Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = cyborg cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
67 pages, 4706 KB  
Review
Nanoformulations in Pharmaceutical and Biomedical Applications: Green Perspectives
by Sanja Petrovic, Bogdan Bita and Marcela-Elisabeta Barbinta-Patrascu
Int. J. Mol. Sci. 2024, 25(11), 5842; https://doi.org/10.3390/ijms25115842 - 27 May 2024
Cited by 54 | Viewed by 10174
Abstract
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, [...] Read more.
This study provides a brief discussion of the major nanopharmaceuticals formulations as well as the impact of nanotechnology on the future of pharmaceuticals. Effective and eco-friendly strategies of biofabrication are also highlighted. Modern approaches to designing pharmaceutical nanoformulations (e.g., 3D printing, Phyto-Nanotechnology, Biomimetics/Bioinspiration, etc.) are outlined. This paper discusses the need to use natural resources for the “green” design of new nanoformulations with therapeutic efficiency. Nanopharmaceuticals research is still in its early stages, and the preparation of nanomaterials must be carefully considered. Therefore, safety and long-term effects of pharmaceutical nanoformulations must not be overlooked. The testing of nanopharmaceuticals represents an essential point in their further applications. Vegetal scaffolds obtained by decellularizing plant leaves represent a valuable, bioinspired model for nanopharmaceutical testing that avoids using animals. Nanoformulations are critical in various fields, especially in pharmacy, medicine, agriculture, and material science, due to their unique properties and advantages over conventional formulations that allows improved solubility, bioavailability, targeted drug delivery, controlled release, and reduced toxicity. Nanopharmaceuticals have transitioned from experimental stages to being a vital component of clinical practice, significantly improving outcomes in medical fields for cancer treatment, infectious diseases, neurological disorders, personalized medicine, and advanced diagnostics. Here are the key points highlighting their importance. The significant challenges, opportunities, and future directions are mentioned in the final section. Full article
(This article belongs to the Special Issue Nanoparticles in Nanobiotechnology and Nanomedicine)
Show Figures

Figure 1

17 pages, 7519 KB  
Review
The Gemstone Cyborg: How Diamond Films Are Creating New Platforms for Cell Regeneration and Biointerfacing
by Nádia E. Santos, Joana C. Mendes and Susana Santos Braga
Molecules 2023, 28(4), 1626; https://doi.org/10.3390/molecules28041626 - 8 Feb 2023
Cited by 3 | Viewed by 2431
Abstract
Diamond is a promising material for the biomedical field, mainly due to its set of characteristics such as biocompatibility, strength, and electrical conductivity. Diamond can be synthesised in the laboratory by different methods, is available in the form of plates or films deposited [...] Read more.
Diamond is a promising material for the biomedical field, mainly due to its set of characteristics such as biocompatibility, strength, and electrical conductivity. Diamond can be synthesised in the laboratory by different methods, is available in the form of plates or films deposited on foreign substrates, and its morphology varies from microcrystalline diamond to ultrananocrystalline diamond. In this review, we summarise some of the most relevant studies regarding the adhesion of cells onto diamond surfaces, the consequent cell growth, and, in some very interesting cases, the differentiation of cells into neurons and oligodendrocytes. We discuss how different morphologies can affect cell adhesion and how surface termination can influence the surface hydrophilicity and consequent attachment of adherent proteins. At the end of the review, we present a brief perspective on how the results from cell adhesion and biocompatibility can make way for the use of diamond as biointerface. Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry)
Show Figures

Figure 1

14 pages, 338 KB  
Essay
The Process of Evolution, Human Enhancement Technology, and Cyborgs
by Woodrow Barfield
Philosophies 2019, 4(1), 10; https://doi.org/10.3390/philosophies4010010 - 22 Feb 2019
Cited by 11 | Viewed by 28315
Abstract
The human body is a remarkable example of the process of evolution which ultimately created a sentient being with cognitive, motor, and information-processing abilities. The body can also be thought of as an amazing feat of engineering, and specifically as an example of [...] Read more.
The human body is a remarkable example of the process of evolution which ultimately created a sentient being with cognitive, motor, and information-processing abilities. The body can also be thought of as an amazing feat of engineering, and specifically as an example of molecular nanotechnology, positioning trillions of cells throughout the body, and creating the billions of unique individuals that have existed since the beginning of humanity. On the other hand, from an engineering perspective, there are numerous limitations associated with the human body and the process of evolution to effect changes in the body is exceedingly slow. For example, our skeletal structure is only so strong, our body is subject to disease, and we are programmed by our DNA to age. Further, it took millions of years for Homo sapiens to evolve and hundreds of thousands of years for hominids to invent the most basic technology. To allow humans to go beyond the capabilities that evolution provided Homo sapiens, current research is leading to technologies that could significantly enhance the cognitive and motor abilities of humans and eventually create the conditions in which humans and technology could merge to form a cybernetic being. Much of this technology is being developed from three fronts: due to medical necessity, an interest within the military to create a cyborg soldier, and the desire among some people to self-enhance their body with technology. This article discusses the processes of biological evolution which led to the current anatomical, physiological, and cognitive capabilities of humans and concludes with a discussion of emerging technologies which are directed primarily at enhancing the cognitive functions performed by the brain. This article also discusses a timeframe in which the body will become increasingly equipped with technology directly controlled by the brain, then as a major paradigm shift in human evolution, humans will merge with the technology itself. Full article
(This article belongs to the Special Issue Human Enhancement Technologies and Our Merger with Machines)
Show Figures

Figure 1

Back to TopTop