targets by 2030 requires a transition from labor-intensive and opaque practices to scalable, intelligent, and verifiable systems. This paper introduces a cyber–physical digital twin architecture for forest restoration, structured across four layers: (i) a Physical Layer with drones and IoT-enabled sensors for in situ environmental monitoring; (ii) a Data Layer for secure and structured transmission of spatiotemporal data; (iii) an Intelligence Layer applying AI-driven modeling, simulation, and predictive analytics to forecast biomass, biodiversity, and risk; and (iv) an Application Layer providing stakeholder dashboards, milestone-based smart contracts, and automated climate finance flows. Evidence from Dronecoria, Flash Forest, and AirSeed Technologies shows that digital twins can reduce per-tree planting costs from USD 2.00–3.75 to USD 0.11–1.08, while enhancing accuracy, scalability, and community participation. The paper further outlines policy directions for integrating digital MRV systems into the Enhanced Transparency Framework (ETF) and Article 5 of the Paris Agreement. By embedding simulation, automation, and participatory finance into a unified ecosystem, digital twins offer a resilient, interoperable, and climate-aligned pathway for next-generation forest restoration. Full article
(This article belongs to the Special Issue Advances in Smart Environments and Digital Twin Technologies)
Show Figures

Figure 1

28 pages, 2031 KB  
Article
EMBRAVE: EMBedded Remote Attestation and Verification framEwork
by Enrico Bravi, Alessio Claudio, Antonio Lioy and Andrea Vesco
Sensors 2025, 25(17), 5514; https://doi.org/10.3390/s25175514 - 4 Sep 2025
Viewed by 985
Abstract
The Internet of Things (IoT) is a growing area of interest with an increasing number of applications, including cyber–physical systems (CPS). Emerging threats in the IoT context make software integrity verification a key solution for checking that IoT platforms have not been tampered [...] Read more.
The Internet of Things (IoT) is a growing area of interest with an increasing number of applications, including cyber–physical systems (CPS). Emerging threats in the IoT context make software integrity verification a key solution for checking that IoT platforms have not been tampered with so that they behave as expected. Trusted Computing techniques, in particular Remote Attestation (RA), can address this critical need. RA techniques allow a trusted third party (Verifier) to verify the software integrity of a remote platform (Attester). RA techniques rely on the presence of a secure element on the device that acts as a Root of Trust (RoT). Several specifications have been proposed to build RoTs, such as the Trusted Platform Module (TPM), the Device Identifier Composition Engine (DICE), and the Measurement and Attestation RootS (MARS). IoT contexts are often characterized by a highly dynamic scenario where platforms are constantly joining and leaving networks. This condition can be challenging for RA techniques as they need to be aware of the nodes that make up the network. This paper presents the EMBedded Remote Attestation and Verification framEwork (EMBRAVE). It is a TPM-based RA framework designed to provide a dynamic and scalable solution for RA in IoT networks. To support dynamic networks, we designed and developed Join and Leave Protocols, permitting attestation of devices that are not directly under the control of the network owner. This paper discusses the design and open-source implementation of EMBRAVE and presents experimental results demonstrating its effectiveness. Full article
Show Figures

Figure 1

43 pages, 1021 KB  
Review
A Survey of Cross-Layer Security for Resource-Constrained IoT Devices
by Mamyr Altaibek, Aliya Issainova, Tolegen Aidynov, Daniyar Kuttymbek, Gulsipat Abisheva and Assel Nurusheva
Appl. Sci. 2025, 15(17), 9691; https://doi.org/10.3390/app15179691 - 3 Sep 2025
Viewed by 878
Abstract
Low-power microcontrollers, wireless sensors, and embedded gateways form the backbone of many Internet of Things (IoT) deployments. However, their limited memory, constrained energy budgets, and lack of standardized firmware make them attractive targets for diverse attacks, including bootloader backdoors, hardcoded keys, unpatched CVE [...] Read more.
Low-power microcontrollers, wireless sensors, and embedded gateways form the backbone of many Internet of Things (IoT) deployments. However, their limited memory, constrained energy budgets, and lack of standardized firmware make them attractive targets for diverse attacks, including bootloader backdoors, hardcoded keys, unpatched CVE exploits, and code-reuse attacks, while traditional single-layer defenses are insufficient as they often assume abundant resources. This paper presents a Systematic Literature Review (SLR) conducted according to the PRISMA 2020 guidelines, covering 196 peer-reviewed studies on cross-layer security for resource-constrained IoT and Industrial IoT environments, and introduces a four-axis taxonomy—system level, algorithmic paradigm, data granularity, and hardware budget—to structure and compare prior work. At the firmware level, we analyze static analysis, symbolic execution, and machine learning-based binary similarity detection that operate without requiring source code or a full runtime; at the network and behavioral levels, we review lightweight and graph-based intrusion detection systems (IDS), including single-packet authorization, unsupervised anomaly detection, RF spectrum monitoring, and sensor–actuator anomaly analysis bridging cyber-physical security; and at the policy level, we survey identity management, micro-segmentation, and zero-trust enforcement mechanisms supported by blockchain-based authentication and programmable policy enforcement points (PEPs). Our review identifies current strengths, limitations, and open challenges—including scalable firmware reverse engineering, efficient cross-ISA symbolic learning, and practical spectrum anomaly detection under constrained computing environments—and by integrating diverse security layers within a unified taxonomy, this SLR highlights both the state-of-the-art and promising research directions for advancing IoT security. Full article
Show Figures

Figure 1

21 pages, 4297 KB  
Article
Resilient Consensus-Based Target Tracking Under False Data Injection Attacks in Multi-Agent Networks
by Amir Ahmad Ghods and Mohammadreza Doostmohammadian
Signals 2025, 6(3), 44; https://doi.org/10.3390/signals6030044 - 2 Sep 2025
Viewed by 463
Abstract
Distributed target tracking in multi-agent networks plays a critical role in cooperative sensing and autonomous navigation. However, it faces significant challenges in highly dynamic and adversarial setups. This study aims to enhance the resilience of decentralized target tracking algorithms against measurement faults and [...] Read more.
Distributed target tracking in multi-agent networks plays a critical role in cooperative sensing and autonomous navigation. However, it faces significant challenges in highly dynamic and adversarial setups. This study aims to enhance the resilience of decentralized target tracking algorithms against measurement faults and cyber–physical threats, especially false data injection attacks. We propose a consensus-based estimation algorithm that integrates a nearly constant velocity model with saturation-based filtering to suppress impulsive measurement variations and promote robust, distributed state estimation. To counteract adversarial conditions, we incorporate a dynamic false data injection detection and isolation mechanism that uses innovation thresholds to identify and disregard suspicious measurements before they can degrade the global estimate. The effectiveness of the proposed algorithms is demonstrated through a series of simulation-based case studies under both benign and adversarial conditions. The results show that increased network connectivity and higher consensus iteration rates improve estimation accuracy and convergence speed, while properly tuned saturation filters achieve a practical balance between fault suppression and accurate estimation. Furthermore, under localized, coordinated, and transient false data injection attacks, the detection mechanism successfully identifies compromised agents and prevents their data from corrupting the distributed global estimate. Overall, this study illustrates that the proposed algorithm provides a simplified fault-tolerant solution that significantly enhances the accuracy and resilience of distributed target tracking without imposing excessive communication or computational burdens. Full article
Show Figures

Figure 1

22 pages, 1672 KB  
Article
Optimizing Robotic Disassembly-Assembly Line Balancing with Directional Switching Time via an Improved Q(λ) Algorithm in IoT-Enabled Smart Manufacturing
by Qi Zhang, Yang Xing, Man Yao, Xiwang Guo, Shujin Qin, Haibin Zhu, Liang Qi and Bin Hu
Electronics 2025, 14(17), 3499; https://doi.org/10.3390/electronics14173499 - 1 Sep 2025
Cited by 1 | Viewed by 681
Abstract
With the growing adoption of circular economy principles in manufacturing, efficient disassembly and reassembly of end-of-life (EOL) products has become a key challenge in smart factories. This paper addresses the Disassembly and Assembly Line Balancing Problem (DALBP), which involves scheduling robotic tasks across [...] Read more.
With the growing adoption of circular economy principles in manufacturing, efficient disassembly and reassembly of end-of-life (EOL) products has become a key challenge in smart factories. This paper addresses the Disassembly and Assembly Line Balancing Problem (DALBP), which involves scheduling robotic tasks across workstations while minimizing total operation time and accounting for directional switching time between disassembly and assembly phases. To solve this problem, we propose an improved reinforcement learning algorithm, IQ(λ), which extends the classical Q(λ) method by incorporating eligibility trace decay, a dynamic Action Table mechanism to handle non-conflicting parallel tasks, and switching-aware reward shaping to penalize inefficient task transitions. Compared with standard Q(λ), these modifications enhance the algorithm’s global search capability, accelerate convergence, and improve solution quality in complex DALBP scenarios. While the current implementation does not deploy live IoT infrastructure, the architecture is modular and designed to support future extensions involving edge-cloud coordination, trust-aware optimization, and privacy-preserving learning in Industrial Internet of Things (IIoT) environments. Four real-world disassembly-assembly cases (flashlight, copier, battery, and hammer drill) are used to evaluate the algorithm’s effectiveness. Experimental results show that IQ(λ) consistently outperforms traditional Q-learning, Q(λ), and Sarsa in terms of solution quality, convergence speed, and robustness. Furthermore, ablation studies and sensitivity analysis confirm the importance of the algorithm’s core design components. This work provides a scalable and extensible framework for intelligent scheduling in cyber-physical manufacturing systems and lays a foundation for future integration with secure, IoT-connected environments. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

37 pages, 1347 KB  
Systematic Review
Threat Modeling and Attacks on Digital Twins of Vehicles: A Systematic Literature Review
by Uzair Muzamil Shah, Daud Mustafa Minhas, Kashif Kifayat, Khizar Ali Shah and Georg Frey
Smart Cities 2025, 8(5), 142; https://doi.org/10.3390/smartcities8050142 - 28 Aug 2025
Viewed by 493
Abstract
This systematic literature review pioneers the synthesis of cybersecurity challenges for automotive digital twins (DTs), a critical yet underexplored frontier in connected vehicle security. The notion of digital twins, which act as simulated counterparts to real-world systems, is revolutionizing secure system design within [...] Read more.
This systematic literature review pioneers the synthesis of cybersecurity challenges for automotive digital twins (DTs), a critical yet underexplored frontier in connected vehicle security. The notion of digital twins, which act as simulated counterparts to real-world systems, is revolutionizing secure system design within the automotive sector. As contemporary vehicles become more dependent on interconnected electronic systems, the likelihood of cyber threats is escalating. This comprehensive literature review seeks to analyze existing research on threat modeling and security testing in automotive digital twins, aiming to pinpoint emerging patterns, evaluate current approaches, and identify future research avenues. Guided by the PRISMA framework, we rigorously analyze 23 studies from 882 publications to address three research questions: (1) How are threats to automotive DTs identified and assessed? (2) What methodologies drive threat modeling? Lastly, (3) what techniques validate threat models and simulate attacks? The novelty of this study lies in its structured classification of digital twin types (physics based, data driven, hybrid), its inclusion of a groundbreaking threat taxonomy across architectural layers (e.g., ECU tampering, CAN-Bus spoofing), the integration of the 5C taxonomy with layered architectures for DT security testing, and its analysis of domain-specific tools such as VehicleLang and embedded intrusion detection systems. The findings expose significant deficiencies in the strength and validation of threat models, highlighting the necessity for more adaptable and comprehensive testing methods. By exposing gaps in scalability, trust, and safety, and proposing actionable solutions aligned with UNECE R155, this SLR delivers a robust framework to advance secure DT development, empowering researchers and industry to fortify vehicle resilience against evolving cyber threats. Full article
35 pages, 1263 KB  
Review
Blockchain for Security in Digital Twins
by Rahanatu Suleiman, Akshita Maradapu Vera Venkata Sai, Wei Yu and Chenyu Wang
Future Internet 2025, 17(9), 385; https://doi.org/10.3390/fi17090385 - 27 Aug 2025
Viewed by 778
Abstract
Digital Twins (DTs) have become essential tools for improving efficiency, security, and decision-making across various industries. DTs enable deeper insight and more informed decision-making through the creation of virtual replicas of physical entities. However, they face privacy and security risks due to their [...] Read more.
Digital Twins (DTs) have become essential tools for improving efficiency, security, and decision-making across various industries. DTs enable deeper insight and more informed decision-making through the creation of virtual replicas of physical entities. However, they face privacy and security risks due to their real-time connectivity, making them vulnerable to cyber attacks. These attacks can lead to data breaches, disrupt operations, and cause communication delays, undermining system reliability. To address these risks, integrating advanced security frameworks such as blockchain technology offers a promising solution. Blockchains’ decentralized, tamper-resistant architecture enhances data integrity, transparency, and trust in DT environments. This paper examines security vulnerabilities associated with DTs and explores blockchain-based solutions to mitigate these challenges. A case study is presented involving how blockchain-based DTs can facilitate secure, decentralized data sharing between autonomous connected vehicles and traffic infrastructure. This integration supports real-time vehicle tracking, collision avoidance, and optimized traffic flow through secure data exchange between the DTs of vehicles and traffic lights. The study also reviews performance metrics for evaluating blockchain and DT systems and outlines future research directions. By highlighting the collaboration between blockchain and DTs, the paper proposes a pathway towards building more resilient, secure, and intelligent digital ecosystems for critical applications. Full article
Show Figures

Figure 1

16 pages, 1492 KB  
Proceeding Paper
Hardware Challenges in AI Sensors and Innovative Approaches to Overcome Them
by Filip Tsvetanov
Eng. Proc. 2025, 104(1), 19; https://doi.org/10.3390/engproc2025104019 - 25 Aug 2025
Viewed by 1588
Abstract
Intelligent sensors with embedded AI are key to modern cyber-physical systems. They find applications in industrial automation, medical diagnostics and healthcare, smart cities, and autonomous systems. Despite their significant potential, they face several hardware challenges related to computing power, energy consumption, communication capabilities, [...] Read more.
Intelligent sensors with embedded AI are key to modern cyber-physical systems. They find applications in industrial automation, medical diagnostics and healthcare, smart cities, and autonomous systems. Despite their significant potential, they face several hardware challenges related to computing power, energy consumption, communication capabilities, and security, which limit their effectiveness. This article analyzes factors influencing the production and deployment of AI sensors. The key limitations are energy efficiency, computing power, scalability, and integration of AI sensors in real-time conditions. Among the main problems are the high requirements for data processing, the limitations of traditional microprocessors, and the balance between performance and energy consumption. To meet these challenges, the article presents several practical and innovative approaches, including the development of specialized microprocessors and optimized architectures for “edge computing,” which promise radical reductions in latency and power consumption. Through a synthesis of current research and practical examples, the article emphasizes the need for intermediate hardware–software solutions and standardization for mass deployment of AI sensors. Full article
Show Figures

Figure 1

44 pages, 4243 KB  
Review
AI-Powered Building Ecosystems: A Narrative Mapping Review on the Integration of Digital Twins and LLMs for Proactive Comfort, IEQ, and Energy Management
by Bibars Amangeldy, Nurdaulet Tasmurzayev, Timur Imankulov, Zhanel Baigarayeva, Nurdaulet Izmailov, Tolebi Riza, Abdulaziz Abdukarimov, Miras Mukazhan and Bakdaulet Zhumagulov
Sensors 2025, 25(17), 5265; https://doi.org/10.3390/s25175265 - 24 Aug 2025
Cited by 1 | Viewed by 1861
Abstract
Artificial intelligence (AI) is now the computational core of smart building automation, acting across the entire cyber–physical stack. This review surveys peer-reviewed work on the integration of AI with indoor environmental quality (IEQ) and energy performance, distinguishing itself by presenting a holistic synthesis [...] Read more.
Artificial intelligence (AI) is now the computational core of smart building automation, acting across the entire cyber–physical stack. This review surveys peer-reviewed work on the integration of AI with indoor environmental quality (IEQ) and energy performance, distinguishing itself by presenting a holistic synthesis of the complete technological evolution from IoT sensors to generative AI. We uniquely frame this progression within a human-centric architecture that integrates digital twins of both the building (DT-B) and its occupants (DT-H), providing a forward-looking perspective on occupant comfort and energy management. We find that deep reinforcement learning (DRL) agents, often developed within physics-calibrated digital twins, reduce annual HVAC demand by 10–35% while maintaining an operative temperature within ±0.5 °C and CO2 below 800 ppm. These comfort and IAQ targets are consistent with ASHRAE Standard 55 (thermal environmental conditions) and ASHRAE Standard 62.1 (ventilation for acceptable indoor air quality); keeping the operative temperature within ±0.5 °C of the setpoint and indoor CO2 near or below ~800 ppm reflects commonly adopted control tolerances and per-person outdoor air supply objectives. Regarding energy impacts, simulation studies commonly report higher double-digit reductions, whereas real building deployments typically achieve single- to low-double-digit savings; we therefore report simulation and field results separately. Supervised learners, including gradient boosting and various neural networks, achieve 87–97% accuracy for short-term load, comfort, and fault forecasting. Furthermore, unsupervised models successfully mine large-scale telemetry for anomalies and occupancy patterns, enabling adaptive ventilation that can cut sick building complaints by 40%. Despite these gains, deployment is hindered by fragmented datasets, interoperability issues between legacy BAS and modern IoT devices, and the computer energy and privacy–security costs of large models. The key research priorities include (1) open, high-fidelity IEQ benchmarks; (2) energy-aware, on-device learning architectures; (3) privacy-preserving federated frameworks; (4) hybrid, physics-informed models to win operator trust. Addressing these challenges is pivotal for scaling AI from isolated pilots to trustworthy, human-centric building ecosystems. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

26 pages, 2421 KB  
Review
Composite Vulnerabilities and Hybrid Threats for Smart Sensors and Field Busses in Building Automation: A Review
by Michael Gerhalter and Keshav Dahal
Sensors 2025, 25(17), 5218; https://doi.org/10.3390/s25175218 - 22 Aug 2025
Viewed by 690
Abstract
In the IT sector, the relevance of looking at security from many different angles and the inclusion of different areas is already known and understood. This approach is much less pronounced in the area of cyber physical systems and not present at all [...] Read more.
In the IT sector, the relevance of looking at security from many different angles and the inclusion of different areas is already known and understood. This approach is much less pronounced in the area of cyber physical systems and not present at all in the area of building automation. Increasing interconnectivity, undefined responsibilities, connections between secured and unsecured areas, and a lack of understanding of security among decision-makers pose a particular threat. This systematic review demonstrates a paucity of literature addressing real-world scenarios, asymmetric/hybrid threats, or composite vulnerabilities. In particular, the attack surface is significantly increased by the deployment of smart sensors and actuators in unprotected areas. Furthermore, a range of additional hybrid threats are cited, with practical examples being provided that have hitherto gone unnoticed in the extant literature. It will be shown whether solutions are available in neighboring areas and whether these can be transferred to building automation to increase the security of the entire system. Consequently, subsequent studies can be developed to create more accurate behavioral models, enabling more rapid and effective analysis of potential attacks to building automation. Full article
Show Figures

Figure 1

31 pages, 4728 KB  
Review
A Review of Blockchained Product Quality Management Towards Smart Manufacturing
by Lihua Wu, Yuanwei Zhong, Xiaofeng Zhu, Xueliang Zhou and Jiewu Leng
Processes 2025, 13(8), 2622; https://doi.org/10.3390/pr13082622 - 19 Aug 2025
Viewed by 644
Abstract
Trustworthy product quality data forms the foundation of digital and distributed manufacturing, yet current centralized product quality management (PQM) systems remain vulnerable to data manipulation, traceability breaks, single points of failure, and related adverse effects. To clarify how blockchain can address these weaknesses, [...] Read more.
Trustworthy product quality data forms the foundation of digital and distributed manufacturing, yet current centralized product quality management (PQM) systems remain vulnerable to data manipulation, traceability breaks, single points of failure, and related adverse effects. To clarify how blockchain can address these weaknesses, this paper presents a systematic review of blockchained product quality management (BPQM). Firstly, the paper groups the architectures and models related to BPQM and proposes an ISA 95-aligned reference framework that secures a real-time quality data exchange. Secondly, seven key BPQM enablers are analyzed, including (1) visual intelligence-based quality inspection, (2) cyber–physical twinning and parallel control of manufacturing systems, (3) blockchained agent modeling and secure data sharing, (4) multi-level blockchain mapping, (5) smart contract-based decentralized system configuration and operation, (6) artificial intelligence-based decentralized BPQM applications, and (7) traceability of process coordination and control. Thirdly, through analysis of social barriers and technological challenges, four research directions are identified, namely, (1) optimal granularity of data in system configuration; (2) smart contracts for self-organizing intelligence; (3) balancing system security, cost, and performance; and (4) interoperability and integration with legacy systems. It is expected that this paper lays a solid foundation for the practical use of blockchain in PQM engineering. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

20 pages, 492 KB  
Article
CurriculumPT: LLM-Based Multi-Agent Autonomous Penetration Testing with Curriculum-Guided Task Scheduling
by Xingyu Wu, Yunzhe Tian, Yuanwan Chen, Ping Ye, Xiaoshu Cui, Jingqi Jia, Shouyang Li, Jiqiang Liu and Wenjia Niu
Appl. Sci. 2025, 15(16), 9096; https://doi.org/10.3390/app15169096 - 18 Aug 2025
Viewed by 1409
Abstract
While autonomous driving systems and intelligent transportation infrastructures become increasingly software-defined and network-connected, ensuring their cybersecurity has become a critical component of traffic safety. Large language models (LLMs) have recently shown promise in automating aspects of penetration testing, yet most existing approaches remain [...] Read more.
While autonomous driving systems and intelligent transportation infrastructures become increasingly software-defined and network-connected, ensuring their cybersecurity has become a critical component of traffic safety. Large language models (LLMs) have recently shown promise in automating aspects of penetration testing, yet most existing approaches remain limited to simple, single-step exploits. They struggle to handle complex, multi-stage vulnerabilities that demand precise coordination, contextual reasoning, and knowledge reuse. This is particularly problematic in safety-critical domains, such as autonomous vehicles, where subtle software flaws can cascade across interdependent subsystems. In this work, we present CurriculumPT, a novel LLM-based penetration testing framework specifically designed for the security of intelligent systems. CurriculumPT combines curriculum learning and a multi-agent system to enable LLM agents to progressively acquire and apply exploitation skills across common vulnerabilities and exposures-based tasks. Through a structured progression from simple to complex vulnerabilities, agents build and refine an experience knowledge base that supports generalization to new attack surfaces without requiring model fine-tuning. We evaluate CurriculumPT on 15 real-world vulnerabilities scenarios and demonstrate that it outperforms three state-of-the-art baselines by up to 18 percentage points in exploit success rate, while achieving superior efficiency in execution time and resource usage. Our results confirm that CurriculumPT is capable of autonomous, scalable penetration testing and knowledge transfer, laying the groundwork for intelligent security auditing of modern autonomous driving systems and other cyberphysical transportation platforms. Full article
Show Figures

Figure 1

25 pages, 1003 KB  
Review
Power Quality Mitigation in Modern Distribution Grids: A Comprehensive Review of Emerging Technologies and Future Pathways
by Mingjun He, Yang Wang, Zihong Song, Zhukui Tan, Yongxiang Cai, Xinyu You, Guobo Xie and Xiaobing Huang
Processes 2025, 13(8), 2615; https://doi.org/10.3390/pr13082615 - 18 Aug 2025
Viewed by 921
Abstract
The global transition toward renewable energy and the electrification of transportation is imposing unprecedented power quality (PQ) challenges on modern distribution networks, rendering traditional governance models inadequate. To bridge the existing research gap of the lack of a holistic analytical framework, this review [...] Read more.
The global transition toward renewable energy and the electrification of transportation is imposing unprecedented power quality (PQ) challenges on modern distribution networks, rendering traditional governance models inadequate. To bridge the existing research gap of the lack of a holistic analytical framework, this review first establishes a systematic diagnostic methodology by introducing the “Triadic Governance Objectives–Scenario Matrix (TGO-SM),” which maps core objectives—harmonic suppression, voltage regulation, and three-phase balancing—against the distinct demands of high-penetration photovoltaic (PV), electric vehicle (EV) charging, and energy storage scenarios. Building upon this problem identification framework, the paper then provides a comprehensive review of advanced mitigation technologies, analyzing the performance and application of key ‘unit operations’ such as static synchronous compensators (STATCOMs), solid-state transformers (SSTs), grid-forming (GFM) inverters, and unified power quality conditioners (UPQCs). Subsequently, the review deconstructs the multi-timescale control conflicts inherent in these systems and proposes the forward-looking paradigm of “Distributed Dynamic Collaborative Governance (DDCG).” This future architecture envisions a fully autonomous grid, integrating edge intelligence, digital twins, and blockchain to shift from reactive compensation to predictive governance. Through this structured approach, the research provides a coherent strategy and a crucial theoretical roadmap for navigating the complexities of modern distribution grids and advancing toward a resilient and autonomous future. Full article
Show Figures

Figure 1

Back to TopTop