Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (248)

Search Parameters:
Keywords = deep learning in radiology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 501 KB  
Article
From Bedside to Bot-Side: Artificial Intelligence in Emergency Appendicitis Management
by Koray Ersahin, Sebastian Sanduleanu, Sithin Thulasi Seetha, Johannes Bremm, Cavid Abbasli, Chantal Zimmer, Tim Damer, Jonathan Kottlors, Lukas Goertz, Christiane Bruns, David Maintz and Nuran Abdullayev
Life 2025, 15(9), 1387; https://doi.org/10.3390/life15091387 - 1 Sep 2025
Abstract
Introduction: Acute appendicitis (AA) is a common cause of abdominal pain that can lead to complications like perforation and intra-abdominal abscesses, increasing morbidity and mortality, often requiring emergency surgery. Nevertheless, appendectomy is performed in up to 95% of uncomplicated cases, while complications like [...] Read more.
Introduction: Acute appendicitis (AA) is a common cause of abdominal pain that can lead to complications like perforation and intra-abdominal abscesses, increasing morbidity and mortality, often requiring emergency surgery. Nevertheless, appendectomy is performed in up to 95% of uncomplicated cases, while complications like perforation and intra-abdominal abscesses increase morbidity and mortality. The current study compares the accuracy of GPT-4.5, DeepSeek R1, and machine learning in assisting with surgical decision-making for patients presenting with lower abdominal pain at the Emergency Department. Methods: In this multicenter retrospective study, 63 histopathologically confirmed appendicitis patients and 50 control patients with right abdominal pain presenting at the Emergency Department at two German hospitals between October 2022 and October 2023 were included. Using each patient’s clinical, laboratory, and radiological findings, DeepSeek (with and without Retrieval-Augmented Generation using 2020 Jerusalem guidelines) was compared in terms of accuracy with GPT-4.5 and a random forest-based machine-learning model, with a board-certified surgeon (reference standard) to determine the optimal treatment approach (laparoscopic exploration/appendectomy versus conservative antibiotic therapy). Results: Accuracy of agreement with board-certified surgeons in the decision-making of appendectomy versus conservative therapy increased non-significantly from 80.5% to 83.2% with DeepSeek and from 70.8 to 76.1% when GPT-4.5 was provided with the World Journal of Emergency Surgery 2020 Jerusalem guidelines on the diagnosis and treatment of acute appendicitis. The estimated machine-learning model training accuracy was 84.3%, while the validation accuracy for the model was 85.0%. Discussion: GPT-4.5 and DeepSeek R1, as well as the machine-learning model, demonstrate promise in aiding surgical decision-making for appendicitis, particularly in resource-constrained settings. Ongoing training and validation are required to optimize the performance of such models. Full article
(This article belongs to the Special Issue Language Models in Lab Coats: AI-Powered Biomedical Interpretation)
Show Figures

Figure 1

35 pages, 1400 KB  
Article
A Comparative Analysis of the Mamba, Transformer, and CNN Architectures for Multi-Label Chest X-Ray Anomaly Detection in the NIH ChestX-Ray14 Dataset
by Erdem Yanar, Furkan Kutan, Kubilay Ayturan, Uğurhan Kutbay, Oktay Algın, Fırat Hardalaç and Ahmet Muhteşem Ağıldere
Diagnostics 2025, 15(17), 2215; https://doi.org/10.3390/diagnostics15172215 - 1 Sep 2025
Abstract
Background/Objectives: Recent state-of-the-art advances in deep learning have significantly improved diagnostic accuracy in medical imaging, particularly in chest radiograph (CXR) analysis. Motivated by these developments, a comprehensive comparison was conducted to investigate how architectural choices affect performance of 14 deep learning models [...] Read more.
Background/Objectives: Recent state-of-the-art advances in deep learning have significantly improved diagnostic accuracy in medical imaging, particularly in chest radiograph (CXR) analysis. Motivated by these developments, a comprehensive comparison was conducted to investigate how architectural choices affect performance of 14 deep learning models across Convolutional Neural Networks (CNNs), Transformer-based models, and Mamba-based State Space Models. Methods: These models were trained and evaluated under identical conditions on the NIH ChestX-ray14 dataset, a large-scale and widely used benchmark comprising 112,120 labeled CXR images with 14 thoracic disease categories. Results: It was found that recent hybrid architectures—particularly ConvFormer, CaFormer, and EfficientNet—deliver superior performance in both common and rare pathologies. ConvFormer achieved the highest mean AUROC of 0.841 when averaged across all 14 thoracic disease classes, closely followed by EfficientNet and CaFormer. Notably, AUROC scores of 0.94 for hernia, 0.91 for cardiomegaly, and 0.88 for edema and effusion were achieved by the proposed models, surpassing previously reported benchmarks.Conclusions: These results not only highlight the continued strength of CNNs but also demonstrate the growing potential of Transformer-based architectures in medical image analysis. This work contributes to the literature by providing a unified, state-of-the-art benchmarking of diverse deep learning models, offering valuable guidance for researchers and practitioners developing clinically robust AI systems for radiology. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
54 pages, 11409 KB  
Article
FracFusionNet: A Multi-Level Feature Fusion Convolutional Network for Bone Fracture Detection in Radiographic Images
by Sameh Abd El-Ghany, Mahmood A. Mahmood and A. A. Abd El-Aziz
Diagnostics 2025, 15(17), 2212; https://doi.org/10.3390/diagnostics15172212 - 31 Aug 2025
Abstract
Background/Objectives: Bones are essential components of the human body, providing structural support, enabling mobility, storing minerals, and protecting internal organs. Bone fractures (BFs) are common injuries that result from excessive physical force and can lead to serious complications, including bleeding, infection, impaired oxygenation, [...] Read more.
Background/Objectives: Bones are essential components of the human body, providing structural support, enabling mobility, storing minerals, and protecting internal organs. Bone fractures (BFs) are common injuries that result from excessive physical force and can lead to serious complications, including bleeding, infection, impaired oxygenation, and long-term disability. Early and accurate identification of fractures through radiographic imaging is critical for effective treatment and improved patient outcomes. However, manual evaluation of X-rays is often time-consuming and prone to diagnostic errors due to human limitations. To address this, artificial intelligence (AI), particularly deep learning (DL), has emerged as a powerful tool for enhancing diagnostic precision in medical imaging. Methods: This research introduces a novel convolutional neural network (CNN) model, the Multi-Level Feature Fusion Network (MLFNet), designed to capture and integrate both low-level and high-level image features. The model was evaluated using the Bone Fracture Multi-Region X-ray (BFMRX) dataset. Preprocessing steps included image normalization, resizing, and contrast enhancement to ensure stable convergence, reduce sensitivity to lighting variations in radiographic images, and maintain consistency. Ablation studies were conducted to assess architectural variations, confirming the model’s robustness and generalizability across data distributions. MLFNet’s high accuracy, interpretability, and efficiency make it a promising solution for clinical deployment. Results: MLFNet achieved an impressive accuracy of 99.60% as a standalone model and 98.81% when integrated into hybrid ensemble architectures with five leading pre-trained DL models. Conclusions: The proposed approach supports timely and precise fracture detection, optimizing the diagnostic process and reducing healthcare costs. This approach offers significant potential to aid clinicians in fields such as orthopedics and radiology, contributing to more equitable and effective patient care. Full article
(This article belongs to the Special Issue Machine-Learning-Based Disease Diagnosis and Prediction)
Show Figures

Figure 1

11 pages, 2134 KB  
Proceeding Paper
Determination of Anteroposterior and Posteroanterior Imaging Positions on Chest X-Ray Images Using Deep Learning
by Fatih Gökçimen, Alpaslan Burak İnner and Özgür Çakır
Eng. Proc. 2025, 104(1), 58; https://doi.org/10.3390/engproc2025104058 - 28 Aug 2025
Viewed by 780
Abstract
This study proposes a deep learning framework to classify anteroposterior (AP) and posteroanterior (PA) chest X-ray projections automatically. Multiple convolutional neural networks (CNNs), including ResNet18, ResNet34, ResNet50, DenseNet121, EfficientNetV2-S, and ConvNeXt-Tiny, were utilized. The NIH Chest X-ray Dataset, with 112,120 images, was used [...] Read more.
This study proposes a deep learning framework to classify anteroposterior (AP) and posteroanterior (PA) chest X-ray projections automatically. Multiple convolutional neural networks (CNNs), including ResNet18, ResNet34, ResNet50, DenseNet121, EfficientNetV2-S, and ConvNeXt-Tiny, were utilized. The NIH Chest X-ray Dataset, with 112,120 images, was used with strict patient-wise splitting to prevent data leakage. ResNet34 achieved the highest performance: 99.65% accuracy, 0.9956 F1 score, and 0.9994 ROC-AUC. Grad-CAM visualized model decisions, and expert-reviewed misclassified samples were removed to enhance dataset quality. This methodology highlights the importance of robust preprocessing, model interpretability, and clinical applicability in radiographic view classification tasks. Full article
Show Figures

Figure 1

23 pages, 6848 KB  
Review
The Expanding Frontier: The Role of Artificial Intelligence in Pediatric Neuroradiology
by Alessia Guarnera, Antonio Napolitano, Flavia Liporace, Fabio Marconi, Maria Camilla Rossi-Espagnet, Carlo Gandolfo, Andrea Romano, Alessandro Bozzao and Daniela Longo
Children 2025, 12(9), 1127; https://doi.org/10.3390/children12091127 - 27 Aug 2025
Viewed by 320
Abstract
Artificial intelligence (AI) is revolutionarily shaping the entire landscape of medicine and particularly the privileged field of radiology, since it produces a significant amount of data, namely, images. Currently, AI implementation in radiology is continuously increasing, from automating image analysis to enhancing workflow [...] Read more.
Artificial intelligence (AI) is revolutionarily shaping the entire landscape of medicine and particularly the privileged field of radiology, since it produces a significant amount of data, namely, images. Currently, AI implementation in radiology is continuously increasing, from automating image analysis to enhancing workflow management, and specifically, pediatric neuroradiology is emerging as an expanding frontier. Pediatric neuroradiology presents unique opportunities and challenges since neonates’ and small children’s brains are continuously developing, with age-specific changes in terms of anatomy, physiology, and disease presentation. By enhancing diagnostic accuracy, reducing reporting times, and enabling earlier intervention, AI has the potential to significantly impact clinical practice and patients’ quality of life and outcomes. For instance, AI reduces MRI and CT scanner time by employing advanced deep learning (DL) algorithms to accelerate image acquisition through compressed sensing and undersampling, and to enhance image reconstruction by denoising and super-resolving low-quality datasets, thereby producing diagnostic-quality images with significantly fewer data points and in a shorter timeframe. Furthermore, as healthcare systems become increasingly burdened by rising demands and limited radiology workforce capacity, AI offers a practical solution to support clinical decision-making, particularly in institutions where pediatric neuroradiology is limited. For example, the MELD (Multicenter Epilepsy Lesion Detection) algorithm is specifically designed to help radiologists find focal cortical dysplasias (FCDs), which are a common cause of drug-resistant epilepsy. It works by analyzing a patient’s MRI scan and comparing a wide range of features—such as cortical thickness and folding patterns—to a large database of scans from both healthy individuals and epilepsy patients. By identifying subtle deviations from normal brain anatomy, the MELD graph algorithm can highlight potential lesions that are often missed by the human eye, which is a critical step in identifying patients who could benefit from life-changing epilepsy surgery. On the other hand, the integration of AI into pediatric neuroradiology faces technical and ethical challenges, such as data scarcity and ethical and legal restrictions on pediatric data sharing, that complicate the development of robust and generalizable AI models. Moreover, many radiologists remain sceptical of AI’s interpretability and reliability, and there are also important medico-legal questions around responsibility and liability when AI systems are involved in clinical decision-making. Future promising perspectives to overcome these concerns are represented by federated learning and collaborative research and AI development, which require technological innovation and multidisciplinary collaboration between neuroradiologists, data scientists, ethicists, and pediatricians. The paper aims to address: (1) current applications of AI in pediatric neuroradiology; (2) current challenges and ethical considerations related to AI implementation in pediatric neuroradiology; and (3) future opportunities in the clinical and educational pediatric neuroradiology field. AI in pediatric neuroradiology is not meant to replace neuroradiologists, but to amplify human intellect and extend our capacity to diagnose, prognosticate, and treat with unprecedented precision and speed. Full article
Show Figures

Figure 1

24 pages, 15799 KB  
Article
Performance Comparison of Embedded AI Solutions for Classification and Detection in Lung Disease Diagnosis
by Md Sabbir Ahmed, Stefano Giordano and Davide Adami
Appl. Sci. 2025, 15(17), 9345; https://doi.org/10.3390/app15179345 - 26 Aug 2025
Viewed by 343
Abstract
Lung disease diagnosis from chest X-ray images is a critical task in clinical care, especially in resource-constrained settings where access to radiology expertise and computational infrastructure is limited. Recent advances in deep learning have shown promise, yet most studies focus solely on either [...] Read more.
Lung disease diagnosis from chest X-ray images is a critical task in clinical care, especially in resource-constrained settings where access to radiology expertise and computational infrastructure is limited. Recent advances in deep learning have shown promise, yet most studies focus solely on either classification or detection in isolation, rarely exploring their combined potential in an embedded, real-world setting. To address this, we present a dual deep learning approach that combines five-class disease classification and multi-label thoracic abnormality detection, optimized for embedded edge deployment. Specifically, we evaluate six state-of-the-art CNN architectures—ResNet101, DenseNet201, MobileNetV3-Large, EfficientNetV2-B0, InceptionResNetV2, and Xception—on both base (2020 images) and augmented (9875 images) datasets. Validation accuracies ranged from 55.3% to 70.7% on the base dataset and improved to 58.4% to 72.0% with augmentation, with MobileNetV3-Large achieving the highest accuracy on both. In parallel, we trained a YOLOv8n model for multi-label detection of 14 thoracic diseases. While not deployed in this work, its lightweight architecture makes it suitable for future use on embedded platforms. All classification models were evaluated for end-to-end inference on a Raspberry Pi 4 using a high-resolution chest X-ray image (2566 × 2566, PNG). MobileNetV3-Large demonstrated the fastest latency at 429.6 ms, and all models completed inference in under 2.4 s. These results demonstrate the feasibility of combining classification for rapid triage and detection for spatial interpretability in real-time, embedded clinical environments—paving the way for practical, low-cost AI-based decision support systems for surgery rooms and mobile clinical environments. Full article
Show Figures

Figure 1

18 pages, 1752 KB  
Systematic Review
Beyond Post hoc Explanations: A Comprehensive Framework for Accountable AI in Medical Imaging Through Transparency, Interpretability, and Explainability
by Yashbir Singh, Quincy A. Hathaway, Varekan Keishing, Sara Salehi, Yujia Wei, Natally Horvat, Diana V. Vera-Garcia, Ashok Choudhary, Almurtadha Mula Kh, Emilio Quaia and Jesper B Andersen
Bioengineering 2025, 12(8), 879; https://doi.org/10.3390/bioengineering12080879 - 15 Aug 2025
Viewed by 1004
Abstract
The integration of artificial intelligence (AI) in medical imaging has revolutionized diagnostic capabilities, yet the black-box nature of deep learning models poses significant challenges for clinical adoption. Current explainable AI (XAI) approaches, including SHAP, LIME, and Grad-CAM, predominantly focus on post hoc explanations [...] Read more.
The integration of artificial intelligence (AI) in medical imaging has revolutionized diagnostic capabilities, yet the black-box nature of deep learning models poses significant challenges for clinical adoption. Current explainable AI (XAI) approaches, including SHAP, LIME, and Grad-CAM, predominantly focus on post hoc explanations that may inadvertently undermine clinical decision-making by providing misleading confidence in AI outputs. This paper presents a systematic review and meta-analysis of 67 studies (covering 23 radiology, 19 pathology, and 25 ophthalmology applications) evaluating XAI fidelity, stability, and performance trade-offs across medical imaging modalities. Our meta-analysis of 847 initially identified studies reveals that LIME achieves superior fidelity (0.81, 95% CI: 0.78–0.84) compared to SHAP (0.38, 95% CI: 0.35–0.41) and Grad-CAM (0.54, 95% CI: 0.51–0.57) across all modalities. Post hoc explanations demonstrated poor stability under noise perturbation, with SHAP showing 53% degradation in ophthalmology applications (ρ = 0.42 at 10% noise) compared to 11% in radiology (ρ = 0.89). We demonstrate a consistent 5–7% AUC performance penalty for interpretable models but identify modality-specific stability patterns suggesting that tailored XAI approaches are necessary. Based on these empirical findings, we propose a comprehensive three-pillar accountability framework that prioritizes transparency in model development, interpretability in architecture design, and a cautious deployment of post hoc explanations with explicit uncertainty quantification. This approach offers a pathway toward genuinely accountable AI systems that enhance rather than compromise clinical decision-making quality and patient safety. Full article
(This article belongs to the Special Issue Explainable Artificial Intelligence (XAI) in Medical Imaging)
Show Figures

Figure 1

23 pages, 508 KB  
Systematic Review
AI-Driven Innovations in Neuroradiology and Neurosurgery: Scoping Review of Current Evidence and Future Directions
by Bartosz Szmyd, Małgorzata Podstawka, Karol Wiśniewski, Karol Zaczkowski, Tomasz Puzio, Arkadiusz Tomczyk, Adam Wojciechowski, Dariusz J. Jaskólski and Ernest J. Bobeff
Cancers 2025, 17(16), 2625; https://doi.org/10.3390/cancers17162625 - 11 Aug 2025
Viewed by 600
Abstract
Background/Objectives: The rapid development of artificial intelligence is transforming the face of medicine. Due to the large number of imaging studies (pre-, intra-, and postoperative) combined with histopathological and molecular findings, its impact may be particularly significant in neurosurgery. We aimed to [...] Read more.
Background/Objectives: The rapid development of artificial intelligence is transforming the face of medicine. Due to the large number of imaging studies (pre-, intra-, and postoperative) combined with histopathological and molecular findings, its impact may be particularly significant in neurosurgery. We aimed to perform a scoping review of recent applications of deep learning in MRI-based diagnostics of brain tumors relevant to neurosurgical practice. Methods: We conducted a systematic search of scientific articles available in the PubMed database. The search was performed on 22 April 2024, using the following query: ((MRI) AND (brain tumor)) AND (deep learning). We included original studies that applied deep-learning methods to brain tumor diagnostics using MRI, with potential relevance to neuroradiology or neurosurgery. A total of 893 records were retrieved, and after title/abstract screening and full-text assessment by two independent reviewers, 229 studies met the inclusion criteria. The study was not registered and received no external funding. Results: Most included articles were published after 1 January 2022. The studies primarily focused on developing models to differentiate between specific CNS tumors. With improved radiological analysis, deep-learning technologies can support surgical planning through enhanced visualization of cerebral vessels, white matter tracts, and functional brain areas. Over half of the papers (52%) focused on gliomas, particularly their detection, grading, and molecular characterization. Conclusions: Recent advancements in artificial intelligence methods have enabled differentiation between normal and abnormal CNS imaging, identification of various pathological entities, and, in some cases, precise tumor classification and molecular profiling. These tools show promise in supporting both diagnosis and treatment planning in neurosurgery. Full article
(This article belongs to the Special Issue Applications of Imaging Techniques in Neurosurgery)
Show Figures

Figure 1

23 pages, 4728 KB  
Article
A Web-Deployed, Explainable AI System for Comprehensive Brain Tumor Diagnosis
by Serra Aksoy, Pinar Demircioglu and Ismail Bogrekci
Neurol. Int. 2025, 17(8), 121; https://doi.org/10.3390/neurolint17080121 - 4 Aug 2025
Viewed by 469
Abstract
Background/Objectives: Accurate diagnosis of brain tumors is one of the most important challenges in neuro-oncology since tumor classification and volumetric segmentation inform treatment planning. Two-dimensional classification and three-dimensional segmentation deep learning models can augment radiological workflows, particularly if paired with explainable AI techniques [...] Read more.
Background/Objectives: Accurate diagnosis of brain tumors is one of the most important challenges in neuro-oncology since tumor classification and volumetric segmentation inform treatment planning. Two-dimensional classification and three-dimensional segmentation deep learning models can augment radiological workflows, particularly if paired with explainable AI techniques to improve model interpretability. The objective of this research was to develop a web-based brain tumor segmentation and classification diagnosis platform. Methods: A diagnosis system was developed combining 2D tumor classification and 3D volumetric segmentation. Classification employed a fine-tuned MobileNetV2 model trained on a glioma, meningioma, pituitary tumor, and normal control dataset. Segmentation employed a SegResNet model trained on BraTS multi-channel MRI with synthetic no-tumor data. A meta-classifier MLP was used for binary tumor detection from volumetric features. Explainability was offered using XRAI maps for 2D predictions and Gaussian overlays for 3D visualizations. The platform was incorporated into a web interface for clinical use. Results: MobileNetV2 2D model recorded 98.09% classification accuracy for tumor classification. 3D SegResNet obtained Dice coefficients around 68–70% for tumor segmentations. The MLP-based tumor detection module recorded 100% detection accuracy. Explainability modules could identify the area of the tumor, and saliency and overlay maps were consistent with real pathological features in both 2D and 3D. Conclusions: Deep learning diagnosis system possesses improved brain tumor classification and segmentation with interpretable outcomes by utilizing XAI techniques. Deployment as a web tool and a user-friendly interface made it suitable for clinical usage in radiology workflows. Full article
(This article belongs to the Section Brain Tumor and Brain Injury)
Show Figures

Figure 1

27 pages, 1326 KB  
Systematic Review
Application of Artificial Intelligence in Pancreatic Cyst Management: A Systematic Review
by Donghyun Lee, Fadel Jesry, John J. Maliekkal, Lewis Goulder, Benjamin Huntly, Andrew M. Smith and Yazan S. Khaled
Cancers 2025, 17(15), 2558; https://doi.org/10.3390/cancers17152558 - 2 Aug 2025
Viewed by 666
Abstract
Background: Pancreatic cystic lesions (PCLs), including intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), pose a diagnostic challenge due to their variable malignant potential. Current guidelines, such as Fukuoka and American Gastroenterological Association (AGA), have moderate predictive accuracy and may lead [...] Read more.
Background: Pancreatic cystic lesions (PCLs), including intraductal papillary mucinous neoplasms (IPMNs) and mucinous cystic neoplasms (MCNs), pose a diagnostic challenge due to their variable malignant potential. Current guidelines, such as Fukuoka and American Gastroenterological Association (AGA), have moderate predictive accuracy and may lead to overtreatment or missed malignancies. Artificial intelligence (AI), incorporating machine learning (ML) and deep learning (DL), offers the potential to improve risk stratification, diagnosis, and management of PCLs by integrating clinical, radiological, and molecular data. This is the first systematic review to evaluate the application, performance, and clinical utility of AI models in the diagnosis, classification, prognosis, and management of pancreatic cysts. Methods: A systematic review was conducted in accordance with PRISMA guidelines and registered on PROSPERO (CRD420251008593). Databases searched included PubMed, EMBASE, Scopus, and Cochrane Library up to March 2025. The inclusion criteria encompassed original studies employing AI, ML, or DL in human subjects with pancreatic cysts, evaluating diagnostic, classification, or prognostic outcomes. Data were extracted on the study design, imaging modality, model type, sample size, performance metrics (accuracy, sensitivity, specificity, and area under the curve (AUC)), and validation methods. Study quality and bias were assessed using the PROBAST and adherence to TRIPOD reporting guidelines. Results: From 847 records, 31 studies met the inclusion criteria. Most were retrospective observational (n = 27, 87%) and focused on preoperative diagnostic applications (n = 30, 97%), with only one addressing prognosis. Imaging modalities included Computed Tomography (CT) (48%), endoscopic ultrasound (EUS) (26%), and Magnetic Resonance Imaging (MRI) (9.7%). Neural networks, particularly convolutional neural networks (CNNs), were the most common AI models (n = 16), followed by logistic regression (n = 4) and support vector machines (n = 3). The median reported AUC across studies was 0.912, with 55% of models achieving AUC ≥ 0.80. The models outperformed clinicians or existing guidelines in 11 studies. IPMN stratification and subtype classification were common focuses, with CNN-based EUS models achieving accuracies of up to 99.6%. Only 10 studies (32%) performed external validation. The risk of bias was high in 93.5% of studies, and TRIPOD adherence averaged 48%. Conclusions: AI demonstrates strong potential in improving the diagnosis and risk stratification of pancreatic cysts, with several models outperforming current clinical guidelines and human readers. However, widespread clinical adoption is hindered by high risk of bias, lack of external validation, and limited interpretability of complex models. Future work should prioritise multicentre prospective studies, standardised model reporting, and development of interpretable, externally validated tools to support clinical integration. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

14 pages, 2727 KB  
Article
A Multimodal MRI-Based Model for Colorectal Liver Metastasis Prediction: Integrating Radiomics, Deep Learning, and Clinical Features with SHAP Interpretation
by Xin Yan, Furui Duan, Lu Chen, Runhong Wang, Kexin Li, Qiao Sun and Kuang Fu
Curr. Oncol. 2025, 32(8), 431; https://doi.org/10.3390/curroncol32080431 - 30 Jul 2025
Viewed by 500
Abstract
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through [...] Read more.
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through SHapley Additive exPlanations (SHAP) analysis and deep learning visualization. Methods: This multicenter retrospective study included 463 patients with pathologically confirmed colorectal cancer from two institutions, divided into training (n = 256), internal testing (n = 111), and external validation (n = 96) sets. Radiomics features were extracted from manually segmented regions on axial T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI). Deep learning features were obtained from a pretrained ResNet101 network using the same MRI inputs. A least absolute shrinkage and selection operator (LASSO) logistic regression classifier was developed for clinical, radiomics, deep learning, and combined models. Model performance was evaluated by AUC, sensitivity, specificity, and F1-score. SHAP was used to assess feature contributions, and Grad-CAM was applied to visualize deep feature attention. Results: The combined model integrating features across the three modalities achieved the highest performance across all datasets, with AUCs of 0.889 (training), 0.838 (internal test), and 0.822 (external validation), outperforming single-modality models. Decision curve analysis (DCA) revealed enhanced clinical net benefit from the integrated model, while calibration curves confirmed its good predictive consistency. SHAP analysis revealed that radiomic features related to T2WI texture (e.g., LargeDependenceLowGrayLevelEmphasis) and clinical biomarkers (e.g., CA19-9) were among the most predictive for CRLM. Grad-CAM visualizations confirmed that the deep learning model focused on tumor regions consistent with radiological interpretation. Conclusions: This study presents a robust and interpretable multiparametric MRI-based model for noninvasively predicting liver metastasis in colorectal cancer patients. By integrating handcrafted radiomics and deep learning features, and enhancing transparency through SHAP and Grad-CAM, the model provides both high predictive performance and clinically meaningful explanations. These findings highlight its potential value as a decision-support tool for individualized risk assessment and treatment planning in the management of colorectal cancer. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Graphical abstract

17 pages, 1310 KB  
Article
IHRAS: Automated Medical Report Generation from Chest X-Rays via Classification, Segmentation, and LLMs
by Gabriel Arquelau Pimenta Rodrigues, André Luiz Marques Serrano, Guilherme Dantas Bispo, Geraldo Pereira Rocha Filho, Vinícius Pereira Gonçalves and Rodolfo Ipolito Meneguette
Bioengineering 2025, 12(8), 795; https://doi.org/10.3390/bioengineering12080795 - 24 Jul 2025
Viewed by 659
Abstract
The growing demand for accurate and efficient Chest X-Ray (CXR) interpretation has prompted the development of AI-driven systems to alleviate radiologist workload and reduce diagnostic variability. This paper introduces the Intelligent Humanized Radiology Analysis System (IHRAS), a modular framework that automates the end-to-end [...] Read more.
The growing demand for accurate and efficient Chest X-Ray (CXR) interpretation has prompted the development of AI-driven systems to alleviate radiologist workload and reduce diagnostic variability. This paper introduces the Intelligent Humanized Radiology Analysis System (IHRAS), a modular framework that automates the end-to-end process of CXR analysis and report generation. IHRAS integrates four core components: (i) deep convolutional neural networks for multi-label classification of 14 thoracic conditions; (ii) Grad-CAM for spatial visualization of pathologies; (iii) SAR-Net for anatomical segmentation; and (iv) a large language model (DeepSeek-R1) guided by the CRISPE prompt engineering framework to generate structured diagnostic reports using SNOMED CT terminology. Evaluated on the NIH ChestX-ray dataset, IHRAS demonstrates consistent diagnostic performance across diverse demographic and clinical subgroups, and produces high-fidelity, clinically relevant radiological reports with strong faithfulness, relevancy, and alignment scores. The system offers a transparent and scalable solution to support radiological workflows while highlighting the importance of interpretability and standardization in clinical Artificial Intelligence applications. Full article
Show Figures

Figure 1

13 pages, 1574 KB  
Article
Multi-Stage Cascaded Deep Learning-Based Model for Acute Aortic Syndrome Detection: A Multisite Validation Study
by Joseph Chang, Kuan-Jung Lee, Ti-Hao Wang and Chung-Ming Chen
J. Clin. Med. 2025, 14(13), 4797; https://doi.org/10.3390/jcm14134797 - 7 Jul 2025
Viewed by 638
Abstract
Background: Acute Aortic Syndrome (AAS), encompassing aortic dissection (AD), intramural hematoma (IMH), and penetrating atherosclerotic ulcer (PAU), presents diagnostic challenges due to its varied manifestations and the critical need for rapid assessment. Methods: We developed a multi-stage deep learning model trained [...] Read more.
Background: Acute Aortic Syndrome (AAS), encompassing aortic dissection (AD), intramural hematoma (IMH), and penetrating atherosclerotic ulcer (PAU), presents diagnostic challenges due to its varied manifestations and the critical need for rapid assessment. Methods: We developed a multi-stage deep learning model trained on chest computed tomography angiography (CTA) scans. The model utilizes a U-Net architecture for aortic segmentation, followed by a cascaded classification approach for detecting AD and IMH, and a multiscale CNN for identifying PAU. External validation was conducted on 260 anonymized CTA scans from 14 U.S. clinical sites, encompassing data from four different CT manufacturers. Performance metrics, including sensitivity, specificity, and area under the receiver operating characteristic curve (AUC), were calculated with 95% confidence intervals (CIs) using Wilson’s method. Model performance was compared against predefined benchmarks. Results: The model achieved a sensitivity of 0.94 (95% CI: 0.88–0.97), specificity of 0.93 (95% CI: 0.89–0.97), and an AUC of 0.96 (95% CI: 0.94–0.98) for overall AAS detection, with p-values < 0.001 when compared to the 0.80 benchmark. Subgroup analyses demonstrated consistent performance across different patient demographics, CT manufacturers, slice thicknesses, and anatomical locations. Conclusions: This deep learning model effectively detects the full spectrum of AAS across diverse populations and imaging platforms, suggesting its potential utility in clinical settings to enable faster triage and expedite patient management. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

47 pages, 3514 KB  
Review
Deep Learning Approaches for Automated Prediction of Treatment Response in Non-Small-Cell Lung Cancer Patients Based on CT and PET Imaging
by Randy Guzmán Gómez, Guadalupe Lopez Lopez, Victor M. Alvarado, Froylan Lopez Lopez, Eréndira Esqueda Cisneros and Hazel López Moreno
Tomography 2025, 11(7), 78; https://doi.org/10.3390/tomography11070078 - 30 Jun 2025
Viewed by 1015
Abstract
The rapid growth of artificial intelligence, particularly in the field of deep learning, has opened up new advances in analyzing and processing large and complex datasets. Prospects and emerging trends in this area engage the development of methods, techniques, and algorithms to build [...] Read more.
The rapid growth of artificial intelligence, particularly in the field of deep learning, has opened up new advances in analyzing and processing large and complex datasets. Prospects and emerging trends in this area engage the development of methods, techniques, and algorithms to build autonomous systems that perform tasks with minimal human action. In medical practice, radiological imaging technologies systematically boost progress in the clinical monitoring of cancer through the information that can be analyzed in these images. This review gives insight into deep learning-based approaches that strengthen the assessment of the response to the treatment of non-small-cell lung cancer. This systematic survey delves into the various approaches to morphological and metabolic changes observed in computerized tomography (CT) and positron emission tomography (PET) imaging. We highlight the challenges and opportunities for feasible integration of deep learning computer-based tools in evaluating treatments in lung cancer patients, after which CT and PET-based strategies are contrasted. The investigated deep learning methods are organized and described as instruments for classification, clustering, and prediction, which can contribute to the design of automated and objective assessment of lung tumor responses to treatments. Full article
Show Figures

Figure 1

17 pages, 8626 KB  
Article
Deep Learning Spinal Cord Segmentation Based on B0 Reference for Diffusion Tensor Imaging Analysis in Cervical Spondylotic Myelopathy
by Shuoheng Yang, Ningbo Fei, Junpeng Li, Guangsheng Li and Yong Hu
Bioengineering 2025, 12(7), 709; https://doi.org/10.3390/bioengineering12070709 - 28 Jun 2025
Viewed by 517
Abstract
Diffusion Tensor Imaging (DTI) is a crucial imaging technique for accurately assessing pathological changes in Cervical Spondylotic Myelopathy (CSM). However, the segmentation of spinal cord DTI images primarily relies on manual methods, which are labor-intensive and heavily dependent on the subjective experience of [...] Read more.
Diffusion Tensor Imaging (DTI) is a crucial imaging technique for accurately assessing pathological changes in Cervical Spondylotic Myelopathy (CSM). However, the segmentation of spinal cord DTI images primarily relies on manual methods, which are labor-intensive and heavily dependent on the subjective experience of clinicians, and existing research on DTI automatic segmentation cannot fully satisfy clinical requirements. Thus, this poses significant challenges for DTI-assisted diagnostic decision-making. This study aimed to deliver AI-driven segmentation for spinal cord DTI. To achieve this goal, a comparison experiment of candidate input features was conducted, with the preliminary results confirming the effectiveness of applying a diffusion-free image (B0 image) for DTI segmentation. Furthermore, a deep-learning-based model, named SCS-Net (Spinal Cord Segmentation Network), was proposed accordingly. The model applies a classical U-shaped architecture with a lightweight feature extraction module, which can effectively alleviate the training data scarcity problem. The proposed method supports eight-region spinal cord segmentation, i.e., the lateral, dorsal, ventral, and gray matter areas on the left and right sides. To evaluate this method, 89 CSM patients from a single center were collected. The model demonstrated satisfactory accuracy for both general segmentation metrics (precision, recall, and Dice coefficient) and a DTI-specific feature index. In particular, the proposed model’s error rate for the DTI-specific feature index was evaluated as 5.32%, 10.14%, 7.37%, and 5.70% on the left side, and 4.60%, 9.60%, 8.74%, and 6.27% on the right side of the spinal cord, respectively, affirming the model’s consistent performance for radiological rationality. In conclusion, the proposed AI-driven segmentation model significantly reduces the dependence on DTI manual interpretation, providing a feasible solution that can improve potential diagnostic outcomes for patients. Full article
(This article belongs to the Special Issue Machine Learning and Deep Learning Applications in Healthcare)
Show Figures

Figure 1

Back to TopTop