Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = dam–water interaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1922 KB  
Review
Phosphorus Cycling in Sediments of Deep and Large Reservoirs: Environmental Effects and Interface Processes
by Jue Wang, Jijun Gao, Qiwen Wang, Laisheng Liu, Huaidong Zhou, Shengjie Li, Hongcheng Shi and Siwei Wang
Sustainability 2025, 17(16), 7551; https://doi.org/10.3390/su17167551 - 21 Aug 2025
Viewed by 383
Abstract
Although the sediment–water interface of deep and large reservoirs is recognized as a dominant source of internal phosphorus (P) loading, the quantitative hierarchy of environmental drivers and their interaction thresholds remains poorly resolved. Here, we integrate 512 studies to provide the first process-based [...] Read more.
Although the sediment–water interface of deep and large reservoirs is recognized as a dominant source of internal phosphorus (P) loading, the quantitative hierarchy of environmental drivers and their interaction thresholds remains poorly resolved. Here, we integrate 512 studies to provide the first process-based synthesis that partitions P release fluxes among temperature, pH, dissolved oxygen, salinity, sediment properties, and microbial activity across canyon, valley, and plain-type reservoirs. By deriving standardized effect sizes from 61 data-rich papers, we show that (i) a 1 °C rise in bottom-water temperature increases soluble reactive P (SRP) flux by 12.4% (95% CI: 10.8–14.0%), with sensitivity 28% lower in Alpine oligotrophic systems and 20% higher in warm monomictic basins; (ii) a single-unit pH shift—whether acid or alkaline—stimulates P release through distinct desorption pathways,; and (iii) each 1 mg L−1 drop in dissolved oxygen amplifies release by 31% (25–37%). Critically, we demonstrate that these drivers rarely act independently: multi-factor laboratory and in situ analyses reveal that simultaneous hypoxia and warming can triple the release rate predicted from single-factor models. We further identify that >75% of measurements originate from dam-proximal zones, creating spatial blind spots that currently limit global P-load forecasts to ±50% uncertainty. To close this gap, we advocate coupled metagenomic–geochemical observatories that link gene expression (phoD, ppk, pqqC) to real-time SRP fluxes. The review advances beyond the existing literature by (1) establishing the first quantitative, globally transferable framework for temperature-, DO-, and pH-based management levers; (2) exposing the overlooked role of regional climate in modulating temperature sensitivity; and (3) providing a research agenda that reduces forecasting uncertainty to <20% within two years. Full article
Show Figures

Figure 1

13 pages, 280 KB  
Article
Genotype-by-Environment Interaction in Red Tilapia (Oreochromis spp.): Implications for Genetic Parameters and Trait Performance
by Tran Huu Phuc, Pham Dang Khoa, Nguyen Thi Dang, Tran Thi Mai Huong, Huynh Thi Bich Lien, Vo Thi Hong Tham, Nguyen Huynh Duy and Nguyen Hong Nguyen
Genes 2025, 16(8), 966; https://doi.org/10.3390/genes16080966 - 18 Aug 2025
Viewed by 586
Abstract
The intensive farming of aquaculture species such as red tilapia (Oreochromis spp.) across diverse production systems can lead to changes in genetic parameters and responses of economically important traits in this species. This study represents the first attempt to understand these changes [...] Read more.
The intensive farming of aquaculture species such as red tilapia (Oreochromis spp.) across diverse production systems can lead to changes in genetic parameters and responses of economically important traits in this species. This study represents the first attempt to understand these changes in growth traits (body weight, total length), quality attributes (body colour), and survival rate in red tilapia. Data for these traits were collected from 75,950 individual fish, progeny of 970 full-sib families (comprising 970 dams and 486 sires); they were selected for high body weight and evaluated in two distinct culture environments: fresh- and saltwater ponds. A multi-trait mixed model was employed to estimate genetic parameters and selection responses. Genetic variance estimates for the quality and survival traits varied across the two environments. However, genetic correlations among the traits studied were similar between fresh and saline water. Furthermore, significant G × E interactions, particularly for the quality and survival traits, were evidenced by divergent genetic correlations (rg = 0.57–0.83) between homologous traits across different environments. The findings emphasise the importance of incorporating G × E interactions into the selection program for red tilapia, particularly when the breeding objectives extend to include quality and survival traits. Selection strategies should consider the prevailing culture system—for instance, favouring genotypes suited to the freshwater pond environment over those adapted to the saltwater environment. Continual assessment of full-sib groups across these environments is recommended to refine our understanding of G × E interactions and optimise future breeding programs for red tilapia. This may involve selecting genotypes capable of consistent performance across environments or developing environment-specific breeding programs. Full article
16 pages, 2230 KB  
Article
Seismic Performance Assessment of Gravity Dams for Urban Flood Risk Mitigation Using the Scaled Boundary Finite Element Method (SBFEM)
by Min-koan Kim and Dai Xu
Hydrology 2025, 12(8), 209; https://doi.org/10.3390/hydrology12080209 - 10 Aug 2025
Viewed by 378
Abstract
Rapid urbanization and climate change have intensified urban flood risks, necessitating resilient upstream infrastructure to ensure metropolitan water security and effective flood mitigation. Gravity dams, as critical components of urban flood protection systems, regulate discharge to downstream urban areas. Gravity dams are critical [...] Read more.
Rapid urbanization and climate change have intensified urban flood risks, necessitating resilient upstream infrastructure to ensure metropolitan water security and effective flood mitigation. Gravity dams, as critical components of urban flood protection systems, regulate discharge to downstream urban areas. Gravity dams are critical for regulating flood discharge, yet their seismic vulnerability poses significant challenges, particularly under compound effects involving concurrent seismic loading and climate-induced elevated reservoir levels. This study introduces a novel seismic analysis framework for gravity dams using the scaled boundary finite element method (SBFEM), which efficiently models dam–water and dam–foundation interactions in infinite domains. A two-dimensional numerical model of a concrete gravity dam, subjected to realistic seismic loading, was developed and validated against analytical solutions and conventional finite element method (FEM) results, achieving discrepancies as low as 0.95% for static displacements and 0.21% for natural frequencies. The SBFEM approach accurately captures hydrodynamic pressures and radiation damping, revealing peak pressures at the dam heel during resonance and demonstrating computational efficiency with significantly reduced nodal requirements compared to FEM. These findings enhance understanding of dam behavior under extreme loading. The proposed framework supports climate-adaptive design standards and integrated hydrological–structural modeling. By addressing the seismic safety of flood-control dams, this research contributes to the development of resilient urban water management systems capable of protecting metropolitan areas from compound climatic and seismic extremes. Full article
(This article belongs to the Special Issue Advances in Urban Hydrology and Stormwater Management)
Show Figures

Figure 1

30 pages, 1721 KB  
Article
Finite Integration Method with Chebyshev Expansion for Shallow Water Equations over Variable Topography
by Ampol Duangpan, Ratinan Boonklurb, Lalita Apisornpanich and Phiraphat Sutthimat
Mathematics 2025, 13(15), 2492; https://doi.org/10.3390/math13152492 - 2 Aug 2025
Viewed by 298
Abstract
The shallow water equations (SWEs) model fluid flow in rivers, coasts, and tsunamis. Their nonlinearity challenges analytical solutions. We present a numerical algorithm combining the finite integration method with Chebyshev polynomial expansion (FIM-CPE) to solve one- and two-dimensional SWEs. The method transforms partial [...] Read more.
The shallow water equations (SWEs) model fluid flow in rivers, coasts, and tsunamis. Their nonlinearity challenges analytical solutions. We present a numerical algorithm combining the finite integration method with Chebyshev polynomial expansion (FIM-CPE) to solve one- and two-dimensional SWEs. The method transforms partial differential equations into integral equations, approximates spatial terms via Chebyshev polynomials, and uses forward differences for time discretization. Validated on stationary lakes, dam breaks, and Gaussian pulses, the scheme achieved errors below 1012 for water height and velocity, while conserving mass with volume deviations under 105. Comparisons showed superior shock-capturing versus finite difference methods. For two-dimensional cases, it accurately resolved wave interactions over complex topographies. Though limited to wet beds and small-scale two-dimensional problems, the method provides a robust simulation tool. Full article
(This article belongs to the Special Issue Numerical Analysis and Scientific Computing for Applied Mathematics)
Show Figures

Figure 1

22 pages, 3267 KB  
Article
Identifying Deformation Drivers in Dam Segments Using Combined X- and C-Band PS Time Series
by Jonas Ziemer, Jannik Jänichen, Gideon Stein, Natascha Liedel, Carolin Wicker, Katja Last, Joachim Denzler, Christiane Schmullius, Maha Shadaydeh and Clémence Dubois
Remote Sens. 2025, 17(15), 2629; https://doi.org/10.3390/rs17152629 - 29 Jul 2025
Viewed by 399
Abstract
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that [...] Read more.
Dams play a vital role in securing water and electricity supplies for households and industry, and they contribute significantly to flood protection. Regular monitoring of dam deformations holds fundamental socio-economic and ecological importance. Traditionally, this has relied on time-consuming in situ techniques that offer either high spatial or temporal resolution. Persistent Scatterer Interferometry (PSI) addresses these limitations, enabling high-resolution monitoring in both domains. Sensors such as TerraSAR-X (TSX) and Sentinel-1 (S-1) have proven effective for deformation analysis with millimeter accuracy. Combining TSX and S-1 datasets enhances monitoring capabilities by leveraging the high spatial resolution of TSX with the broad coverage of S-1. This improves monitoring by increasing PS point density, reducing revisit intervals, and facilitating the detection of environmental deformation drivers. This study aims to investigate two objectives: first, we evaluate the benefits of a spatially and temporally densified PS time series derived from TSX and S-1 data for detecting radial deformations in individual dam segments. To support this, we developed the TSX2StaMPS toolbox, integrated into the updated snap2stamps workflow for generating single-master interferogram stacks using TSX data. Second, we identify deformation drivers using water level and temperature as exogenous variables. The five-year study period (2017–2022) was conducted on a gravity dam in North Rhine-Westphalia, Germany, which was divided into logically connected segments. The results were compared to in situ data obtained from pendulum measurements. Linear models demonstrated a fair agreement between the combined time series and the pendulum data (R2 = 0.5; MAE = 2.3 mm). Temperature was identified as the primary long-term driver of periodic deformations of the gravity dam. Following the filling of the reservoir, the variance in the PS data increased from 0.9 mm to 3.9 mm in RMSE, suggesting that water level changes are more responsible for short-term variations in the SAR signal. Upon full impoundment, the mean deformation amplitude decreased by approximately 1.7 mm toward the downstream side of the dam, which was attributed to the higher water pressure. The last five meters of water level rise resulted in higher feature importance due to interaction effects with temperature. The study concludes that integrating multiple PS datasets for dam monitoring is beneficial particularly for dams where few PS points can be identified using one sensor or where pendulum systems are not installed. Identifying the drivers of deformation is feasible and can be incorporated into existing monitoring frameworks. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy II)
Show Figures

Figure 1

14 pages, 2100 KB  
Article
Response of Han River Estuary Discharge to Hydrological Process Changes in the Tributary–Mainstem Confluence Zone
by Shuo Ouyang, Changjiang Xu, Weifeng Xu, Junhong Zhang, Weiya Huang, Cuiping Yang and Yao Yue
Sustainability 2025, 17(14), 6507; https://doi.org/10.3390/su17146507 - 16 Jul 2025
Viewed by 431
Abstract
This study investigates the dynamic response mechanisms of discharge capacity in the Han River Estuary to hydrological process changes at the Yangtze–Han River confluence. By constructing a one-dimensional hydrodynamic model for the 265 km Xinglong–Hankou reach, we quantitatively decouple the synergistic effects of [...] Read more.
This study investigates the dynamic response mechanisms of discharge capacity in the Han River Estuary to hydrological process changes at the Yangtze–Han River confluence. By constructing a one-dimensional hydrodynamic model for the 265 km Xinglong–Hankou reach, we quantitatively decouple the synergistic effects of riverbed scouring (mean annual incision rate: 0.12 m) and Three Gorges Dam (TGD) operation through four orthogonal scenarios. Key findings reveal: (1) Riverbed incision dominates discharge variation (annual mean contribution >84%), enhancing flood conveyance efficiency with a peak flow increase of 21.3 m3/s during July–September; (2) TGD regulation exhibits spatiotemporal intermittency, contributing 25–36% during impoundment periods (September–October) by reducing Yangtze backwater effects; (3) Nonlinear interactions between drivers reconfigure flow paths—antagonism occurs at low confluence ratios (R < 0.15, e.g., Cd increases to 45 under TGD but decreases to 8 under incision), while synergy at high ratios (R > 0.25) reduces Hanchuan Station flow by 13.84 m3/s; (4) The 180–265 km confluence-proximal zone is identified as a sensitive area, where coupled drivers amplify water surface gradients to −1.41 × 10−3 m/km (2.3× upstream) and velocity increments to 0.0027 m/s. The proposed “Natural/Anthropogenic Dual-Stressor Framework” elucidates estuary discharge mechanisms under intensive human interference, providing critical insights for flood control and trans-basin water resource management in tide-free estuaries globally. Full article
(This article belongs to the Special Issue Sediment Movement, Sustainable Water Conservancy and Water Transport)
Show Figures

Figure 1

18 pages, 6970 KB  
Article
Study on Lateral Erosion Failure Behavior of Reinforced Fine-Grained Tailings Dam Due to Overtopping Breach
by Yun Luo, Mingjun Zhou, Menglai Wang, Yan Feng, Hongwei Luo, Jian Ou, Shangwei Wu and Xiaofei Jing
Water 2025, 17(14), 2088; https://doi.org/10.3390/w17142088 - 12 Jul 2025
Viewed by 409
Abstract
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically [...] Read more.
The overtopping-induced lateral erosion breaching of tailings dams represents a critical disaster mechanism threatening structural safety, particularly in reinforced fine-grained tailings dams where erosion behaviors demonstrate pronounced water–soil coupling characteristics and material anisotropy. Through physical model tests and numerical simulations, this study systematically investigates lateral erosion failure patterns of reinforced fine-grained tailings under overtopping flow conditions. Utilizing a self-developed hydraulic initiation test apparatus, with aperture sizes of reinforced geogrids (2–3 mm) and flow rates (4–16 cm/s) as key control variables, the research elucidates the interaction mechanisms of “hydraulic scouring-particle migration-geogrid anti-sliding” during lateral erosion processes. The study revealed that compared to unreinforced specimens, reinforced specimens with varying aperture sizes (2–3 mm) demonstrated systematic reductions in final lateral erosion depths across flow rates (4–16 cm/s): 3.3–5.8 mm (15.6−27.4% reduction), 3.1–7.2 mm (12.8–29.6% reduction), 2.3–11 mm (6.9–32.8% reduction), and 2.5–11.4 mm (6.2–28.2% reduction). Smaller-aperture geogrids (2 mm × 2 mm) significantly enhanced anti-erosion performance through superior particle migration inhibition. Concurrently, a pronounced positive correlation between flow rate and lateral erosion depth was confirmed, where increased flow rates weakened particle erosion resistance and exacerbated lateral erosion severity. The numerical simulation results are in basic agreement with the lateral erosion failure process observed in model tests, revealing the dynamic process of lateral erosion in the overtopping breach of a reinforced tailings dam. These findings provide critical theoretical foundations for optimizing reinforced tailings dam design, construction quality control, and operational maintenance, while offering substantial engineering applications for advancing green mine construction. Full article
Show Figures

Figure 1

17 pages, 5789 KB  
Article
Experimental Studies on the Local Scour Development of the Riverbed Below the Piaseczno Weir
by Marta Kiraga, Sławomir Bajkowski, Janusz Urbański and Piotr Siwicki
Water 2025, 17(13), 1916; https://doi.org/10.3390/w17131916 - 27 Jun 2025
Viewed by 416
Abstract
The article investigates the development of local scour downstream of a damming structure, emphasizing the dynamic equilibrium of river morphology influenced by both natural processes and human interventions like the construction of weirs. It distinguishes between clear-water and live-bed conditions, discussing how sediment [...] Read more.
The article investigates the development of local scour downstream of a damming structure, emphasizing the dynamic equilibrium of river morphology influenced by both natural processes and human interventions like the construction of weirs. It distinguishes between clear-water and live-bed conditions, discussing how sediment transport interacts with hydraulic forces to shape the riverbed. The introduction of a damming structure disrupts sediment flow and initiates local scour formation, which varies depending on stream conditions. In the experimental section, a physical model of a damming weir was tested under controlled conditions. The laboratory model was inspired by an existing damming weir on the Radomka River in Poland. Granulometric analysis and eleven flow series were conducted to assess scour evolution over time. The results showed the fastest erosion in the first hours, followed by stabilization in scour depth but continued elongation of the scour hole. The analysis identified four phases of scour development: initiation, intensive growth, stabilization, and equilibrium. Despite depth stabilization, scour length continued to increase, indicating that full equilibrium had not been reached. The study highlights the complexity of predicting scour behavior and recommends incorporating both depth and length evolution into design analyses to improve the resilience of such damming structures. The innovative aspect of the present study lies in the inclusion of coarse sediment transport, previously accumulated in the upstream reach due to the weir’s impoundment effect, into the scour development process. This specific effect has not been addressed in the studies cited by other authors. This research provides crucial insights for the sustainable design of hydraulic structures and effective sediment management strategies, contributing to the long-term stability and safety of riverine infrastructure. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

25 pages, 7020 KB  
Article
A Deep Learning Framework for Deformation Monitoring of Hydraulic Structures with Long-Sequence Hydrostatic and Thermal Time Series
by Hui Li, Jiankang Lou, Fan Li, Guang Yang and Yibo Ouyang
Water 2025, 17(12), 1814; https://doi.org/10.3390/w17121814 - 17 Jun 2025
Viewed by 422
Abstract
As hydraulic buildings are constantly subjected to complex interactions with water, particularly variations in hydrostatic pressure and temperature, deformation structural behavior is inherently sensitive to environmental fluctuations. Monitoring dam deformation with high accuracy and robustness is critical for ensuring the long-term safety and [...] Read more.
As hydraulic buildings are constantly subjected to complex interactions with water, particularly variations in hydrostatic pressure and temperature, deformation structural behavior is inherently sensitive to environmental fluctuations. Monitoring dam deformation with high accuracy and robustness is critical for ensuring the long-term safety and operational integrity of hydraulic structures. However, traditional physics-based models often struggle to fully capture the nonlinear and time-dependent deformation responses in hydraulic structures driven by such coupled environmental influences. To address these limitations, this study presents an advanced deep learning (DL)-based deformation monitoring for hydraulic buildings using long-sequence monitoring data of hydrostatic pressure and temperature. Specifically, the Bidirectional Stacked Long Short-Term Memory (Bi-Stacked-LSTM) is proposed to capture intricate temporal dependencies and directional dynamics within long-sequence hydrostatic and thermal time series. Then, hyperparameters, including the number of LSTM layers, neuron counts in each layer, dropout rate, and time steps, are efficiently fine-tuned using the Gaussian Process-based surrogate model optimization (GP-SMO) algorithm. Multiple deformation monitoring points from hydraulic buildings and a variety of advanced machine-learning methods are utilized for analysis. Experimental results indicate that the developed GP-SMO-optimized Bi-Stacked-LSTM dam deformation monitoring model shows better comprehensive representation capability of both past and future deformation-related sequences compared with benchmark methods. By approximating the behavior of the target function, the GP-SMO algorithms allow for the optimization of critical parameters in DL models while minimizing the high computational costs typically associated with direct evaluations. This novel DL-based approach significantly improves the extraction of deformation-relevant features from long-term monitoring data, enabling more accurate modeling of temporal dynamics. As a result, the developed method offers a promising new tool for safety monitoring and intelligent management of large-scale hydraulic structures. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

29 pages, 8265 KB  
Article
Quantifying Durability and Failure Risk for Concrete Dam–Reservoir System by Using Digital Twin Technology
by Emina Hadzalic and Adnan Ibrahimbegovic
Computation 2025, 13(5), 118; https://doi.org/10.3390/computation13050118 - 13 May 2025
Cited by 1 | Viewed by 618
Abstract
This study presents a digital twin approach to quantifying the durability and failure risk of concrete gravity dams by integrating advanced numerical modelling with field monitoring data. Building on a previously developed finite element model for dam–reservoir interaction analysis, this research extends its [...] Read more.
This study presents a digital twin approach to quantifying the durability and failure risk of concrete gravity dams by integrating advanced numerical modelling with field monitoring data. Building on a previously developed finite element model for dam–reservoir interaction analysis, this research extends its application to the assessment of existing, fully operational dams by using digital twin technology. One such case study of a digital twin is given for the concrete gravity dam, Salakovac. The numerical model combines finite element formulations representing the dam as a nonisothermal saturated porous medium and the reservoir water as an acoustic fluid, ensuring realistic simulation results of their interactions. The selected finite element discrete approximations enable the detailed analysis of the dam failure mechanisms under varying extreme conditions, while simultaneously ensuring the consistent transfer of all fields (displacement, temperature, and pressure) at the dam–reservoir interface. A key aspect of this research is the calibration of the numerical model through the systematic definition of boundary conditions, external loads, and material parameters to ensure that the simulation results closely align with observed behaviour, thereby reflecting the current state of the ageing concrete dam. For the given case study of the Salakovac Dam, we illustrate the use of the digital twin to predict the failure mechanism of an ageing concrete dam for the chosen scenario of extreme loads. Full article
Show Figures

Figure 1

31 pages, 5534 KB  
Article
Safety Assessment of Concrete Gravity Dams: Hydromechanical Coupling and Fracture Propagation
by Maria Luísa Braga Farinha, Nuno Monteiro Azevedo and Sérgio Oliveira
Geosciences 2025, 15(4), 149; https://doi.org/10.3390/geosciences15040149 - 15 Apr 2025
Viewed by 554
Abstract
For the safety assessment of concrete dam–foundation systems, this study used an explicit time-stepping small-displacement algorithm, which simulates the hydromechanical interaction and considers the discrete representation of the foundation discontinuities. The proposed innovative methodology allows for the definition of more reliable safety factors [...] Read more.
For the safety assessment of concrete dam–foundation systems, this study used an explicit time-stepping small-displacement algorithm, which simulates the hydromechanical interaction and considers the discrete representation of the foundation discontinuities. The proposed innovative methodology allows for the definition of more reliable safety factors and the identification of more realistic failure modes by integrating (i) softening-based constitutive laws that are closer to the real behavior identified experimentally in concrete–concrete and concrete–rock interfaces; (ii) a water height increase that can be considered in both hydraulic and mechanical models; and (iii) fracture propagation along the dam–foundation interface. Parametric studies were conducted to assess the impact of the mechanical properties on the global safety factors of three gravity dams with different heights. The results obtained using a coupled/fracture propagation model were compared with those from the strength reduction method and the overtopping scenario not considering the hydraulic pressure increase. The results show that the safety assessment should be conducted using the proposed methodology. It is shown that the concrete–rock interface should preferably have a high value of fracture energy or, ideally, higher tensile and cohesion strengths and high associated fracture energy. The results also indicate that with a brittle concrete–rock model, the predicted safety factors are always conservative when compared with those that consider the fracture energy. Full article
(This article belongs to the Special Issue Fracture Geomechanics—Obstacles and New Perspectives)
Show Figures

Figure 1

15 pages, 2959 KB  
Article
How Land Use and Hydrological Characteristics Impact Stream Conditions in Impaired Ecosystems
by Se-Rin Park, Yujin Park, Jong-Won Lee, Hyunji Kim, Kyung-A You and Sang-Woo Lee
Land 2025, 14(4), 829; https://doi.org/10.3390/land14040829 - 10 Apr 2025
Viewed by 542
Abstract
Anthropogenic influence has altered watershed environments and hydrological processes, leading to increased occurrences of impaired streams and negative impacts on benthic invertebrates. While individual environmental factors affecting benthic macroinvertebrates have been studied, the cascading effects of land use change and hydrological alterations remain [...] Read more.
Anthropogenic influence has altered watershed environments and hydrological processes, leading to increased occurrences of impaired streams and negative impacts on benthic invertebrates. While individual environmental factors affecting benthic macroinvertebrates have been studied, the cascading effects of land use change and hydrological alterations remain unclear. This study employed structural equation modeling (SEM) to analyze the interactions among land use proportion, hydrological characteristics, substrate composition, and water quality and their influence on benthic macroinvertebrate communities in impaired streams upstream of the Paldang Dam in the Han River Basin, South Korea. Analysis of data from 24 streams surveyed between 2018 and 2022—3 or 6 streams per year—under the Impaired Stream Diagnosis Program indicated that urban and agricultural land cover, low substrate diversity, high pollutant concentrations, and altered flow conditions (low velocity and discharge) were associated with decreased pollution-sensitive Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa and increased pollution-tolerant and collector–gatherer taxa. These findings highlight the role of land use-driven hydrological changes in stream ecosystem degradation and underscore the need for targeted restoration strategies, such as riparian buffer zones, substrate enhancement, and hydrological flow restoration, to mitigate these impacts and improve benthic macroinvertebrate habitats. Full article
Show Figures

Figure 1

17 pages, 2297 KB  
Article
Spatiotemporal Dynamics of Fish Density in a Deep-Water Reservoir: Hydroacoustic Assessment of Aggregation Patterns and Key Drivers
by Zihao Meng, Feifei Hu, Miao Xiang, Xuejun Fu and Xuemei Li
Animals 2025, 15(7), 1068; https://doi.org/10.3390/ani15071068 - 7 Apr 2025
Cited by 1 | Viewed by 583
Abstract
Understanding spatiotemporal patterns of fish density and their environmental drivers is critical for managing river–lake ecosystems, yet dynamic interactions in heterogeneous habitats remain poorly quantified. This study combined hydroacoustic surveys, spatial autocorrelation analysis (Moran’s I), and generalized additive models (GAMs) to investigate seasonal [...] Read more.
Understanding spatiotemporal patterns of fish density and their environmental drivers is critical for managing river–lake ecosystems, yet dynamic interactions in heterogeneous habitats remain poorly quantified. This study combined hydroacoustic surveys, spatial autocorrelation analysis (Moran’s I), and generalized additive models (GAMs) to investigate seasonal and spatial fish distribution, aggregation characteristics, and regulatory mechanisms in China’s Zhelin Reservoir. The results reveal pronounced seasonal fluctuations, with summer fish density peaking at 13.70 ± 0.91 ind./1000 m3 and declining to 1.95 ± 0.13 ind./1000 m3 in winter. Spatial heterogeneity was evident, with the Xiuhe region sustaining the highest density (15.69 ± 1.09 ind./1000 m3) and persistent hotspots in upstream bays. Transient high-density clusters (90–99% confidence) near the Zhelin Dam during summer suggested thermal or hydrodynamic disturbances. GAM analysis (R2adj = 0.712, 78.5% deviance explained) identified seasonal transitions (12.26% variance), water depth (16.54%), conductivity (13.75%), and dissolved oxygen (13.29%) as dominant drivers, with nonlinear responses to depth and bimodal patterns for conductivity/oxygen. These findings demonstrate that hydrological seasonality and habitat heterogeneity jointly govern fish aggregation, underscoring the ecological priority of Xiuhe and upstream bays as core habitats. This study provides a mechanistic framework for guiding reservoir management, including targeted conservation, dam operation adjustments to mitigate hydrodynamic impacts, and integrated strategies for balancing hydrological and ecological needs in similar ecosystems. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

19 pages, 8968 KB  
Article
Role of Hungry Water on Sediment Dynamics: Assessment of Valley Degradation, Bed Material Changes and Flood Inundation in Pamba River During Kerala Flood, 2018
by Sreelash Krishnan Kutty, Padmalal Damodaran, Jeenu Mathai, Micky Mathew, Asha Rani, Rajat Kumar Sharma and Maya Kesavan
Hydrology 2025, 12(4), 79; https://doi.org/10.3390/hydrology12040079 - 1 Apr 2025
Viewed by 905
Abstract
Flood frequencies, along with the associated loss of life and property, have risen significantly due to climate change and increasing human activities. While prior research has primarily focused on high-intensity rainfall events and reservoir management in flood management, the influence of sediment-starved water—termed [...] Read more.
Flood frequencies, along with the associated loss of life and property, have risen significantly due to climate change and increasing human activities. While prior research has primarily focused on high-intensity rainfall events and reservoir management in flood management, the influence of sediment-starved water—termed “hungry water”—released from dams in controlling flood dynamics has not gained much attention. The present study is aimed at exploring the potential role of sediment-starved water, or the “hungry water effect” on the valley degradation, bed material changes and flood inundation in the Pamba River during the Kerala Flood, 2018, through a detailed characterization of bed materials and their deposition in the channel bed. The release of sediment-starved water from the Kakki reservoir during the episodic precipitation event (15 to 17 August 2018) resulted in significant bed degradation and scouring of the valley slopes, leading to the deposition of large boulders and rock masses and the inundating of approximately 196 km2 of floodplains. This study highlights the need for integrated sediment management strategies in reservoir operations by providing essential insights into sediment transport dynamics during extreme weather events. Understanding these processes is crucial for formulating effective flood mitigation strategies and improving the resilience of riverine ecosystems, particularly as the interaction between intense rainfall and sediment-depleted releases significantly exacerbated the flood’s severity. Full article
Show Figures

Figure 1

24 pages, 12548 KB  
Article
Exploring Zoogeomorphological Landscapes: Enhancing Learning Through Virtual Field Experiences of Beaver Ponds Along the Red Eagle Trail, Glacier National Park, Montana, USA
by Dianna Gielstra, Jacquelyn Kelly, Anyll Markevich, David R. Butler, Ann Hunkins, Ella Gielstra, Niccole V. Cerveny, Johan Gielstra, Heather L. Moll, Tomáš J. Oberding and Karen Guerrero
Wild 2025, 2(2), 9; https://doi.org/10.3390/wild2020009 - 25 Mar 2025
Viewed by 1760
Abstract
Virtual field trips in zoogeomorphology can allow students to explore the dynamic influence of beaver activity within the landscape. Education theory-informed virtual learning experiences (VLEs) of zoogeomorphologic topics, such as ecosystem engineers, are still underdeveloped for natural science learning communities. Through dam-building activities, [...] Read more.
Virtual field trips in zoogeomorphology can allow students to explore the dynamic influence of beaver activity within the landscape. Education theory-informed virtual learning experiences (VLEs) of zoogeomorphologic topics, such as ecosystem engineers, are still underdeveloped for natural science learning communities. Through dam-building activities, beavers significantly alter stream hydrology, sediment transport, and vegetation organization and structure, promoting landscape heterogeneity. To effectively communicate this complexity of landscape modification, we developed an immersive virtual reality (VR) environment using historical photographs and detailed field notes to visualize the temporal and spatial transformations caused by beaver activity. A design and development process (TECCUPD), a philosophical framework for physical geography (TREE-PG), and a planning tool (VRUI conceptual model) are used to guide VLE architecture. Collectively, this information serves as a virtual proxy of an abandoned beaver pond field site to support student evaluation of the influence of sediment trapping and flooding on vegetation patterns on the landscape. This virtual place-based, experiential narrative environment is a proxy to capture the complexity of beaver-modified landscapes through ecological and geomorphological interactions. The integration of immersive VR technologies and generative artificial intelligence (AI) in higher education with learning theories that guide VR application design and development is applied in virtual field trips to support pedagogical goals and improve learning outcomes. Finally, we use an evaluation scale (TIPS) to assess the fidelity of learning theory implementation in a virtual field trip. Virtual field experiences in zoogeomorphology, informed by theory and utilizing immersive landscapes and scientific educational tools, can help students discern the effects of beavers on stream hydrology and geomorphic processes, as well as their potential role in mitigating water insecurity in climate adaptation efforts. Full article
Show Figures

Figure 1

Back to TopTop