Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,311)

Search Parameters:
Keywords = defects control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 841 KB  
Perspective
Next-Generation Regenerative Therapies for Alpha-1 Antitrypsin Deficiency: Molecular Pathogenesis to Clinical Translation
by Se-Ran Yang and Hyung-Ryong Kim
Int. J. Mol. Sci. 2025, 26(17), 8504; https://doi.org/10.3390/ijms26178504 (registering DOI) - 1 Sep 2025
Abstract
Alpha-1 antitrypsin deficiency (AATD) represents a paradigmatic genetic disorder with well-characterized hepatic manifestations but relatively underexplored pulmonary implications. While liver involvement has been extensively reviewed, the underlying mechanisms of lung disease progression remain poorly understood, particularly regarding immunological pathways and inflammatory processes. The [...] Read more.
Alpha-1 antitrypsin deficiency (AATD) represents a paradigmatic genetic disorder with well-characterized hepatic manifestations but relatively underexplored pulmonary implications. While liver involvement has been extensively reviewed, the underlying mechanisms of lung disease progression remain poorly understood, particularly regarding immunological pathways and inflammatory processes. The pathophysiology involves defective alpha-1 antitrypsin (AAT) production, including AAT variants that induce neutrophil elastase activity, causing progressive alveolar destruction and sustained inflammation, leading to emphysema, as one of the main components of chronic obstructive pulmonary disease (COPD). AATD and smoking represent major risk factors for COPD, the third leading cause of death worldwide at present. In AATD patients, neutrophils, which constitute the majority of circulating leukocytes, become dysregulated. Under normal conditions, cells perform essential functions, including phagocytosis and neutrophil extracellular trap formation (NETosis); in AATD, however, they accumulate excessively in alveolar spaces due to impaired elastase control. The accumulation of Z-AAT polymers within epithelial cells creates a pathological cycle, acting as chemoattractants that sustain pro-inflammatory responses and contribute to chronic obstructive pulmonary disease development. In addition, monocytes, representing a smaller fraction of leukocytes, migrate to inflammatory sites and differentiate into macrophages while secreting AAT with anti-inflammatory properties. However, in PiZZ patients, this protective mechanism fails, as polymer accumulation within cells reduces both AAT secretion and the number of protective human leukocyte antigen(HLA)-DR-monocyte subsets. In particular, macrophages demonstrate remarkable plasticity, switching between pro-inflammatory M1 (classically activated macrophages) and tissue-repairing M2 (alternatively activated macrophages) phenotypes based on environmental cues. In AATD, this adaptive capability becomes compromised due to intracellular polymer accumulation, leading to impaired phagocytic function and dysregulated cytokine production and ultimately perpetuating chronic inflammation and progressive tissue damage. Recent advances in induced pluripotent stem cell (iPSC) technology have facilitated alveolar epithelial cell (AEC) generation, in addition to the correction of AATD mutations through gene editing systems. Despite the limitations of AAT correction, iPSC-derived organoid models harboring AATD mutations can deliver important insights into disease pathophysiology, while gene editing approaches help demonstrate causality between specific mutations and observed phenotypes. Therefore, in this review, we investigated recent studies that can serve as tools for gene editing and drug development based on recently developed iPSC-related technologies to understand the pathogenesis of AATD. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

27 pages, 1784 KB  
Review
Review on Tribological and Corrosion Properties of Amorphous Silicon-Based Coatings Fabricated by Chemical Vapor Deposition
by Xin Wang, Bo Zhang, Bingjie Xiao, Rongyu Sun, Wenqi Zhao, Li Cui and Peter K. Liaw
Coatings 2025, 15(9), 1016; https://doi.org/10.3390/coatings15091016 - 1 Sep 2025
Abstract
Chemical vapor deposition (CVD) is a crucial technique for fabricating high-performance amorphous silicon coatings, leveraging its process flexibility and microstructural controllability. Optimizing processes like hot-wire chemical vapor deposition, plasma-enhanced chemical vapor deposition, and catalytic chemical vapor deposition enable precise regulation of coating density, [...] Read more.
Chemical vapor deposition (CVD) is a crucial technique for fabricating high-performance amorphous silicon coatings, leveraging its process flexibility and microstructural controllability. Optimizing processes like hot-wire chemical vapor deposition, plasma-enhanced chemical vapor deposition, and catalytic chemical vapor deposition enable precise regulation of coating density, surface roughness, and chemical bonding. These amorphous silicon coatings exhibit outstanding tribological properties and exceptional corrosion resistance, primarily attributed to their unique amorphous structure eliminating grain boundary defects and forming dense passivation films. Future research should focus on intelligent process development, multi-field coupling failure analysis, environmental friendliness enhancement, and lifespan prediction models to advance this technology. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

26 pages, 2257 KB  
Article
Design and Control of a Wheeled Bipedal Robot Based on Hybrid Linear Quadratic Regulator and Proportional-Derivative Control
by Yu Xu, Zhaoqiang Wang and Chenhui Lu
Sensors 2025, 25(17), 5398; https://doi.org/10.3390/s25175398 (registering DOI) - 1 Sep 2025
Abstract
Wheeled bipedal robots (WBRS) combine the terrain adaptability potential of legged robots with the motion efficiency of wheeled robots, but the terrain adaptability is affected by the control system. Aiming at the defect that the traditional modeling ignores the dynamic changes in head [...] Read more.
Wheeled bipedal robots (WBRS) combine the terrain adaptability potential of legged robots with the motion efficiency of wheeled robots, but the terrain adaptability is affected by the control system. Aiming at the defect that the traditional modeling ignores the dynamic changes in head angle and center of mass height, this paper proposes a method of integrated dynamic modeling and hierarchical control. The posture balance optimizes the system performance index through the linear quadratic regulator (LQR) to control the in-wheel motor, and the state feedback matrix is designed to suppress the tipping caused by external interference. At the same time, the changes in head angle and center of mass height are included in the balance control variables. The center of mass height changes are fed back through the proportional differential (PD) control and virtual model control (VMC) algorithm to control the joint motor. Simulation experiments are carried out on multiple platforms to verify that the proposed method effectively improves the control robustness of the traditional wheeled bipedal robot through geometric-dynamic coupling modeling and LQR-PD hybrid control, providing a new method of complex terrain adaptive control. Full article
(This article belongs to the Section Sensors and Robotics)
16 pages, 1010 KB  
Review
Applications of Adipose Tissue Micrografts (ATM) and Dermis Micrografts (DMG) in Wound Healing: A Scoping Review of Clinical Studies
by Konstantinos Zapsalis, Orestis Ioannidis, Elissavet Anestiadou, Maria Pantelidou, Konstantinos Siozos, Christos Xylas, Georgios Gemousakakis, Angeliki Cheva, Chryssa Bekiari, Antonia Loukousia, Savvas Symeonidis, Stefanos Bitsianis, Manousos-Georgios Pramateftakis, Efstathios Kotidis, Ioannis Mantzoros and Stamatios Angelopoulos
Bioengineering 2025, 12(9), 948; https://doi.org/10.3390/bioengineering12090948 (registering DOI) - 31 Aug 2025
Abstract
Adipose tissue micrografts (ATM) and dermis micrografts (DMG) have emerged as promising autologous therapies in regenerative wound care, leveraging mechanically disaggregated cell–matrix constructs to modulate the wound microenvironment and promote tissue repair. This scoping review systematically analyzed clinical studies investigating ATMs and DMGs [...] Read more.
Adipose tissue micrografts (ATM) and dermis micrografts (DMG) have emerged as promising autologous therapies in regenerative wound care, leveraging mechanically disaggregated cell–matrix constructs to modulate the wound microenvironment and promote tissue repair. This scoping review systematically analyzed clinical studies investigating ATMs and DMGs in acute and chronic wounds. Eight studies, comprising randomized controlled trials, observational studies, and case series, were identified, involving diverse wound types such as burns, ulcers, surgical dehiscence, and posttraumatic defects. All interventions utilized mechanical disaggregation (Rigenera® system) to produce micrografts, which were applied via perilesional injection, scaffold-assisted delivery, or topical administration. Outcomes consistently demonstrated accelerated re-epithelialization, enhanced angiogenesis, improved scar remodeling, and low complication rates. In select studies, micrografts were combined with platelet-rich fibrin or stromal vascular fraction, suggesting potential synergistic effects. While one randomized trial showed superior healing outcomes with DMGs over collagen scaffolds, others yielded mixed results, likely reflecting heterogeneity in methodology and outcome measures. Overall, the available clinical evidence supports the safety, feasibility, and biological activity of micrograft-based therapies. However, larger, standardized, and mechanistically driven studies are required to validate their efficacy and define optimal protocols across wound etiologies. Full article
(This article belongs to the Special Issue Recent Advancements in Wound Healing and Repair)
Show Figures

Graphical abstract

13 pages, 1794 KB  
Article
Ribosome-Associated Quality Control Mediated by Rqc2 Contributes to the Lytic Cycle and Stage Conversion of Toxoplasma gondii
by Yuxue Li, Keqin Huang, Honglin Jia, Xu Gao and Huanping Guo
Microorganisms 2025, 13(9), 2041; https://doi.org/10.3390/microorganisms13092041 - 31 Aug 2025
Abstract
The conversion from fast-growing tachyzoites to slow-growing bradyzoites is the key factor in establishing the chronic infection and long-term persistence of Toxoplasma gondii. Environmental stressors, such as amino acid starvation and alkaline medium, can trigger the transformation of tachyzoites into bradyzoites. Under [...] Read more.
The conversion from fast-growing tachyzoites to slow-growing bradyzoites is the key factor in establishing the chronic infection and long-term persistence of Toxoplasma gondii. Environmental stressors, such as amino acid starvation and alkaline medium, can trigger the transformation of tachyzoites into bradyzoites. Under such stress conditions, ribosomes slow down, potentially leading to stalling, and ribosomal collisions typically activate ribosome-associated quality control (RQC) pathways. In this study, we investigated the role of T. gondii ribosome quality control complex subunit 2 (TgRqc2), which contains both NFACT and coiled-coil domains, in the parasite’s survival and stage conversion. NFACT represents the “domain” found in the central players involved in RQC, human NEMF and its orthologs FbpA (known as RqcH), Caliban, and Tae2 (known as Rqc2). Phylogenetic analyses revealed that TgRqc2 formed a distinct clade with its orthologs in apicomplexan parasites. The deletion of TgRqc2 impaired T. gondii’s invasion and replication. The Rqc2-knockout strain showed defects in plaque formation and bradyzoite development. Our findings demonstrate that TgRqc2 is essential for T. gondii’s lytic cycle and the conversion of tachyzoites into bradyzoites. RNA-seq analysis further showed that the depletion of TgRqc2 significantly disrupted global transcriptional activity. However, the detailed molecular mechanisms involved remain to be elucidated. In conclusion, our results proved valuable insights that may aid in the development of therapeutic strategies to prevent chronic infection. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

16 pages, 4758 KB  
Article
Moderate Dealumination of Zeolites via Chelation to Facilitate Pt Anchoring and Toluene Removal
by Wenqi He, Zhipeng Qie, Huaizhong Xiang and Hassan Alhassawi
Toxics 2025, 13(9), 737; https://doi.org/10.3390/toxics13090737 (registering DOI) - 31 Aug 2025
Abstract
Zeolites are promising materials for volatile organic compound (VOC) adsorption and catalytic oxidation, where tuning their structure via defect engineering can enhance adsorption capacity and active metal dispersion. In this study, a concentration-sensitive chelation strategy using diethylenetriaminepentaacetic acid (DTPA) was developed to achieve [...] Read more.
Zeolites are promising materials for volatile organic compound (VOC) adsorption and catalytic oxidation, where tuning their structure via defect engineering can enhance adsorption capacity and active metal dispersion. In this study, a concentration-sensitive chelation strategy using diethylenetriaminepentaacetic acid (DTPA) was developed to achieve moderate dealumination for Beta and Y zeolites. For Y zeolite, 0.1 M DTPA treatment increased the toluene adsorption capacity from 59 to 110 mg/g. After platinum (Pt) loading, both DTPA-modified Beta- and Y-based catalysts showed improved toluene oxidation efficiency compared to their unmodified counterparts. Remarkably, the Y-DTPA-0.01-Pt catalyst achieved 90% toluene conversion at 150 °C with CO2 selectivity above 90%. DRIFTS and H2-TPR results confirmed that moderate dealumination by DTPA generated silanol defects in zeolite Y that strongly anchored Pt2+ in a highly dispersed form and suppressed PtO formation. Severe dealumination using 0.1 M DTPA created larger defects that favored the aggregation of Pt0 clusters whilst causing significant loss in the micropores, thus reducing the Pt loading content and catalytic activity. This work demonstrates a simple and effective approach to optimize zeolite-based catalysts by controlling defect formation through controllable chelation, offering new insights into VOC abatement via tailored support design. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

27 pages, 12561 KB  
Article
Systemic and Mucosal Immune Responses Induced by Adenoviral-Vectored Consensus H5 Influenza A Vaccines in Mice and Swine
by Adthakorn Madapong, Joshua Wiggins, Jennifer DeBeauchamp, Richard J. Webby and Eric A. Weaver
Vaccines 2025, 13(9), 928; https://doi.org/10.3390/vaccines13090928 (registering DOI) - 30 Aug 2025
Viewed by 52
Abstract
Background/Objectives: The continued evolution and cross-species transmission of clade 2.3.4.4b H5Nx highly pathogenic avian influenza (HPAI) viruses underscores the need for broadly protective vaccines in swine, a key intermediary host. This study aimed to evaluate systemic and mucosal immune responses elicited by adenoviral-vectored [...] Read more.
Background/Objectives: The continued evolution and cross-species transmission of clade 2.3.4.4b H5Nx highly pathogenic avian influenza (HPAI) viruses underscores the need for broadly protective vaccines in swine, a key intermediary host. This study aimed to evaluate systemic and mucosal immune responses elicited by adenoviral-vectored (Ad) vaccines encoding a centralized consensus hemagglutinin antigen (H5CC) in mice and swine. Methods: We constructed H5CC-based vaccines that were delivered using replication-defective (Ad5 and Ad6) and replication-competent (Ad28 and Ad48) human adenoviral vectors. Using a serotype-switched prime-boost strategy, vaccines were delivered intramuscularly (IM) or intranasally (IN) in mice and swine. We determined humoral, mucosal, and cell-mediated immune responses by hemagglutination inhibition (HI), microneutralization assay (MNA), ELISA, and IFN-γ ELISpot. Protective efficacy was evaluated by lethal H5N1 challenge in mice. Results: All vaccine strategies and routes induced significant levels of anti-H5 immunity. Ad5/Ad6 IM immunization elicited strong systemic IgG and MNA titers and robust T cell responses. IN delivery with Ad5/Ad6 induced superior mucosal IgA levels in lungs and nasal secretion. In swine, Ad5/Ad6 IM conferred the highest MNA titer and T cell responses, while the IN route enhanced mucosal IgA. The Ad28/Ad48 vaccines induced immunity in a similar pattern as compared to the Ad5/Ad6 strategy, but to a slightly lesser degree, in general. The commercial H1/H3 swine influenza vaccine failed to elicit cross-protective immunity. All H5CC vaccinated mice survived lethal H5N1 challenge without weight loss. Conclusions: Adenoviral-vectored H5CC vaccines elicit broad, cross-clade immunity with route-dependent immune profiles. IM vaccination is optimal for systemic and cellular responses, while IN delivery enhances mucosal immunity. These findings support the advancement of adenoviral platforms for influenza control in swine and pandemic preparedness. Full article
(This article belongs to the Special Issue Vaccine Design and Development)
Show Figures

Figure 1

14 pages, 2609 KB  
Article
Self-Adhesive, Human Bandage Contact Lens Versus Conjunctival Transposition Flap for Surgical Repair of Feline Corneal Sequestrum
by Khaled M. Ali and Ayman A. Mostafa
Vet. Sci. 2025, 12(9), 839; https://doi.org/10.3390/vetsci12090839 (registering DOI) - 30 Aug 2025
Viewed by 46
Abstract
Corneal sequestrum, also known as corneal mummification or necrosis, is a common complication of corneal ulceration in cats, with brachycephalic and pure-bred cats being the most affected. This prospective clinical trial aimed to evaluate the efficacy of self-adhesive, human bandage contact lenses (SHBCLs) [...] Read more.
Corneal sequestrum, also known as corneal mummification or necrosis, is a common complication of corneal ulceration in cats, with brachycephalic and pure-bred cats being the most affected. This prospective clinical trial aimed to evaluate the efficacy of self-adhesive, human bandage contact lenses (SHBCLs) versus the commonly used conjunctival transposition flap (CTF) in the management of feline corneal sequestrum. Twenty-five client-owned cats of different breeds with unilateral corneal sequestrum were investigated. All cats underwent a complete ophthalmic examination. Characterization of corneal sequestrum was carried out. The corneal lesion was removed surgically via keratectomy, and the cats were then categorized into three treatment groups: G-SHBCL (10 cats), G-CTF (10 cats), and the control group (G-CO, 5 cats). The healing progress of the corneal defect and associated clinical findings were recorded in all studied groups. Eight out of ten cats (80%) treated with SBCLs showed complete healing of the corneal defect with light corneal scarring and absence of all signs of ocular pain or discomfort. In comparison with G-CTF and G-CO, no granulation tissue was observed in all cats treated with SHBCLs. Moreover, no residues of corneal sequestrum or adhesion were identified, and the degree of corneal clarity was higher in the SHBCL treatment group. In conclusion, application of SHBCLs on a corneal defect, after removal of the associated sequestrum, enhances healing of the cornea and markedly improves the corneal clarity and transparency within a short period. Full article
(This article belongs to the Section Veterinary Surgery)
Show Figures

Figure 1

33 pages, 2368 KB  
Article
Scheduling Optimization of a Vehicle Power Battery Workshop Based on an Improved Multi-Objective Particle Swarm Optimization Method
by Jinjun Tang, Tongyu Dou, Fan Wu, Lipeng Hu and Tianjian Yu
Mathematics 2025, 13(17), 2790; https://doi.org/10.3390/math13172790 - 30 Aug 2025
Viewed by 55
Abstract
Power batteries are one of the important components of electric vehicles, but the manufacturing process of vehicle power batteries is complex and diverse. Traditional scheduling methods face challenges such as low production efficiency and inadequate quality control in complex production environments. To address [...] Read more.
Power batteries are one of the important components of electric vehicles, but the manufacturing process of vehicle power batteries is complex and diverse. Traditional scheduling methods face challenges such as low production efficiency and inadequate quality control in complex production environments. To address these issues, a multi-objective optimization model with makespan, total machine load, and processing quality as the established objectives, and a Multi-objective Particle Swarm Energy Valley Optimization (MPSEVO) is proposed to solve the problem. MPSEVO integrates the advantages of Multi-objective Particle Swarm Optimization (MOPSO) and Energy Valley Optimization (EVO). In this algorithm, the particle stability level is combined in MOPSO, and different update strategies are used for particles of different stability to enhance both the convergence and diversity of the solutions. Furthermore, a local search strategy is designed to further enhance the algorithm to avoid the local optimal solutions. The Hypervolume (HV) and Inverted Generational Distance (IGD) indicators are often used to evaluate the convergence and diversity of multi-objective algorithms. The experimental results show that MPSEVO’s HV and IGD indicators are better than other algorithms in 10 computational experiments, which verifies the effectiveness of the proposed strategy and algorithm. The proposed method is also applied to solve the actual battery workshop scheduling problem. Compared with MOPSO, MPSEVO reduces the total machine load by 7 units and the defect rate by 0.05%. In addition, the effectiveness of each part of the improved algorithm was analyzed by ablation experiments. This paper provides some ideas for improving the solution performance of MOPSO, and also provides a theoretical reference for enhancing the production efficiency of the vehicle power battery manufacturing workshop. Full article
Show Figures

Figure 1

14 pages, 1633 KB  
Article
Draw-Induced Structural Optimization of PAN-Based Carbon Fibers During High-Temperature Carbonization
by Seungmin Yu, Hyun-Jae Cho, Tae-Hoon Ko, Hak-Yong Kim, Yong-Sik Chung and Byoung-Suhk Kim
Nanomaterials 2025, 15(17), 1335; https://doi.org/10.3390/nano15171335 - 30 Aug 2025
Viewed by 108
Abstract
This study investigates the effect of tensile strain during high-temperature carbonization on the microstructural development and mechanical properties of polyacrylonitrile (PAN)-based carbon fibers. The wet-spun stabilized PAN precursor fibers were carbonized at 1400 °C under various tensile draw ratios (0%, 5%, 10%, and [...] Read more.
This study investigates the effect of tensile strain during high-temperature carbonization on the microstructural development and mechanical properties of polyacrylonitrile (PAN)-based carbon fibers. The wet-spun stabilized PAN precursor fibers were carbonized at 1400 °C under various tensile draw ratios (0%, 5%, 10%, and 15%), followed by stress-free graphitization at 2400 °C in an argon atmosphere for 1 h to isolate the effects of the carbonization-stage tension. Structural characterization using XRD, 2D-XRD, Raman spectroscopy, and HR-TEM revealed that moderate tensile strain (5–10%) promoted significant improvements in crystallinity, orientation, and graphene layer alignment. Notably, the fiber drawn at 10% performed the best, with a reduced interlayer spacing (d002), increased lateral crystallite size (La), high orientation factor, and minimal turbostratic disorder. These structural developments translated into the best mechanical properties, including a tensile strength of ~2.44 GPa, a Young’s modulus of ~408.6 GPa, and the highest measured density (1.831 g/cm3). In contrast, excessive strain (15%) induced microstructural defects and reduced performance, underscoring the detrimental effects of overstretching. The findings highlight the critical role of draw control during carbonization in optimizing the structure–property relationships of carbon fibers, offering valuable insight for the design of high-performance fiber processing strategies. Full article
Show Figures

Graphical abstract

12 pages, 4901 KB  
Article
Gelatin–Sodium Alginate Composite Hydrogel for Sustained Release of Simvastatin Enabled Osteogenic Differentiation
by Xinyue Zhang, Ning Guan, Qin Chen, Kai Chen, Cunao Feng and Dekun Zhang
Coatings 2025, 15(9), 1004; https://doi.org/10.3390/coatings15091004 - 30 Aug 2025
Viewed by 159
Abstract
Sim, a potent HMG-CoA reductase inhibitor, exhibits notable anabolic effects on bone and can upregulate osteogenic genes such as BMP-2, thereby promoting bone formation. An ideal drug delivery system for Sim involves its controlled and sustained release at the defect site to minimize [...] Read more.
Sim, a potent HMG-CoA reductase inhibitor, exhibits notable anabolic effects on bone and can upregulate osteogenic genes such as BMP-2, thereby promoting bone formation. An ideal drug delivery system for Sim involves its controlled and sustained release at the defect site to minimize adverse side effects. In this study, Sim was first modified via HP-γ-CD to form a hydrophilic Sim/HP-γ-CD inclusion complex, thereby improving drug solubility and dispersion in aqueous systems. A gelatin–sodium alginate (Gel/SA) hydrogel was then employed as the drug delivery matrix to construct a Gel-SA-Sim/HP-γ-CD hydrogel sustained release system. This hydrogel system exhibited a high water content (82%), along with enhanced mechanical properties, including a compressive strength of 0.284 MPa and a compressive modulus of 0.277 MPa, suggesting strong load-bearing capacity and favorable stiffness. Importantly, Sim was released in a controlled and sustained manner over 7 days, without exhibiting burst release behavior. In vitro osteogenic differentiation assays demonstrated that optimal concentrations of Sim effectively enhanced cellular bioactivity and osteoinductive performance, offering a promising approach to enhance the bioactivity, osteogenesis, and osseointegration of orthopedic implants. Full article
Show Figures

Figure 1

13 pages, 2899 KB  
Article
Analysis and Optimization of Two-Dimensional Photonic Crystal Microcavity Structures for Gas Sensing
by Yu Song, Jiajia Quan, Linying Li, Jincheng Sun, Xinyi Huang, Zhili Meng, Jun Zhang, Zhongyu Cai and Yong Wan
Photonics 2025, 12(9), 875; https://doi.org/10.3390/photonics12090875 - 29 Aug 2025
Viewed by 74
Abstract
The monitoring of gases and vapors using portable instruments is critical in a variety of fields, such as industrial and household safety, environmental monitoring, process control, and national security, owing to gas pollution. In this study, we design a portable and simple two-dimensional [...] Read more.
The monitoring of gases and vapors using portable instruments is critical in a variety of fields, such as industrial and household safety, environmental monitoring, process control, and national security, owing to gas pollution. In this study, we design a portable and simple two-dimensional photonic crystal microcavity sensor for detecting gases such as ammonia, methane, carbon monoxide, acetylene, ethylene, and ethane. The basic structure of the sensor consists of silicon rods arranged in a square lattice pattern in air. Waveguide input and output channels are realized by engineering line defects within the lattice structure. Moreover, the sensor’s performance is continuously optimized by adding point defects, introducing a ring cavity, and varying the radius of the dielectric rods in the microcavity. Using the transmission spectrum obtained from the output waveguide, the performance parameters of the gas sensor are calculated. Based on the simulation analysis, the optimized gas sensor exhibits excellent performance, achieving a sensitivity S of 932.43 nm/RIU and a quality factor Q of 2421.719. Full article
(This article belongs to the Special Issue Emerging Trends in Photonic Crystals)
Show Figures

Figure 1

44 pages, 1456 KB  
Review
A Review of Machine Learning Applications on Direct Energy Deposition Additive Manufacturing—A Trend Study
by Syamak Pazireh, Seyedeh Elnaz Mirazimzadeh and Jill Urbanic
Metals 2025, 15(9), 966; https://doi.org/10.3390/met15090966 (registering DOI) - 29 Aug 2025
Viewed by 284
Abstract
This review explores the evolution and current state of machine learning (ML) and artificial intelligence (AI) applications in direct energy deposition (DED) and wire arc additive manufacturing (WAAM) processes. A Python-based automated search script was developed to systematically retrieve relevant literature using the [...] Read more.
This review explores the evolution and current state of machine learning (ML) and artificial intelligence (AI) applications in direct energy deposition (DED) and wire arc additive manufacturing (WAAM) processes. A Python-based automated search script was developed to systematically retrieve relevant literature using the Crossref API, yielding around 370 papers published between 2010 and July 2025. The study identifies significant growth in ML-related DED research starting in 2020, with increasing adoption of advanced techniques such as deep learning, fuzzy logic, and hybrid physics-informed models. A year-by-year trend analysis is presented, and a comprehensive categorization of the literature is provided to highlight dominant application areas, including process optimization, real-time monitoring, defect detection, and melt pool prediction. Key challenges, such as limited closed-loop control, lack of generalization across systems, and insufficient modeling of deposition-location effects, are discussed. Finally, future research directions are outlined, emphasizing the need for integrated thermo-mechanical models, uncertainty quantification, and adaptive control strategies. This review serves as a resource for researchers aiming to advance intelligent control and predictive modeling in DED-based additive manufacturing. Full article
(This article belongs to the Special Issue Machine Learning in Metal Additive Manufacturing)
Show Figures

Figure 1

17 pages, 5136 KB  
Article
Laser Welding of Metal–Polymer–Metal Composites: Enhancing Energy Control
by Serguei P. Murzin and Heinz Palkowski
Processes 2025, 13(9), 2774; https://doi.org/10.3390/pr13092774 - 29 Aug 2025
Viewed by 88
Abstract
This study investigates two-sided pulsed-periodic laser welding of three-layer metal–polymer–metal (MPM) composite sheets composed of galvanized dual-phase steel (DPK 30/50+ZE) as outer layers and a polypropylene–polyethylene (PP–PE) core. Welding was performed using a Rofin StarWeld Performance pulsed Nd:YAG laser with controlled parameters: pulse [...] Read more.
This study investigates two-sided pulsed-periodic laser welding of three-layer metal–polymer–metal (MPM) composite sheets composed of galvanized dual-phase steel (DPK 30/50+ZE) as outer layers and a polypropylene–polyethylene (PP–PE) core. Welding was performed using a Rofin StarWeld Performance pulsed Nd:YAG laser with controlled parameters: pulse energy (30–32 J), duration (6–8 ms), and frequency (up to 1 Hz). High-quality welds were achieved with penetration depths reaching 70% of the outer metal layer thickness and minimal defects. Microscopic analysis revealed distinct fusion and heat-affected zones (HAZ) with no evidence of cracks or porosity, indicating stable thermal conditions. Mechanical testing showed that the welded joints attained a tensile strength of approximately 470 MPa, about 80% of the ultimate tensile strength of the base metal, with an average elongation of 0.6 mm. These results confirm the structural integrity of the joints. The observed weld morphology and microstructural features suggest that thermal conditions during welding significantly affect joint quality and HAZ formation. The study demonstrates that strong, defect-free joints can be produced using basic beam-shaping optics and outlines a pathway for further improvement through the integration of diffractive optical elements (DOEs) to enhance spatial-energy control in multilayer structures. Full article
(This article belongs to the Special Issue Progress in Laser-Assisted Manufacturing and Materials Processing)
Show Figures

Figure 1

23 pages, 7107 KB  
Article
Design of Control System for Underwater Inspection Robot in Hydropower Dam Structures
by Bing Zhao, Shuo Li, Xiangbin Wang, Mingyu Yang, Xin Yu, Zhaoxu Meng and Gang Wan
J. Mar. Sci. Eng. 2025, 13(9), 1656; https://doi.org/10.3390/jmse13091656 - 29 Aug 2025
Viewed by 78
Abstract
As critical infrastructure, hydropower dams require efficient and accurate detection of underwater structural surface defects to ensure their safety. This paper presents the design and implementation of a robotic control system specifically developed for underwater dam inspection in hydropower stations, aiming to enhance [...] Read more.
As critical infrastructure, hydropower dams require efficient and accurate detection of underwater structural surface defects to ensure their safety. This paper presents the design and implementation of a robotic control system specifically developed for underwater dam inspection in hydropower stations, aiming to enhance the robot’s operational capability under harsh hydraulic conditions. The study includes the hardware design of the control system and the development of a surface human–machine interface unit. At the software level, a modular architecture is adopted to ensure real-time performance and reliability. The solution employs a hierarchical architecture comprising hardware sensing, real-time interaction protocols, and an adaptive controller, and the integrated algorithm combining a fixed-time disturbance observer with adaptive super-twisting controller compensates for complex hydrodynamic forces. To validate the system’s effectiveness, field tests were conducted at the Baihetan Hydropower Station. Experimental results demonstrate that the proposed control system enables stable and precise dam inspection, with standard deviations of multi-degree-of-freedom automatic control below 0.5 and hovering control below 0.1. These findings confirm the system’s feasibility and superiority in performing high-precision, high-stability inspection tasks in complex underwater environments of real hydropower dams. The developed system provides reliable technical support for intelligent underwater dam inspection and holds significant practical value for improving the safety and maintenance of major hydraulic infrastructure. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop