Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = deep convolution encoder (DCE)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1471 KB  
Article
WDM-UNet: A Wavelet-Deformable Gated Fusion Network for Multi-Scale Retinal Vessel Segmentation
by Xinlong Li and Hang Zhou
Sensors 2025, 25(15), 4840; https://doi.org/10.3390/s25154840 - 6 Aug 2025
Viewed by 676
Abstract
Retinal vessel segmentation in fundus images is critical for diagnosing microvascular and ophthalmologic diseases. However, the task remains challenging due to significant vessel width variation and low vessel-to-background contrast. To address these limitations, we propose WDM-UNet, a novel spatial-wavelet dual-domain fusion architecture that [...] Read more.
Retinal vessel segmentation in fundus images is critical for diagnosing microvascular and ophthalmologic diseases. However, the task remains challenging due to significant vessel width variation and low vessel-to-background contrast. To address these limitations, we propose WDM-UNet, a novel spatial-wavelet dual-domain fusion architecture that integrates spatial and wavelet-domain representations to simultaneously enhance the local detail and global context. The encoder combines a Deformable Convolution Encoder (DCE), which adaptively models complex vascular structures through dynamic receptive fields, and a Wavelet Convolution Encoder (WCE), which captures the semantic and structural contexts through low-frequency components and hierarchical wavelet convolution. These features are further refined by a Gated Fusion Transformer (GFT), which employs gated attention to enhance multi-scale feature integration. In the decoder, depthwise separable convolutions are used to reduce the computational overhead without compromising the representational capacity. To preserve fine structural details and facilitate contextual information flow across layers, the model incorporates skip connections with a hierarchical fusion strategy, enabling the effective integration of shallow and deep features. We evaluated WDM-UNet in three public datasets: DRIVE, STARE, and CHASE_DB1. The quantitative evaluations demonstrate that WDM-UNet consistently outperforms state-of-the-art methods, achieving 96.92% accuracy, 83.61% sensitivity, and an 82.87% F1-score in the DRIVE dataset, with superior performance across all the benchmark datasets in both segmentation accuracy and robustness, particularly in complex vascular scenarios. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

22 pages, 4136 KB  
Article
DepthCrackNet: A Deep Learning Model for Automatic Pavement Crack Detection
by Alireza Saberironaghi and Jing Ren
J. Imaging 2024, 10(5), 100; https://doi.org/10.3390/jimaging10050100 - 26 Apr 2024
Cited by 10 | Viewed by 4527
Abstract
Detecting cracks in the pavement is a vital component of ensuring road safety. Since manual identification of these cracks can be time-consuming, an automated method is needed to speed up this process. However, creating such a system is challenging due to factors including [...] Read more.
Detecting cracks in the pavement is a vital component of ensuring road safety. Since manual identification of these cracks can be time-consuming, an automated method is needed to speed up this process. However, creating such a system is challenging due to factors including crack variability, variations in pavement materials, and the occurrence of miscellaneous objects and anomalies on the pavement. Motivated by the latest progress in deep learning applied to computer vision, we propose an effective U-Net-shaped model named DepthCrackNet. Our model employs the Double Convolution Encoder (DCE), composed of a sequence of convolution layers, for robust feature extraction while keeping parameters optimally efficient. We have incorporated the TriInput Multi-Head Spatial Attention (TMSA) module into our model; in this module, each head operates independently, capturing various spatial relationships and boosting the extraction of rich contextual information. Furthermore, DepthCrackNet employs the Spatial Depth Enhancer (SDE) module, specifically designed to augment the feature extraction capabilities of our segmentation model. The performance of the DepthCrackNet was evaluated on two public crack datasets: Crack500 and DeepCrack. In our experimental studies, the network achieved mIoU scores of 77.0% and 83.9% with the Crack500 and DeepCrack datasets, respectively. Full article
(This article belongs to the Special Issue Deep Learning in Image Analysis: Progress and Challenges)
Show Figures

Figure 1

26 pages, 54207 KB  
Article
Multilocation and Multiscale Learning Framework with Skip Connection for Fault Diagnosis of Bearing under Complex Working Conditions
by Hongwei Ban, Dazhi Wang, Sihan Wang and Ziming Liu
Sensors 2021, 21(9), 3226; https://doi.org/10.3390/s21093226 - 6 May 2021
Cited by 4 | Viewed by 2724
Abstract
Considering various fault states under severe working conditions, the comprehensive feature extraction from the raw vibration signal is still a challenge for the diagnosis task of rolling bearing. To deal with strong coupling and high nonlinearity of the vibration signal, this article proposes [...] Read more.
Considering various fault states under severe working conditions, the comprehensive feature extraction from the raw vibration signal is still a challenge for the diagnosis task of rolling bearing. To deal with strong coupling and high nonlinearity of the vibration signal, this article proposes a novel multilocation and multikernel scale learning framework based on deep convolution encoder (DCE) and bidirectional long short-term memory network (BiLSTM). The procedure of the proposed method using a cascade structure is developed in three stages. In the first stage, each parallel branch of the multifeature learning combines the skip connection and the DCE, and uses different size kernels. The multifeature learning network can automatically extract and fuse global and local features from different network depths and time scales of the raw vibration signal. In the second stage, the BiLSTM as the feature protection network is designed to employ the internal calculating data of the forward propagation and backward propagation at the same network propagation node. The feature protection network is used for further mining sensitive and complementary features. In the third stage of bearing diagnosis, the classifier identifies the fault types. Consequently, the proposed network scheme can perform well in generalization capability. The performance of the proposed method is verified on the two kinds of bearing datasets. The diagnostic results demonstrate that the proposed method can diagnose multiple fault types more accurately. Also, the method performs better in load and speed adaptation compared with other intelligent fault classification methods. Full article
Show Figures

Figure 1

Back to TopTop