Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (338)

Search Parameters:
Keywords = deflections of the vertical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15681 KB  
Article
Optimization of Combined Scour Protection for Bridge Piers Using Computational Fluid Dynamics
by Xiangdong Wang, Wentao Li, Zhiwen Peng, Qianmi Yu, Yilin Yang and Jinzhao Li
Water 2025, 17(18), 2742; https://doi.org/10.3390/w17182742 - 16 Sep 2025
Viewed by 247
Abstract
This study presents a high-fidelity CFD-based optimization of a combined sacrificial-pile and collar (SPC) system designed to suppress local scour at circular bridge piers. Following rigorous validation against benchmark flume experiments (scour depth error < 3%), a systematic parametric study was conducted to [...] Read more.
This study presents a high-fidelity CFD-based optimization of a combined sacrificial-pile and collar (SPC) system designed to suppress local scour at circular bridge piers. Following rigorous validation against benchmark flume experiments (scour depth error < 3%), a systematic parametric study was conducted to quantify the influence of pile-to-pier spacing (dp/D = 4–6) and collar elevation (hc/D = 0–0.3). The optimal layout is found to be a sacrificial pile at dp/D = 5 and a collar at hc/D, which yields a 51.2% scour reduction relative to the unprotected case. Flow field analysis reveals that the pile wake deflects the lower approach flow, while the collar vertically displaces the horseshoe vortex; together, these mechanisms redistribute bed shear stress and prevent secondary undermining. Consequently, the upstream conical pit is virtually eliminated, lateral scour is broadened but markedly shallower, and the downstream dune tail bifurcates into two symmetrical ridges. To the best of the authors’ knowledge, this study presents the first high-fidelity CFD-based optimization of a combined sacrificial-pile and collar (SPC) system with a fully coupled hydrodynamic-morphodynamic model. The optimized layout yields a 51.2% scour reduction relative to the unprotected case and, more importantly, demonstrates a positive non-linear synergy that exceeds the linear sum of individual device efficiencies by 7.5%. The findings offer practical design guidance for enhancing bridge foundation resilience against scour-induced hydraulic failure. Full article
Show Figures

Figure 1

26 pages, 10721 KB  
Article
Preliminary Design and Parametric Study of Minimum-Weight Steel Tied-Arch Bridges Obtained According to a Maximum Allowable Deflection Criterion
by Juan José Jorquera-Lucerga and Juan Manuel García-Guerrero
Appl. Sci. 2025, 15(18), 10022; https://doi.org/10.3390/app151810022 - 13 Sep 2025
Viewed by 206
Abstract
In this paper, we present a novel iterative method that minimizes the weight of an all-steel arch bridge during the in-plane preliminary design stage. The behavior of the bridge is assumed to be contained within the plane of the arch. The preliminary design [...] Read more.
In this paper, we present a novel iterative method that minimizes the weight of an all-steel arch bridge during the in-plane preliminary design stage. The behavior of the bridge is assumed to be contained within the plane of the arch. The preliminary design is assumed to be governed by the maximum allowable static deflection at a given checkpoint at the deck under a simplified load combination selected by the designer. The designer can select variables commonly used in preliminary design, such as the web slenderness of the cross-sections of both the arch and the deck and their relative flexural stiffness levels. Moreover, the general method is particularized for tied-arch bridges with vertical hangers: its iterative flowchart is adapted, an approximate analytical formulation that allows manual calculations is provided, and a parametric study that illustrates the effect of the main variables on the weight of the bridge is carried out. The main design recommendations drawn from this research for minimizing the weight of a bridge are as follows: a rise/span ratio between 1/5 and 1/7; cross-sections with significantly different stiffnesses in the arch and deck, ideally with highly flexible arches; and cross-sections with the thinnest possible webs. Full article
Show Figures

Figure 1

19 pages, 7587 KB  
Article
Analysis of the Application of Protective Blocks and Structural Systems for Ultra-Fast Fire Response Accompanied by Overpressure
by Won-Woo Kim, Gyeong-Cheol Choe, Heung-Youl Kim, Seung-Wook Kim and Jae-Heum Moon
Buildings 2025, 15(18), 3271; https://doi.org/10.3390/buildings15183271 - 10 Sep 2025
Viewed by 236
Abstract
Ultra-fast fire, characterized by rapid heat release and associated overpressure, poses serious challenges to structural safety in industrial facilities. This study presents the design and evaluation of a protective block capable of resisting both the thermal and mechanical effects of ultra-fast fires. The [...] Read more.
Ultra-fast fire, characterized by rapid heat release and associated overpressure, poses serious challenges to structural safety in industrial facilities. This study presents the design and evaluation of a protective block capable of resisting both the thermal and mechanical effects of ultra-fast fires. The study combined material- and component-level fire tests with structural simulations. The fire scenario was defined as reaching 1 MW within 60 s with a peak overpressure of 5 bar, comparable to dust fire conditions. Fire resistance was achieved with a layered system comprising a 1 mm perforated steel plate to prevent coating detachment, a 5 mm fire-resistant coating, a 2 mm front steel plate, 25 mm glass wool, and a 2 mm back steel plate. Structural analysis confirmed that a frame system with 200 mm × 200 mm H-beams (vertical) and 150 mm steel plates (horizontal) limited deflection to about 50 mm under 5 bar overpressure. These results demonstrate the feasibility of integrating material-level fire resistance with structural optimization, providing a practical basis for protective block design in ultra-fast fire scenarios. Full article
Show Figures

Figure 1

24 pages, 13918 KB  
Article
Blown Yaw: A Novel Yaw Control Method for Tail-Sitter Aircraft by Deflected Propeller Wake During Vertical Take-Off and Landing
by Yixin Hu, Guangwei Wen, Wei Qiu, Chao Xu, Li Fan and Yunhan He
Drones 2025, 9(9), 635; https://doi.org/10.3390/drones9090635 - 10 Sep 2025
Viewed by 248
Abstract
In recent years, tail-sitter unmanned aerial vehicles (UAVs), capable of vertical take-off and landing (VTOL) and long-range flight, have garnered extensive attention. However, the challenge of yaw control, particularly for large-scale UAVs, has become a significant obstacle. It is challenging to generate sufficient [...] Read more.
In recent years, tail-sitter unmanned aerial vehicles (UAVs), capable of vertical take-off and landing (VTOL) and long-range flight, have garnered extensive attention. However, the challenge of yaw control, particularly for large-scale UAVs, has become a significant obstacle. It is challenging to generate sufficient yaw moments by motor differential thrust without compromising control authority in other channels or increasing mechanical complexity. Therefore, this paper proposes the concept of blown yaw, which utilizes the high-velocity airflow over rudders, induced by the propellers slipstream, to enhance the yaw control torque actively. An over-actuated, hundred-kilogram-class, tail-sitter UAV is designed to validate the effectiveness of the proposed method. To address the control allocation problem introduced by the implementation of blown yaw, an optimization-based control allocation module is developed, capable of precisely mapping the required forces and torques to all actuators. The proposed method, combined with computational fluid dynamics (CFD) simulations, accounts for the propeller model and the significant differences in actuator effectiveness across various flight conditions. Simulation results demonstrate that the proposed blown-yaw method significantly enhances the yaw control performance, achieving an overall energy savings of approximately 8.0% and a 60% reduction in the mean-squared error. Furthermore, the method exhibits robust performance against variations in control parameters and external disturbances. Full article
Show Figures

Figure 1

26 pages, 14073 KB  
Article
Research on Control Strategy of Semi-Active Suspension System Based on Fuzzy Adaptive PID-MPC
by Cheng Cai, Guiyong Wang, Zhigang Wang, Raoqiang Li and Zhiwei Li
Appl. Sci. 2025, 15(17), 9768; https://doi.org/10.3390/app15179768 - 5 Sep 2025
Viewed by 528
Abstract
To address the dynamic characteristics of vehicle semi-active suspension systems under special operating conditions and multi-source excitations, this paper proposes a fuzzy adaptive proportional–integral–derivative model predictive control (PID-MPC) strategy aimed at enhancing ride comfort during vehicle operation. The proposed approach employs MPC as [...] Read more.
To address the dynamic characteristics of vehicle semi-active suspension systems under special operating conditions and multi-source excitations, this paper proposes a fuzzy adaptive proportional–integral–derivative model predictive control (PID-MPC) strategy aimed at enhancing ride comfort during vehicle operation. The proposed approach employs MPC as the primary controller to optimize suspension performance, incorporating a fuzzy adaptive PID compensation mechanism for real-time adjustment of PID parameters, thereby improving control efficacy. A half-car semi-active suspension model was established on the MATLAB/Simulink (2020b) platform, with simulation validation conducted across diverse road profiles, including speed bump road surface, Class B road surface, and Class C road surface. Simulation results demonstrate that the proposed strategy achieves a significant reduction in both vehicle vertical acceleration and vehicle pitch angle acceleration while maintaining appropriate suspension deflection and tire dynamic loads, effectively elevating occupant ride comfort. Research demonstrates that the fuzzy adaptive PID-MPC control strategy exhibits commendable performance under typical road operating conditions, possessing notable potential for practical engineering implementation. Full article
Show Figures

Figure 1

18 pages, 1955 KB  
Article
Dynamic Response Analysis of Steel Bridge Deck Pavement Using Analytical Methods
by Shuyao Yang, Zhigang Zhou, Yinghui Zhang and Kai Li
Coatings 2025, 15(9), 1019; https://doi.org/10.3390/coatings15091019 - 1 Sep 2025
Viewed by 414
Abstract
This study simplifies the local model of the orthotropic steel bridge deck pavement into a two-dimensional composite continuous beam. Based on the Modal Superposition Method and Duhamel Integration, an analytical solution for the dynamic response of the composite continuous beam under moving harmonic [...] Read more.
This study simplifies the local model of the orthotropic steel bridge deck pavement into a two-dimensional composite continuous beam. Based on the Modal Superposition Method and Duhamel Integration, an analytical solution for the dynamic response of the composite continuous beam under moving harmonic loads is derived. Using the UHPC (Ultra-High Performance Concrete)-SMA (Stone Mastic Asphalt) composite pavement as an example, the influence of structural parameters on the analytical results is investigated. The results demonstrate that the natural frequencies of the three-span continuous composite beam obtained from the analytical method exhibit a relative error of less than 10% compared to finite element modal analysis, indicating high consistency. Furthermore, the analytical solutions for four key indicators—deflection, bending stress, interlayer shear stress, and interlayer vertical tensile stress—closely align with finite element simulation results, confirming the reliability of the derived formula. Additionally, increasing the thickness of the steel plate, UHPC layer, or asphalt mixture pavement layer effectively reduces the peak values of all dynamic response indicators. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

18 pages, 4547 KB  
Article
The Effect of Geometric and Material Nonlinearities on the Development of Membrane Resistance in Reinforced Concrete Flat Slab–Column Buildings
by Sylwester Walach, Seweryn Kokot and Juliusz Kus
Materials 2025, 18(17), 4053; https://doi.org/10.3390/ma18174053 - 29 Aug 2025
Viewed by 543
Abstract
This article presents a numerical study of the influence of applied nonlinearities on the response of a flat slab–column structure under progressive collapse conditions. A key aspect of the work is the extension of nonlinear static analysis by considering cases of material nonlinearity [...] Read more.
This article presents a numerical study of the influence of applied nonlinearities on the response of a flat slab–column structure under progressive collapse conditions. A key aspect of the work is the extension of nonlinear static analysis by considering cases of material nonlinearity combined with both linear and nonlinear geometry, using a corotational formulation and a damage-based elasto-plastic concrete model. A multi-layer shell element implemented in the OpenSees platform is used to distinguish between the strength characteristics of the concrete and reinforcement, with particular attention given to the modeling of the slab–column connection in nonlinear analyzes involving both shell and beam elements. The applied vertical pushover analysis enabled the derivation of load–displacement curves and the identification of the sequence in which plastic hinges can be formed. The development of membrane action resistance, expressed through the formation of compressive and tensile rings, is observed numerically when both material and geometric nonlinearities are simultaneously considered. Moreover, the transition from compressive membrane action to tensile membrane action occurs once the deflections reach the value equal to the effective depth of the slab. This insight may serve as an important guideline for the development of future revisions to design standards related to progressive collapse. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 23385 KB  
Article
Structure, Mechanisms, and Impacts of Nocturnal Downslope Wind Events in the Taklimakan Desert
by Mohamed Elshora, Lian Su, Tianwen Wei and Haiyun Xia
Remote Sens. 2025, 17(17), 2984; https://doi.org/10.3390/rs17172984 - 27 Aug 2025
Viewed by 617
Abstract
This study used reanalysis and lidar observations to investigate nocturnal downslope wind events in the Taklimakan desert, revealing their vertical structure, influencing factors, climatology, and impacts on boundary layer dynamics and dust emissions. 125 events were detected along the northern slope of the [...] Read more.
This study used reanalysis and lidar observations to investigate nocturnal downslope wind events in the Taklimakan desert, revealing their vertical structure, influencing factors, climatology, and impacts on boundary layer dynamics and dust emissions. 125 events were detected along the northern slope of the Kunlun Mountains, impacting Minfeng. Due to its weakness after onset, downslope flow is deflected horizontally when it encounters the opposing synoptic winds. The continued radiative cooling, dense air drainage, and adiabatic warming intensify downslope flow as the night progresses, causing it to gradually sink and overcome the opposing synoptic winds. Downslope wind events typically occur between an hour before and two hours after sunset, with the strongest occurring at or before sunset due to the longer period of radiative cooling and the coincidence with early evening instability conditions. Strong events occur under weak stability conditions as a stable atmosphere with a strong inversion layer can inhibit sinking motion. Most events, even the strongest ones, occur under dry conditions due to enhanced radiative cooling. Mechanical turbulence occurs when downslope flow hits the surface, whereas thermal turbulence occurs when warmer, downslope air weakens the lower atmosphere’s temperature inversion. Downslope wind events significantly raise dust emissions in the Taklimakan desert. Full article
Show Figures

Figure 1

20 pages, 7883 KB  
Article
Mechanical Response of Two-Way Reinforced Concrete Slabs Under Combined Horizontal and Vertical Loads in Fire
by Xing Feng, Yingting Wang, Xiangheng Zha, Binhui Jiang, Qingyuan Xu, Wenjun Wang and Faxing Ding
Materials 2025, 18(16), 3880; https://doi.org/10.3390/ma18163880 - 19 Aug 2025
Viewed by 464
Abstract
The existing analytical methods lack a reasonable explanation for the cracking and deformation response mechanism of two-way reinforced concrete (RC) slabs under combined horizontal and vertical loads during a fire. In addition, there is a lack of comparative studies on different boundary conditions. [...] Read more.
The existing analytical methods lack a reasonable explanation for the cracking and deformation response mechanism of two-way reinforced concrete (RC) slabs under combined horizontal and vertical loads during a fire. In addition, there is a lack of comparative studies on different boundary conditions. Therefore, solid finite-element models were established using ABAQUS 6.14 software to simulate the behavior of two-way RC slabs under combined horizontal and vertical loads in fire. The models considered two different support conditions: four edges simply supported (FSS) and adjacent edges simply supported and adjacent edges quasi-fixed (ASSAQF). Based on experimental model verification, mechanical and parametric analyses were performed to further investigate the deflection, stress variation characteristics, and mechanical response of a concrete slab and reinforcements. The results show that (1) The stress redistribution process of two-way RC slabs under combined horizontal and vertical loads with these two support conditions (FSS and ASSAQF) during fire undergoes four stages: elastic, elastic–plastic, plastic, and tensile cracking. (2) Increasing the horizontal load, vertical load level, and length–width ratio and decreasing the slab thickness all shorten the fire resistance to a certain extent. (3) Compared to slabs with FSS, the stronger support condition of slabs with ASSAQF significantly prolongs the duration of the inverted arch effect stage, resulting in a superior fire resistance, with the fire resistance performance improved by 11–59%. Full article
Show Figures

Figure 1

17 pages, 4228 KB  
Article
Deflection-Controlled Design Method for Mono-Bucket Foundations in Clay: Numerical Investigation and Engineering Implications
by Xiangming Ge, Gao Peng, Zhenqiang Jiang, Weijiang Chu, Ben He, Ruilong Shi, Can Wang and Qingxiang Meng
Designs 2025, 9(4), 97; https://doi.org/10.3390/designs9040097 - 18 Aug 2025
Viewed by 470
Abstract
This study introduces an innovative deflection-controlled design method (DCM) for evaluating the bearing capacity of offshore mono-bucket foundations (MBFs) in clay, integrating advanced numerical simulations using FLAC3D with the modified cam clay (MCC) soil model. Departing from conventional ultimate bearing capacity approaches, the [...] Read more.
This study introduces an innovative deflection-controlled design method (DCM) for evaluating the bearing capacity of offshore mono-bucket foundations (MBFs) in clay, integrating advanced numerical simulations using FLAC3D with the modified cam clay (MCC) soil model. Departing from conventional ultimate bearing capacity approaches, the proposed method prioritizes serviceability limits by constraining foundation deflections to ensure optimal structural performance and turbine efficiency. A systematic investigation revealed that the MBF performance is predominantly governed by eccentricity ratios and soil–structure interaction, with vertical loads exhibiting a minimal impact in a serviceability limit state. Key findings include the following: (1) the rotation center (RC) stabilizes at approximately 0.8 times the skirt length (L) under loading; (2) thin, deep MBFs (aspect ratio > 1.0) exhibit up to a 30% higher bearing capacity compared to wide, shallow configurations; (3) increasing eccentricity ratios (ε = 0.31–1.54) enhance the moment capacity but reduce the allowable horizontal force by 15–20%; (4) compressive vertical loads (υ = −0.30) slightly reduce the normalized bending moments (ω) by 5–10% at low eccentricities (ε < 0.5). The numerical framework was rigorously validated against centrifuge test data, demonstrating high accuracy (error < 3%) in predicting foundation behavior. By bridging geotechnical mechanics with practical engineering requirements, this study provides a robust and efficient design framework for MBFs, offering significant improvements in reliability and cost-effectiveness for offshore wind turbine applications. The proposed DCM successfully guided the design of an MBF in southeastern China, demonstrating its efficacy for use with homogeneous clay. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

24 pages, 9014 KB  
Article
A Computational Method for the Nonlinear Attainable Moment Set of Tailless UAVs in Flight-Control-Oriented Scenarios
by Linxiao Han, Peng Zhang, Yingyang Wang, Yuan Bian and Jianbo Hu
Drones 2025, 9(8), 585; https://doi.org/10.3390/drones9080585 - 18 Aug 2025
Viewed by 434
Abstract
Tailless unmanned aerial vehicles (UAVs) achieve high-agility maneuvers with flight control systems. The attainable moment set (AMS) provides critical theoretical foundations and constraints for their optimization. A computational method is proposed herein to address controllability limitations caused by nonlinear aerodynamic effectiveness. This method [...] Read more.
Tailless unmanned aerial vehicles (UAVs) achieve high-agility maneuvers with flight control systems. The attainable moment set (AMS) provides critical theoretical foundations and constraints for their optimization. A computational method is proposed herein to address controllability limitations caused by nonlinear aerodynamic effectiveness. This method incorporates dual constraints on control surface angles and angular rates for the nonlinear AMS, aiming to meet the demands of attitude tracking dynamics in flight control systems. First, a quantitative model is established to correlate dual deflection constraints with aerodynamic moment amplitude and bandwidth limitations. Next, we construct a computational framework for the incremental attainable moment set (IAMS) based on differential inclusion theory. For monotonic nonlinear aerodynamic effectiveness, the vertices of the IAMS are updated using local interpolation, yielding the incremental nonlinear attainable moment set (INAMS). When non-monotonic nonlinearity occurs, stationary points are calculated to adjust the control effectiveness matrix and admissible control set, thereby reducing computational errors induced by non-monotonic characteristics. Furthermore, the effective actions set, derived from a time-varying incremental nonlinear attainable moment set, quantifies the residual moment envelope of tailless UAVs during maneuvers. Comparative simulations indicate that the proposed method achieves correct computation under nonlinear aerodynamic conditions while reliably determining safe flight boundaries during control failure. Full article
Show Figures

Figure 1

18 pages, 3241 KB  
Article
Investigating the Double-Fissure Interactions of Hydraulic Concrete Under Three-Point Bending: A Simulation Study Using an Improved Meshless Method
by Hua Zhang, Yanran Shi, Dong Niu, Yongqiang Xin, Dunzhe Qi, Bufan Zhang, Wei Li and Shuyang Yu
Buildings 2025, 15(16), 2898; https://doi.org/10.3390/buildings15162898 - 15 Aug 2025
Viewed by 306
Abstract
Hydraulic concrete is prone to cracking and interactive propagation under complex stress, threatening its structural integrity and service life. To address limitations of traditional numerical methods (e.g., mesh dependency in FEM) and imprecision of existing meshless methods for characterizing multi-fissure interactions, this study [...] Read more.
Hydraulic concrete is prone to cracking and interactive propagation under complex stress, threatening its structural integrity and service life. To address limitations of traditional numerical methods (e.g., mesh dependency in FEM) and imprecision of existing meshless methods for characterizing multi-fissure interactions, this study improved SPH to model double-crack interactions in hydraulic concrete under three-point bending and clarify the underlying mechanisms. A modified SPH framework was developed by introducing a failure parameter (ξ) to refine the kernel function, enabling simulation of particle progressive failure via the Mohr–Coulomb criterion; a three-point bending numerical model of concrete beams containing double precast fissures (induced and obstacle) was established, with simulations under varying obstacle fissure angles (α = 0–75°) and distances (d = 0.02–0.06 m). The results show that the obstacle fissure angles significantly regulate the crack paths: as the α increases, the tensile stress concentration shifts from the obstacle fissure’s middle to its ends, causing cracks to deflect toward the lower end, with a reduced propagation length and lapping time; at an α = 75°, the obstacle fissure’s lower tip dominates failure, forming an “induced fissure–lower end of obstacle fissure–top” penetration mode. The fissure distances affect the stress superposition: a smaller d (e.g., 0.02 m) induces vertical propagation and rapid lapping with the obstacle fissure’s lower end, while a larger d (e.g., 0.06 m) weakens the stress at the induced fissure tip, promoting horizontal deflection toward the obstacle fissure’s upper end and transforming the failure into “upper-end dominated.” This confirms that the improved SPH method effectively simulates crack behaviors, providing insights into multi-fissure failure mechanisms and theoretical support for hydraulic structure crack control and safety evaluation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 10294 KB  
Article
Parameter Optimization Design of Adaptive Flaps for Vertical Axis Wind Turbines
by Zhenxu Ran, Weipao Miao, Yongqing Lai, Yurun Pan, Huahao Ou and Ruize Zhang
Energies 2025, 18(16), 4333; https://doi.org/10.3390/en18164333 - 14 Aug 2025
Viewed by 443
Abstract
To enhance the aerodynamic performance of vertical axis wind turbines (VAWTs) under complex gust conditions, the design parameters of the flap were optimized using the computational fluid dynamics (CFD) method combined with orthogonal experimental design and the SHERPA algorithm, and two gust models [...] Read more.
To enhance the aerodynamic performance of vertical axis wind turbines (VAWTs) under complex gust conditions, the design parameters of the flap were optimized using the computational fluid dynamics (CFD) method combined with orthogonal experimental design and the SHERPA algorithm, and two gust models with mainly high and low wind speeds were generated by a self-compiling program to investigate the effects of three combinations of the chordwise mounting position of the flap, the moment of inertia, and the maximum deflection angle on the aerodynamic performance of the vertical axis wind turbine. The results demonstrated that adaptive flaps reduced the flow separation region and suppressed the formation and development of separation vortices, thereby enhancing aerodynamic performance. The adaptive flap was found to be more effective in high-speed gust environments than in low-speed ones. The optimal configuration—chordwise position at 0.4C, moment of inertia at 6.12 × 10−5 kg·m2, and a maximum deflection angle of 40°—led to a 57.24% improvement relative to the original airfoil. Full article
(This article belongs to the Special Issue Latest Challenges in Wind Turbine Maintenance, Operation, and Safety)
Show Figures

Figure 1

23 pages, 7920 KB  
Article
Dynamic Behavior of a Rotationally Restrained Pipe Conveying Gas-Liquid Two-Phase Flow
by Guangming Fu, Huilin Jiao, Aixia Zhang, Xiao Wang, Boying Wang, Baojiang Sun and Jian Su
J. Mar. Sci. Eng. 2025, 13(8), 1524; https://doi.org/10.3390/jmse13081524 - 8 Aug 2025
Viewed by 289
Abstract
This study explores the dynamic behavior of a vertical pipe conveying gas-liquid two-phase flow with rotationally restrained boundaries, employing the generalized integral transform technique (GITT). The rotationally restrained boundary conditions are more realistic for practical engineering applications in comparison to the classical simply-supported [...] Read more.
This study explores the dynamic behavior of a vertical pipe conveying gas-liquid two-phase flow with rotationally restrained boundaries, employing the generalized integral transform technique (GITT). The rotationally restrained boundary conditions are more realistic for practical engineering applications in comparison to the classical simply-supported and clamped boundary conditions, which can be viewed as limiting scenarios of the rotationally restrained boundary conditions when rotational stiffness approaches zero and infinity, respectively. Utilizing the small-deflection Euler-Bernoulli beam theory, the governing equation of motion for the deflection of the pipe is transformed into an infinite set of coupled ordinary differential equations, which is then numerically solved following truncation at a finite order NW. The proposed integral transform solution was initially validated against extant literature results. Numerical findings demonstrate that as the gas volume fraction increases, there is a reduction in both the first-order critical flow velocity and the vibration frequency of the pipe conveying two-phase flow. Conversely, as the rotational stiffness factor enhances, both the first-order critical velocity and vibration frequency increase, resulting in improved stability of the pipe. The impact of the bottom-end rotational stiffness factor r2 on the dynamic stability of the pipe is more pronounced compared to the top-end rotational factor r1. The variation in two-phase flow parameters is closely associated with the damping and stiffness matrices. Modifying the gas volume fraction in the two-phase flow alters the distribution of centrifugal and Coriolis forces within the pipeline system, thereby affecting the pipeline’s natural frequency. The results illustrate that an increase in the gas volume fraction leads to a decrease in both the pipeline’s critical velocity and vibration frequency, culminating in reduced stability. The findings suggest that both the gas volume fraction and boundary rotational stiffness exert a significant influence on the dynamic behavior and stability of the pipe conveying gas-liquid two-phase flow. Full article
Show Figures

Figure 1

27 pages, 11253 KB  
Article
Failure Mechanism of Progressive Collapse Induced by Hanger Fracture in Through Tied-Arch Bridge: A Comparative Analysis
by Bing-Hui Fan, Qi Sun, Qiang Chen, Bin-Bin Zhou, Zhi-Jiang Wu and Jin-Qi Zou
Buildings 2025, 15(16), 2810; https://doi.org/10.3390/buildings15162810 - 8 Aug 2025
Viewed by 587
Abstract
Although through tied-arch bridges exhibit strong structural robustness, collapse incidents triggered by the progressive failure of hangers still occasionally occur. Given that such bridges are unlikely to collapse due to the damage of a single or multiple hangers under the serviceability limit state, [...] Read more.
Although through tied-arch bridges exhibit strong structural robustness, collapse incidents triggered by the progressive failure of hangers still occasionally occur. Given that such bridges are unlikely to collapse due to the damage of a single or multiple hangers under the serviceability limit state, this study focuses on the failure safety limit state. Using the Nanfang’ao Bridge with inclined hangers and the Liujiang Bridge with vertical hangers as case studies, this paper investigates the dynamic response and failure modes of the residual structures when single or multiple hangers fail and initiate progressive collapse of all hangers. The results demonstrate that the configuration of hangers significantly influences the distribution of structural importance coefficients and the load transmission paths. Under identical failure scenarios, the Nanfang’ao Bridge with inclined hangers remains stable after the failure of four hangers without experiencing progressive collapse, whereas the Liujiang Bridge with vertical hangers undergoes progressive failure following the loss of only three hangers, which indicates that inclined hanger configurations offer superior resistance to progressive collapse. Based on the aforementioned analysis, the LS-DYNA Simple–Johnson–Cook damage model was employed to simulate the collapse process. The extent of damage and ultimate failure modes of the two bridges differ significantly. In the case of the Nanfang’ao Bridge, following the progressive failure of the hangers, the bridge deck system lost lateral support, leading to excessive downward deflection. The deck subsequently fractured at the mid-span (1/2 position) and collapsed in an inverted “V” shape. This failure then propagated to the tie bar, inducing outward compression at the arch feet and tensile stress in the arch ribs. Stress concentration at the connection between the arch columns and arch rings ultimately triggered global collapse. For the Liujiang Bridge, failure initiated with localized concrete cracking, which propagated to reinforcing bar yielding, resulting in localized damage within the bridge deck system. These observations indicate that progressive stay cable failure serves as the common initial triggering mechanism for both bridges. However, differences in the structural configuration of the bridge deck systems, the geometry of the arch ribs, and the constraint effects of the tie bar result in distinct failure progression patterns and ultimate collapse behaviors between the two structures. Thereby, design recommendations are proposed for through tied-arch bridges, from the aspects of the hanger, arch rib, bridge deck system, and tie bar, to enhance the resistance to progressive collapse. Full article
Show Figures

Figure 1

Back to TopTop