Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (329)

Search Parameters:
Keywords = cystine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6143 KB  
Review
From Molecular Understanding and Pathophysiology to Disease Management; A Practical Approach and Guidance to the Management of the Ocular Manifestations of Cystinosis
by Hong Liang, Christophe Baudouin, Bénédicte Dupas, Thibault Delcroix and Vincenzo Giordano
Int. J. Mol. Sci. 2025, 26(17), 8237; https://doi.org/10.3390/ijms26178237 - 25 Aug 2025
Abstract
Cystinosis is a rare lysosomal storage disease characterised by cystine crystal formation within cells. In the eyes, crystals accumulate in the cornea causing photophobia, loss of visual acuity, and corneal complications. Strict adherence to topical cysteamine treatment is the only therapy that reduces [...] Read more.
Cystinosis is a rare lysosomal storage disease characterised by cystine crystal formation within cells. In the eyes, crystals accumulate in the cornea causing photophobia, loss of visual acuity, and corneal complications. Strict adherence to topical cysteamine treatment is the only therapy that reduces corneal crystal accumulation. Cystinosis, a crystallopathy, is also a disease of inflammation. As the disease progresses the inflammatory processes have a greater impact on the ocular manifestations. The age at which inflammation becomes increasingly significant is dependent on the adequacy of early patient management and adherence with therapy. As patients are living longer with cystinosis, optimising ocular management is increasingly important. No clinical guidelines addressing the long-term ocular management of cystinosis exist. Similarly, there is little recognition in the literature of how to address the inflammatory component of the disease. This paper presents management guidelines, linked to the 3C Classification of severity, used at our centre that provides a framework for optimising care. Adoption of these can help preserve the sight of cystinosis patients. The paper also hypothesises the molecular pathway leading to corneal inflammation. Full article
(This article belongs to the Special Issue New Advances in Cystinosis from Basic to Clinical Research)
Show Figures

Figure 1

29 pages, 2797 KB  
Review
Allosteric Disulfide Bridges in Integrins: The Molecular Switches of Redox Regulation of Integrin-Mediated Cell Functions
by Johannes A. Eble
Antioxidants 2025, 14(8), 1005; https://doi.org/10.3390/antiox14081005 - 16 Aug 2025
Viewed by 465
Abstract
Almost every cell of a multicellular organism is in contact with the extracellular matrix (ECM), which provides the shape and mechanic stability of tissue, organs and the entire body. At the molecular level, cells contact the ECM via integrins. Integrins are transmembrane cell [...] Read more.
Almost every cell of a multicellular organism is in contact with the extracellular matrix (ECM), which provides the shape and mechanic stability of tissue, organs and the entire body. At the molecular level, cells contact the ECM via integrins. Integrins are transmembrane cell adhesion molecules that connect the ECM to the cytoskeleton, which they bind with their extracellular and intracellular domains. Cysteine residues are abundant in both integrin subunits α and β. If pairwise oxidized into disulfide bridges, they stabilize the folding and molecular structure of the integrin. However, despite the oxidative environment of the extracellular space, not all pairs of cysteines in the extracellular integrin domains are permanently engaged in disulfide bridges. Rather, the reversible and temporary linkage of cystine bridges of these cysteine pairs by oxidation or their reductive cleavage can cause major conformational changes within the integrin, thereby changing ligand binding affinity and altering cellular functions such as adhesion and migration. During recent years, several oxidoreductases and thiol isomerases have been characterized which target such allosteric disulfide bridges. This outlines much better, albeit not comprehensively, the role that such thiol switches play in the redox regulation of integrins. The platelet integrin αIIbβ3 is the best examined example so far. Mostly referring to this integrin, this review will provide insights into the thiol switch-based redox regulation of integrins and the known effects of their allosteric disulfide bridges on conformational changes and cell functions, as well as on the machinery of redox-modifying enzymes that contribute to the redox regulation of cell contacts with the ECM. Full article
(This article belongs to the Special Issue Redox Regulation in Inflammation and Disease—3rd Edition)
Show Figures

Figure 1

14 pages, 632 KB  
Article
Protein Polarimetry, Perfected: Specific Rotation Measurement for the Refracto-Polarimetric Detection of Cryptic Protein Denaturation
by Lisa Riedlsperger, Heinz Anderle, Andreas Schwaighofer and Martin Lemmerer
Biophysica 2025, 5(3), 34; https://doi.org/10.3390/biophysica5030034 - 7 Aug 2025
Viewed by 328
Abstract
Protein polarimetry has been evaluated as a simple and straightforward technique to detect the cryptic denaturation of exemplary proteins. The general rules of rotation vs. amino acid and structural composition and the respective knowledge gaps were reviewed, and the specific rotation of cystine [...] Read more.
Protein polarimetry has been evaluated as a simple and straightforward technique to detect the cryptic denaturation of exemplary proteins. The general rules of rotation vs. amino acid and structural composition and the respective knowledge gaps were reviewed, and the specific rotation of cystine was determined in 4 M NaCl solution as [α]D20 = –302.5°. The specific rotations at 589 nm and 436 nm and the ratio were measured for several model proteins, some purified plasma-derived proteins and for three monoclonal antibodies. The immunoglobulin G concentrates all showed a narrow ratio range likely characteristic for this protein class. Heat denaturation experiments were conducted at temperatures between 50 and 85 °C both for short-time (10 min) and for prolonged periods of heat exposure (up to 210 min). Denaturation by heat resulted not only in the known levorotatory shift, but also in a shift in the specific rotation ratio. The stabilizing effect of fatty acids in bovine serum could be demonstrated by this parameter. Polarimetry thus appears to be a particularly sensitive and simple method for the characterization of the identity and the thermal stability of proteins and should therefore be added again as a complimentary method to the toolbox of protein chemistry. Full article
(This article belongs to the Special Issue Investigations into Protein Structure)
Show Figures

Figure 1

14 pages, 551 KB  
Article
Responses of Broiler Breeder Hens to Dietary Digestible Lysine, Methionine+Cystine, and Threonine
by Michele B. de Lima, Nilva K. Sakomura, Cléber F. S. Oliveira, Rita B. Vieira, Jaqueline A. Pavanini and Edney P. da Silva
Agriculture 2025, 15(15), 1685; https://doi.org/10.3390/agriculture15151685 - 4 Aug 2025
Viewed by 347
Abstract
To evaluate the response of broiler breeder hens submitted to different amino acid intakes of methionine+cystine, lysine, and threonine, and to determine the coefficients for egg output and body weight for maintenance. Three studies were performed using 160 broiler breeder hens housed individually [...] Read more.
To evaluate the response of broiler breeder hens submitted to different amino acid intakes of methionine+cystine, lysine, and threonine, and to determine the coefficients for egg output and body weight for maintenance. Three studies were performed using 160 broiler breeder hens housed individually in metabolic cages. A summit diet and a nitrogen-free diet were formulated. The levels ranged from 1.79 to 7.13, 2.49 to 8.3, and 2.04 to 6.79 g/kg of methionine+cystine, lysine, and threonine, respectively. The variables measured were feed intake, amino acid intake, rate of lay, egg weight, and egg output. The broken line model was used to evaluate the responses. It was verified that higher values of the rate of lay, egg weight, and egg output were observed for the higher concentrations of amino acids studied. A significant difference was observed for the variables rate of lay, egg weight, egg output, and body weight (p < 0.05) for the three amino acids evaluated. The amount of each amino acid required to produce one gram per egg was estimated at 12.4 mg, 14.5 mg, and 11.2 mg for methionine+cystine, lysine, and threonine, respectively. The values estimated by coefficient b that represent the amino acid for maintenance requirement were methionine+cystine, lysine, and threonine of 30.2, 32.2, and 42.4 mg/kg BW, respectively. The coefficients may be used to design additional models to study requirements nutrition in broiler breeders, allowing a better understanding of how these birds respond to different dietary amino acids. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

21 pages, 8337 KB  
Article
CIRBP Stabilizes Slc7a11 mRNA to Sustain the SLC7A11/GPX4 Antioxidant Axis and Limit Ferroptosis in Doxorubicin-Induced Cardiotoxicity
by Yixin Xie, Yongnan Li, Yafei Xie, Jianshu Chen, Hong Ding and Xiaowei Zhang
Antioxidants 2025, 14(8), 930; https://doi.org/10.3390/antiox14080930 - 29 Jul 2025
Viewed by 384
Abstract
Doxorubicin-induced cardiotoxicity (DIC) significantly constrains the clinical efficacy of anthracycline chemotherapy, primarily through the induction of ferroptosis, an iron-dependent, regulated cell death driven by oxidative stress and lipid peroxidation. However, the upstream regulators of ferroptosis in DIC remain incompletely defined. Cold-inducible RNA-binding protein [...] Read more.
Doxorubicin-induced cardiotoxicity (DIC) significantly constrains the clinical efficacy of anthracycline chemotherapy, primarily through the induction of ferroptosis, an iron-dependent, regulated cell death driven by oxidative stress and lipid peroxidation. However, the upstream regulators of ferroptosis in DIC remain incompletely defined. Cold-inducible RNA-binding protein (CIRBP) exhibits cardioprotective effects in various pathological contexts, but its precise role in ferroptosis-related cardiotoxicity is unknown. This study investigated whether CIRBP mitigates DIC by modulating the ferroptosis pathway via the SLC7A11 (Solute carrier family 7 member 11)/GPX4 (Glutathione peroxidase 4) axis. We observed marked downregulation of CIRBP in cardiac tissues and cardiomyocytes following doxorubicin exposure. CIRBP knockout significantly exacerbated cardiac dysfunction, mitochondrial damage, oxidative stress, and lipid peroxidation, accompanied by increased mortality rates. Conversely, CIRBP overexpression alleviated these pathological changes. Molecular docking and dynamics simulations, supported by transcriptomic analyses, revealed direct binding of CIRBP to the 3′-UTR of Slc7a11 mRNA, enhancing its stability and promoting translation. Correspondingly, CIRBP deficiency markedly suppressed SLC7A11 and GPX4 expression, impairing cystine uptake, glutathione synthesis, and antioxidant defenses, thus amplifying ferroptosis. These ferroptotic alterations were partially reversed by ferroptosis inhibitor ferrostatin-1 (Fer-1). Collectively, this study identifies CIRBP as a critical regulator of ferroptosis in DIC, elucidating a novel post-transcriptional mechanism involving Slc7a11 mRNA stabilization. These findings offer new insights into ferroptosis regulation and highlight CIRBP as a potential therapeutic target for preventing anthracycline-associated cardiac injury. Full article
Show Figures

Figure 1

10 pages, 584 KB  
Review
Local Guidance on the Management of Nephropathic Cystinosis in the Gulf Cooperation Council (GCC) Region
by Hassan Aleid, Turki AlShareef, Ahmad Kaddourah, Maryam Zeinelabdin, Mohamad M. Alkadi, Badria Al Ghaithi, Yasser Abdelkawy, Eihab Al Khasawneh, Elena Levtchenko and Khalid Alhasan
Children 2025, 12(8), 992; https://doi.org/10.3390/children12080992 - 28 Jul 2025
Viewed by 299
Abstract
Cystinosis is a rare systemic disease characterized by the accumulation of cystine in tissues, leading to multi-organ damage. Infantile nephropathic cystinosis is the dominant and severe form of cystinosis with critical renal manifestations that require kidney transplantation at an early age if left [...] Read more.
Cystinosis is a rare systemic disease characterized by the accumulation of cystine in tissues, leading to multi-organ damage. Infantile nephropathic cystinosis is the dominant and severe form of cystinosis with critical renal manifestations that require kidney transplantation at an early age if left untreated. Cysteamine, the lifelong cystine-depleting therapy, is the mainstay treatment of nephropathic cystinosis. Cysteamine prevents cystine crystal formation and delays disease progression. While the initially introduced cysteamine consists of an immediate-release (IR) formulation, a delayed-release (DR) formulation has been developed with a simplified dosing regimen (Q12H instead of Q6H) and an improved quality of life while maintaining comparable efficacy. Due to the rare incidence of the disease and lack of international guidelines, diagnosis and treatment initiation are oftentimes delayed, leading to a poor prognosis. Pediatric and adult nephrologists from Kuwait, Saudi Arabia, the United Arab Emirates (UAE), and Qatar, in addition to one international expert from Amsterdam, convened to share their clinical experience, reflecting on the challenges encountered and therapeutic approaches followed in the management of nephropathic cystinosis in the Gulf Cooperation Council (GCC) region. Experts completed a multiple-choice questionnaire and engaged in structured discussions, where they shed light on gaps and limitations with regard to diagnostic tests and criteria to ensure early diagnosis and timely treatment initiation. Based on available literature, experts suggested an algorithm to help guide nephropathic cystinosis management in the GCC. It is highly recommended for patients who do not tolerate IR-cysteamine and do not adhere to IR-cysteamine treatment to switch to DR-cysteamine. Given the systemic nature of the disease, a multi-disciplinary approach is required for optimal disease management. Full article
(This article belongs to the Section Pediatric Nephrology & Urology)
Show Figures

Figure 1

12 pages, 1033 KB  
Article
Influence of Using Microbial Transglutaminase on the Physicochemical Properties, Volatile Compounds and Free Amino Acid Composition of Pastırma
by Fatma Yağmur Hazar Suncak, Güzin Kaban and Mükerrem Kaya
Appl. Sci. 2025, 15(14), 7959; https://doi.org/10.3390/app15147959 - 17 Jul 2025
Viewed by 273
Abstract
The effects of different levels of microbial transglutaminase (MTGase) at 0% (control), 0.25%, 0.50% and 1% on the physicochemical properties, volatile compounds and free amino acid composition of pastırma, a Turkish dry-cured meat product, were investigated. The MTGase treatment had no significant effect [...] Read more.
The effects of different levels of microbial transglutaminase (MTGase) at 0% (control), 0.25%, 0.50% and 1% on the physicochemical properties, volatile compounds and free amino acid composition of pastırma, a Turkish dry-cured meat product, were investigated. The MTGase treatment had no significant effect on the aw, L* and b* values of pastırma. The thiobarbituric acid reactive substances value decreased as the MTGase level increased. The maximum cutting force was found to be higher in enzyme-treated pastırma groups compared with the control. Enzyme treatment increased the maximum stress–relaxation force, but no statistical difference was observed between the 0.50% and 1% enzyme treatments. No significant differences were observed between groups in the volatile compound profile. However, in the correlation analysis, the control group showed a close correlation with the 0.25% MTGase group. This was also the case for the 0.5% and 1% MTGase groups. In the samples, glutamic acid, arginine, alanine, cystine and valine were determined to be the dominant free amino acids, and glutamic acid showed a close correlation with valine; lysine with arginine; and cystine with serine. MTGase had no significant effect on the total free amino acid content. Full article
Show Figures

Figure 1

21 pages, 1132 KB  
Article
Ferroptosis Among the Antiproliferative Pathways Activated by a Lipophilic Ruthenium(III) Complex as a Candidate Drug for Triple-Negative Breast Cancer
by Maria Grazia Ferraro, Federica Iazzetti, Marco Bocchetti, Claudia Riccardi, Daniela Montesarchio, Rita Santamaria, Gabriella Misso, Marialuisa Piccolo and Carlo Irace
Pharmaceutics 2025, 17(7), 918; https://doi.org/10.3390/pharmaceutics17070918 - 16 Jul 2025
Viewed by 595
Abstract
Background/Objectives: In the context of preclinical studies, we have hitherto showcased that a low-molecular-weight ruthenium(III) complex we named AziRu holds significant potential for further developments as an anticancer candidate drug. When appropriately converted into stable nanomaterials and delivered into tumor cells, AziRu [...] Read more.
Background/Objectives: In the context of preclinical studies, we have hitherto showcased that a low-molecular-weight ruthenium(III) complex we named AziRu holds significant potential for further developments as an anticancer candidate drug. When appropriately converted into stable nanomaterials and delivered into tumor cells, AziRu exhibits superior antiproliferative activity, benefiting from a multimodal mechanism of action. The activation of regulated cell death (RCD) pathways (i.e., apoptosis and autophagy) has been proved in metastatic phenotypes, including triple-negative breast cancer (TNBC) cells. This study focuses on a bioengineered lipophilic derivative of AziRu, named PalmiPyRu, that we are currently developing as a potential anticancer drug in preclinical studies. When delivered in this way, AziRu confirms a multimodal mechanism of action in effectively blocking the growth and proliferation of TNBC phenotypes. Special focus is reserved for the activation of the ferroptotic pathway as a consequence of redox imbalance and interference with iron homeostasis, as well as the glutathione biosynthetic pathway. Methods: Human preclinical models of specific TNBC phenotypes and healthy cell cultures of different histological origin were selected. After in vitro treatments, cellular responses were carefully analyzed, and targeted biochemical and molecular biology experiments coupled to confocal microscopy allowed us to explore the antiproliferative effects of PalmiPyRu. Results: In this study, we unveil that PalmiPyRu can enter TNBC cells and interfere with both the iron homeostasis and the cystine-glutamate antiporter system Xc-, causing significant oxidative stress and the accumulation of lipid oxidation products. The increase in intracellular reactive free iron and depletion of glutathione engender a lethal condition, driving cancer cells toward the activation of ferroptosis. Conclusions: Overall, these outcomes allow us, for the first time, to couple the antiproliferative effect of a ruthenium-based candidate drug with the inhibition of the Xc- antiporter system and Fenton chemistry, thereby branding PalmiPyRu as an effective multimodal inducer of ferroptosis. Molecular mechanisms of action deserve further investigations, and new studies are underway to uncover how interference with Xc- controls cell fate, allowing us to explore the connection between iron metabolism regulation, oxidative stress and RCD pathways activation. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Graphical abstract

21 pages, 27301 KB  
Article
Folic Acid Ameliorates Neuronal Ferroptosis in Aging by Up-Regulating SLC7A11-GSH-GPX4 Antioxidant Pathway and Increasing Cystine Levels
by Yue Wang, Jingwen Zhang, Zehao Wang, Qinghan Ren, Zhenshu Li, Guowei Huang and Wen Li
Int. J. Mol. Sci. 2025, 26(14), 6669; https://doi.org/10.3390/ijms26146669 - 11 Jul 2025
Viewed by 535
Abstract
Age-related neurodegeneration is characterized by oxidative stress and iron-dependent cell death, yet the neuroprotective mechanisms of folic acid in modulating ferroptosis remain unclear. This study systematically investigated the role of folic acid in inhibiting ferroptosis and attenuating neuronal damage in aging, with a [...] Read more.
Age-related neurodegeneration is characterized by oxidative stress and iron-dependent cell death, yet the neuroprotective mechanisms of folic acid in modulating ferroptosis remain unclear. This study systematically investigated the role of folic acid in inhibiting ferroptosis and attenuating neuronal damage in aging, with a focus on the solute carrier family 7 member 11 (SLC7A11)-glutathione (GSH)-glutathione peroxidase 4 (GPX4) antioxidant pathway, using aged rats supplemented with folic acid (<0.1, 2.0, and 4.0 mg/kg·diet) for 22 months, with young adult rats as controls. Brain iron accumulation and ferroptosis-related proteins (SLC7A11, GPX4, Ferritin heavy chain 1 (FTH1)) were evaluated. In vitro, HT-22 hippocampal neuronal cells were pre-treated with folic acid (0, 10, 20 μmol/L) for 72 h before combining with Erastin (10 μmol/L)-induced ferroptosis for an additional 24 h. Intracellular Fe2+, lipid peroxidation (LPO), malondialdehyde (MDA), reactive oxygen species (ROS), along with cystine, GSH, and ferroptosis-related protein levels were quantified. Stable sh-SLC7A11 knockdown and control (sh-NC) cell lines were used to validate the dependency of folic acid’s protective effects on SLC7A11 expression. Folic acid supplementation in aged rats dose-dependently reduced aging-related brain iron accumulation and enhanced the expression of SLC7A11, GPX4, and FTH1. In Erastin-induced HT-22 cells, folic acid significantly mitigated ferroptosis hallmarks. Mechanistically, folic acid increased extracellular cystine uptake and intracellular GSH synthesis, thereby activating the SLC7A11-GSH-GPX4 antioxidant pathway. Notably, molecular docking technique suggested that compared to GPX4, folic acid stabilized SLC7A11’s active conformation. sh-SLC7A11 knockdown completely abolished folic acid-mediated protection against ferroptosis, as evidenced by restored loss of cystine, GSH and GPX4 production. This study innovatively emphasized the critical role of folic acid supplementation in inhibiting ferroptosis by up-regulating the SLC7A11-GSH-GPX4 antioxidant pathway, primarily through enhancing cystine availability and SLC7A11 expression. These findings established folic acid as a potential dietary intervention for aging-related neurodegenerative diseases characterized by neuronal ferroptosis, providing preclinical evidence for folic acid based neuroprotection. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

25 pages, 2198 KB  
Article
Salvia desoleana Atzei et Picci Steam-Distillation Water By-Products as a Source of Bioactive Compounds with Antioxidant Activities
by Valentina Masala, Gabriele Serreli, Antonio Laus, Monica Deiana, Adam Kowalczyk and Carlo Ignazio Giovanni Tuberoso
Foods 2025, 14(13), 2365; https://doi.org/10.3390/foods14132365 - 3 Jul 2025
Viewed by 641
Abstract
In this study, water residue obtained from Salvia desoleana Atzei et Picci steam distillation was evaluated for its antioxidant activity in vitro using different experimental models. In particular, the study evaluated the antiradical and antioxidant activity of Salvia desoleana extracts using CUPRAC, FRAP, [...] Read more.
In this study, water residue obtained from Salvia desoleana Atzei et Picci steam distillation was evaluated for its antioxidant activity in vitro using different experimental models. In particular, the study evaluated the antiradical and antioxidant activity of Salvia desoleana extracts using CUPRAC, FRAP, DPPH, and ABTS•+ assays; and tested ROS scavenging activity in Caco-2 cell cultures. Phenolic compounds were identified by (HR) LC-ESI-QTOF MS/MS and quantified with HPLC-PDA. Furthermore, Keap1-Nrf2, iNOS, and NOX enzymes involved in oxidative stress and antioxidant defences were the targets of molecular docking on key polyphenols. Hydroxycinnamic acids and flavonoids are the most important classes of compounds detected in the extracts. Among these compounds, the most significant was rosmarinic acid, followed by caffeic acid, luteolin glucuronide, and methyl rosmarinate. Although all extracts have shown encouraging results, the ethanolic extract solubilised with water (SEtOHA) was the one with the highest hydroxycinnamic acid content and total phenol content (518.64 ± 5.82 mg/g dw and 106.02 ± 6.02 mg GAE/g dw), as well as the highest antioxidant and antiradical activity. The extracts have shown anti-inflammatory activity by inhibiting NO release in LPS-stimulated Caco-2 cells. Finally, the in silico evaluation against the three selected enzymes showed interesting results for both numerical affinity ranking and predicted ligand binding models. The outcome of this study suggests this by-product as a possible ally in counteracting oxidative stress, as established by its favourable antioxidant compound profile, thus suggesting an interesting future application as a nutraceutical. Full article
Show Figures

Figure 1

23 pages, 3667 KB  
Article
OTUB1-SLC7A11 Axis Mediates 4-Octyl Itaconate Protection Against Acetaminophen-Induced Ferroptotic Liver Injury
by Ziyun Hu, Yuxin Li, Di Xu, Huihui Meng, Wenya Liu, Qian Xu, Benxing Yao and Junsong Wang
Antioxidants 2025, 14(6), 698; https://doi.org/10.3390/antiox14060698 - 9 Jun 2025
Viewed by 821
Abstract
Ferroptosis, an iron-dependent form of regulated cell death characterized by lipid peroxidation, plays a crucial role in acetaminophen (APAP)-induced hepatotoxicity. While 4-octyl itaconate (4-OI) demonstrates protective effects against APAP toxicity, its molecular mechanisms remain to be fully elucidated. Through an innovative integration of [...] Read more.
Ferroptosis, an iron-dependent form of regulated cell death characterized by lipid peroxidation, plays a crucial role in acetaminophen (APAP)-induced hepatotoxicity. While 4-octyl itaconate (4-OI) demonstrates protective effects against APAP toxicity, its molecular mechanisms remain to be fully elucidated. Through an innovative integration of untargeted metabolomics and pathway analysis, we unveil a novel dual mechanism by which 4-OI prevents APAP-induced ferroptosis. We discovered that 4-OI stabilizes SLC7A11 through OTUB1-mediated deubiquitination, thereby restoring cystine import and glutathione (GSH) synthesis. In addition, 4-OI activates the Nrf2 pathway, orchestrating a comprehensive antioxidant response by upregulating the key proteins involved in both glutathione metabolism and iron homeostasis, including GPX4, FTH1, FTL1, and FPN1. This coordinated action effectively prevents the accumulation of toxic iron and lipid peroxides. Our findings not only elucidate the protective mechanisms of 4-OI but also establish it as a promising therapeutic candidate for ferroptosis-related diseases through its unique ability to simultaneously modulate the SLC7A11-GPX4 antioxidant axis and iron homeostasis. Full article
Show Figures

Graphical abstract

16 pages, 1481 KB  
Article
Arsenite-Mediated Transcriptional Regulation of Glutathione Synthesis in Mammalian Primary Cortical Astrocytes
by Jacob P. Leisawitz, Jiali He, Caroline Baggeroer and Sandra J. Hewett
Int. J. Mol. Sci. 2025, 26(11), 5375; https://doi.org/10.3390/ijms26115375 - 4 Jun 2025
Viewed by 642
Abstract
Arsenic, a potent metalloid contaminant of drinking water, is known for its ability to act as an initiator and modulator of disease in a variety of human tissues. Upon ingestion, arsenic is bio-transformed in the liver into a variety of metabolites, including arsenite. [...] Read more.
Arsenic, a potent metalloid contaminant of drinking water, is known for its ability to act as an initiator and modulator of disease in a variety of human tissues. Upon ingestion, arsenic is bio-transformed in the liver into a variety of metabolites, including arsenite. Arsenite permeates the blood–brain barrier (BBB), inducing oxidative stress that can be detrimental to brain neurons. As the primary glial cell at the BBB interface, astrocytes play a pivotal role in detoxifying xenobiotics such as arsenite via the production of the tripeptide antioxidant γ-glutamylcysteine, or glutathione (GSH). In this study, we assessed the mRNA levels of key components of the GSH synthetic pathway in astrocytes exposed to arsenite compared to vehicle controls. These components included xCT [substrate-specific light chain of the substrate importing transporter, system xc (Sxc)], glutamate-cysteine ligase [both catalytic (GCLC) and modifying (GCLM) subunits], and glutathione synthetase (GS). Additionally, we analyzed protein levels of some components by Western blotting and evaluated functional activity of Sxc using a fluorescence-based cystine uptake assay. Finally, we utilized a luminescence-based glutathione assay to determine the intracellular and extracellular GSH content in arsenite-treated cells. Arsenite significantly increased xCT, GCLC, GCLM, and GS mRNA levels, an effect blocked by the transcriptional inhibitor actinomycin D (ActD). A corresponding increase in Sxc activity was also observed in the arsenite treatment groups, along with significant increases in GCLC and GCLM protein expression. However, no increase in GS protein expression was detected. Finally, arsenite treatment significantly increased extracellular GSH levels, an effect which was also prevented by the inclusion of ActD. Overall, our study provides evidence that arsenite transcriptionally regulates several cellular processes necessary for GSH synthesis in primary cortical astrocyte cultures, thereby contributing to a better understanding of how this environmental toxicant influences antioxidant defenses in the brain. However, these results should be interpreted with caution regarding their applicability to vivo systems. Full article
(This article belongs to the Special Issue The Role of Glutathione Metabolism in Health and Disease)
Show Figures

Figure 1

19 pages, 15652 KB  
Article
Molecular Dynamics Simulations of Plasma–Antifolate Drug Synergy in Cancer Therapy
by Yanxiong Niu, Tong Zhao, Xiaolong Wang, Ying Sun and Yuantao Zhang
Biomolecules 2025, 15(6), 773; https://doi.org/10.3390/biom15060773 - 27 May 2025
Viewed by 576
Abstract
Reactive oxygen species (ROS) generated by cold atmospheric plasma (CAP) cause irreversible damage to cancer cell DNA, RNA, mitochondria, and antioxidant defense systems, leading to apoptosis. Plasma-induced disruption of the antioxidant defense system of cancer cells by cystine uptake via xC antiporter [...] Read more.
Reactive oxygen species (ROS) generated by cold atmospheric plasma (CAP) cause irreversible damage to cancer cell DNA, RNA, mitochondria, and antioxidant defense systems, leading to apoptosis. Plasma-induced disruption of the antioxidant defense system of cancer cells by cystine uptake via xC antiporter has been widely studied, while folate uptake by cancer cells via high expression of hSLC19A1, which generates Nicotinamide Adenine Dinucleotide Phosphate (NADPH) via one-carbon metabolism, is also an important component of the antioxidant defense mechanism of cancer cells. Disrupting folate transport in cancer cells is an important potential pathway for synergizing with pemetrexed (PMX) to induce apoptosis in cancer cells, which is of great research value. In this paper, classical molecular dynamics simulations were employed to study the effect of plasma oxidation of hSLC19A1 on the uptake of 5-Methyltetrahydrofolate (5-MTHF), which is the predominant dietary and circulatory folate, and the antifolate chemotherapeutic agent PMX by cancer cells. The results showed that the channel radius of hSLC19A1 for transporting 5MTHF after oxidation became narrower and the conformation tended to be closed, which was unfavorable for the transport of 5-MTHF; hydrogen bonding and hydrophobic interactions between hSLC19A1 and 5-MTHF decreased, the predicted docking affinity decreased, and the binding energy decreased from −28.023 kcal/mol to −16.866 kcal/mol, while that with PMX was stable around −28 kcal/mol, suggesting that the oxidative modification reduced the binding capacity of hSLC19A1 and 5-MTHF while barely affecting the transport of PMX, which contributed to weakening the antioxidant defense system of cancer cells and synergizing with PMX to induce apoptosis in cancer cells. Our simulations provide theoretical insights for CAP-induced apoptosis in cancer cells at the microscopic level and help promote the further development of cold atmospheric plasma in the field of cancer therapy. Full article
(This article belongs to the Special Issue Advances in Plasma Bioscience and Medicine: 2nd Edition)
Show Figures

Figure 1

16 pages, 406 KB  
Article
The Effect of Dietary Protein Restriction in Phase Feeding Systems on Nitrogen Metabolism and Excretion in Pig Production
by Wiesław Sobotka and Aleksandra Drażbo
Animals 2025, 15(11), 1521; https://doi.org/10.3390/ani15111521 - 23 May 2025
Viewed by 524
Abstract
In recent years, much attention has been paid to environmental protection, not only by reducing emissions of harmful gases from industry, but also by reducing the excretion of biogenic compounds or ammonia emissions from agriculture, including animal production. The aim of this study [...] Read more.
In recent years, much attention has been paid to environmental protection, not only by reducing emissions of harmful gases from industry, but also by reducing the excretion of biogenic compounds or ammonia emissions from agriculture, including animal production. The aim of this study was to determine the effects of complete diets with reduced inclusion levels of crude protein and limiting essential amino acids, fed to pigs in two- and three-phase feeding systems, and the feeding system on crude protein digestibility, nitrogen retention and utilization, fecal and urinary pH, fecal and urinary nitrogen and ammonia levels, and nitrogen excretion. Digestibility-balance trials were performed on 24 growing–finishing pigs housed in individual metabolism crates, in three groups, in two- and three-phase feeding systems. The pigs were fed the following diets: C-control diet; L-low-protein diet where the levels of crude protein and essential amino acids (lysine, methionine + cystine, threonine, and tryptophan) were reduced by 15% relative to diet C; L+AA-low-protein diet supplemented with crystalline lysine, methionine, threonine, and tryptophan to the standard levels (as in diet C). Diets L fed to pigs in two- and three-phase feeding systems significantly decreased crude protein digestibility and nitrogen retention, particularly in the three-phase system. The supplementation of diets L+AA with crystalline essential amino acids improved crude protein digestibility and nitrogen retention and utilization, especially in the two-phase system. Reduced concentrations of crude protein and essential amino acids in diets L contributed to a significant increase in feces and urine acidity in both two- and three-phase feeding systems. The supplementation of diets L+AA with essential amino acids resulted in a significant increase in urinary pH and a non-significant increase in fecal pH. This experimental factor had no effect on fecal ammonia concentration in group L+AA. The values of pH and total fecal nitrogen were somewhat higher in the two-phase system than in the three-phase system. Fecal ammonia concentration was similar in both systems. The three-phase feeding system contributed to a decrease in urinary pH and total urinary nitrogen. The analyzed feeding systems had no significant effect on urinary ammonia concentration. It was estimated that a reduction in crude protein (by 20–25 g/kg) and essential amino acid levels in pig diets, relative to the standard levels, reduced nitrogen excretion by 18.7% and 15.6% in two- and three-phase feeding systems, respectively. The supplementation of low-protein diets (L) with lysine, methionine, threonine, and tryptophan induced a further reduction in nitrogen excretion. A comparison of the effects of feeding systems (two-phase system vs. three-phase system) on crude protein digestibility and nitrogen retention and utilization revealed that better results were obtained in the two-phase feeding system. Full article
(This article belongs to the Section Animal Nutrition)
23 pages, 4075 KB  
Article
CD44 Receptor-Mediated Ferroptosis Induction by Hyaluronic Acid Carbon Quantum Dots in Triple-Negative Breast Cancer Cells Through Downregulation of SLC7A11 Pathway
by Karthikeyan Chandrasekaran, Chae Eun Lee, Seojeong Yun, Ashok Kumar Jangid, Sungjun Kim and Kyobum Kim
Materials 2025, 18(9), 2139; https://doi.org/10.3390/ma18092139 - 6 May 2025
Cited by 2 | Viewed by 1188
Abstract
The field of cancer therapy is actively pursuing highly effective self-targeted drug delivery materials endowed with exceptional properties. Recently, hyaluronic acid (HA), a naturally occurring polysaccharide, has been recognized as a potential target ligand for CD44 receptors, which are frequently expressed on various [...] Read more.
The field of cancer therapy is actively pursuing highly effective self-targeted drug delivery materials endowed with exceptional properties. Recently, hyaluronic acid (HA), a naturally occurring polysaccharide, has been recognized as a potential target ligand for CD44 receptors, which are frequently expressed on various solid tumor cells targeted in cancer therapy. HA carbon quantum dots (CQDs) exhibit several advantageous properties, including a high surface area-to-volume ratio, small particle size, biocompatibility, and low cytotoxicity, making them ideal for biomedical applications, such as CD44-targeted drug delivery in ferroptosis-based cancer therapy. In this study, we synthesized HA-CQDs to enhance CD44-mediated ligand–receptor interactions targeting triple-negative breast cancer (TNBC). CQDs facilitate the intracellular generation of reactive oxygen species (ROS), leading to glutathione depletion. These processes result in crucial actions such as the downregulation of glutathione peroxidase 4, downregulation of solute carrier family 7 member 11, and inhibition of cystine intake. The subsequent intracellular ROS, originating from lipid peroxidation, induces ferroptosis. Our HA-CQDs engage CD44 receptors, selectively targeting TNBCs and enhancing cancer recognition. This interaction potentially enhances the nanoplatform-based CD44 targeted therapeutic effects in inducing ferroptosis. Full article
Show Figures

Figure 1

Back to TopTop