Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (28,745)

Search Parameters:
Keywords = deformations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 16373 KB  
Article
Fusing BDS and Dihedral Corner Reflectors for High-Precision 3D Deformation Measurement: A Case Study in the Jinsha River Reservoir Area
by Zhiyong Qi, Yanpian Mao, Zhengyang Tang, Tao Li, Rongxin Fang, You Mou, Xuhuang Du and Zongyi Peng
Remote Sens. 2025, 17(17), 3000; https://doi.org/10.3390/rs17173000 (registering DOI) - 28 Aug 2025
Abstract
In mountainous canyon regions, BeiDou Navigation Satellite System (BDS)/Global Navigation Satellite System (GNSS) receivers are susceptible to multireflection and tropospheric factors, which frequently reduce the accuracy in monitoring vertical deformation monitoring under short-baseline methods. This limitation hinders the application of BDS/GNSS in high-precision [...] Read more.
In mountainous canyon regions, BeiDou Navigation Satellite System (BDS)/Global Navigation Satellite System (GNSS) receivers are susceptible to multireflection and tropospheric factors, which frequently reduce the accuracy in monitoring vertical deformation monitoring under short-baseline methods. This limitation hinders the application of BDS/GNSS in high-precision monitoring scenarios in those cases. To address this issue, this study proposes a three-dimensional (3D) deformation measurement method that integrates BDS/GNSS positioning with dihedral corner reflectors (CRs). By incorporating high-precision horizontal positioning results obtained from BDS/GNSS into the radar line-of-sight (LOS) correction process and utilizing ascending and descending Synthetic Aperture Radar (SAR) data for joint monitoring, the method achieves millimeter-level- accuracy in measuring vertical deformation at corner reflector sites. At the same time, it enhances the 3D positioning accuracy of BDS/GNSS to the 1 mm level under short-baseline configurations. Based on monitoring stations deployed at the Jinsha River dam site, the proposed deformation fusion monitoring method was validated using high-resolution SAR imagery from Germany's TerraSAR-X (TSX) satellite. Simulated horizontal and vertical displacements were introduced at the stations. The results demonstrate that BDS/GNSS achieves better than 1 mm horizontal monitoring accuracy and a vertical accuracy of around 5 mm. Interferometric SAR (InSAR) CRs achieve approximately 2 mm in horizontal accuracy and 1 mm in vertical accuracy. The integrated method yields a 3D deformation monitoring accuracy better than 1 mm. This paper’s results show high potential for achieving high-precision deformation observations by fusing BDS/GNSS and dihedral CRs, offering promising prospects for deformation monitoring in reservoir canyon regions. Full article
(This article belongs to the Special Issue Applications of Radar Remote Sensing in Earth Observation)
20 pages, 6681 KB  
Article
Characteristics of Rebound Deformation Caused by Groundwater Level Recovery: A Case Study of the Yuhuazhai Area in Xi’an, China
by Guangyao Hao, Feilong Chen, Quanzhong Lu, Yuemin Sun, Fei Qiang and Shaoyi Zhang
Appl. Sci. 2025, 15(17), 9470; https://doi.org/10.3390/app15179470 (registering DOI) - 28 Aug 2025
Abstract
A rise in the water level may result in different vertical rebound levels of the ground surface, adversely affecting buildings. Ground rebound occurred in the Xi’an Yuhuazhai area from 2018 to 2019, but the soil’s deformation characteristics remain unclear. Drilling and water level [...] Read more.
A rise in the water level may result in different vertical rebound levels of the ground surface, adversely affecting buildings. Ground rebound occurred in the Xi’an Yuhuazhai area from 2018 to 2019, but the soil’s deformation characteristics remain unclear. Drilling and water level data and FLAC3D 6.0 were used to simulate water level recovery. The deformation characteristics of different soil layers were examined, their future development was predicted, and the influences of various parameters on ground rebound were analyzed. The rebound amount of the hanging wall in the second confined aquifer was 38.32 mm, accounting for 61.12% of the total rebound amount. The rebound amount of the footwall in the second confined aquifer was 22.14 mm, accounting for 79.63% of the total rebound amount. The predicted maximum rebound of the upper and lower soil layers in the next 5 years was 2.8 mm and 2.6 mm, respectively, representing a vertical difference of 0.2 mm, which has no significant effect on building safety. The results provide a scientific basis for groundwater management and settlement prevention and control in Xi’an. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

27 pages, 4209 KB  
Article
Canvas-Ground Interaction: A New Approach to Quantifying Ground Mechanical Degradation
by Gema Campo-Frances, Santi Ferrer, Diana Cayuela and Enric Carrera-Gallisà
Materials 2025, 18(17), 4041; https://doi.org/10.3390/ma18174041 (registering DOI) - 28 Aug 2025
Abstract
Canvases and preparation layers consist of diverse materials that respond differently to mechanical stress. In a canvas painting, elongations and shrinkages can cause deformations—either recoverable or permanent—as well as shear stresses and potential cracks, which may weaken the overall structure. This study aims [...] Read more.
Canvases and preparation layers consist of diverse materials that respond differently to mechanical stress. In a canvas painting, elongations and shrinkages can cause deformations—either recoverable or permanent—as well as shear stresses and potential cracks, which may weaken the overall structure. This study aims to better understand the interaction between the canvas and preparatory strata in terms of mechanical behavior. To achieve this, a set of canvases and the same types of canvases with preparation layers were selected. Two types of linen and two types of polycotton were chosen to represent contemporary materials currently available in fine-art stores. Additionally, an accelerated aging process was applied to the samples to compare their mechanical response before and after aging. By examining the mechanical behavior of both primed and unprimed canvases through dynamometric tests, a method to evaluate the mechanical degradation attributable to the ground layer has been developed and explained in detail. This method is applicable to cases with similar characteristics. Analysis of the force/elongation graphs for the ground layer allows for the calculation of how this layer evolves with increasing elongation and how the mechanical degradation worsens. The results highlight the differing mechanical behaviors among the analyzed canvas types in both the warp and weft directions, as well as the degradation values resulting from both the aging process and the dynamometric testing of the canvases and ground layers. Full article
25 pages, 5348 KB  
Review
Pathophysiological Associations and Measurement Techniques of Red Blood Cell Deformability
by Minhui Liang, Dawei Ming, Jianwei Zhong, Choo Sheriel Shannon, William Rojas-Carabali, Kajal Agrawal, Ye Ai and Rupesh Agrawal
Biosensors 2025, 15(9), 566; https://doi.org/10.3390/bios15090566 - 28 Aug 2025
Abstract
Red blood cell (RBC), accounting for approximately 45% of total blood volume, are essential for oxygen delivery and carbon dioxide removal. Their unique biconcave morphology, high surface area-to-volume ratio, and remarkable deformability enable them to navigate microvessels narrower than their resting diameter, ensuring [...] Read more.
Red blood cell (RBC), accounting for approximately 45% of total blood volume, are essential for oxygen delivery and carbon dioxide removal. Their unique biconcave morphology, high surface area-to-volume ratio, and remarkable deformability enable them to navigate microvessels narrower than their resting diameter, ensuring efficient microcirculation. RBC deformability is primarily determined by membrane viscoelasticity, cytoplasmic viscosity, and cell geometry, all of which can be altered under various physiological and pathological conditions. Reduced deformability is a hallmark of numerous diseases, including sickle cell disease, malaria, diabetes mellitus, sepsis, ischemia–reperfusion injury, and storage lesions in transfused blood. As these mechanical changes often precede overt clinical symptoms, RBC deformability is increasingly recognized as a sensitive biomarker for disease diagnosis, prognosis, and treatment monitoring. Over the past decades, diverse techniques have been developed to measure RBC deformability. These include single-cell methods such as micropipette aspiration, optical tweezers, atomic force microscopy, magnetic twisting cytometry, and quantitative phase imaging; bulk approaches like blood viscometry, ektacytometry, filtration assays, and erythrocyte sedimentation rate; and emerging microfluidic platforms capable of high-throughput, physiologically relevant measurements. Each method captures distinct aspects of RBC mechanics, offering unique advantages and limitations. This review synthesizes current knowledge on the pathophysiological significance of RBC deformability and the methods for its measurement. We discuss disease contexts in which deformability is altered, outline mechanical models describing RBC viscoelasticity, and provide a comparative analysis of measurement techniques. Our aim is to guide the selection of appropriate approaches for research and clinical applications, and to highlight opportunities for developing robust, clinically translatable diagnostic tools. Full article
(This article belongs to the Special Issue Microfluidics for Sample Pretreatment)
19 pages, 3140 KB  
Article
An Investigation of Three-Dimensional Void Changes and Top-Down Microcrack Formation of AC-16 in Rutted and Non-Rutted Zones Under Extremely High Temperature and Heavy Load
by Zhoucong Xu, Wenruo Fan and Hui Wang
Appl. Sci. 2025, 15(17), 9464; https://doi.org/10.3390/app15179464 (registering DOI) - 28 Aug 2025
Abstract
To address the issue of cracking damage under extreme high-temperature rutting, which is not sufficiently considered in the selection of preventive maintenance programs, the objective of this study was to investigate the preventive maintenance-oriented minor internal damage changes in asphalt concrete with a [...] Read more.
To address the issue of cracking damage under extreme high-temperature rutting, which is not sufficiently considered in the selection of preventive maintenance programs, the objective of this study was to investigate the preventive maintenance-oriented minor internal damage changes in asphalt concrete with a normal maximum aggregate size of 16 mm (AC-16) under extreme high temperature (70 °C) and load (1.4 MPa) conditions. The changes in void structure within the 0–10 mm rutting depth were tracked through the rutting test and Computer Tomography (CT) image analysis. It was observed that there were notable discrepancies in the three-dimensional (3D) space distribution of void, void volume development, and void morphology between the rut impact zones and the rutted part. The impact zone exhibited a greater prevalence of voids and an earlier onset of cracking. At a rutting depth of only 5 mm, multiple top-down developed cracks (TDCs) of over 6 mm length were observed in the impact zone. At a rutting depth of 10 mm, the TDCs in the impact zone were more numerous, larger, and wider, indicating the necessity for a tailored repair program that includes milling. TDC damage caused by high-temperature rutting is predominantly observed in the upper and middle positions of the height direction, with the bottom position data exhibiting greater inconsistency due to the influence of molding. Furthermore, the combination of void morphology indicators with void volume can effectively track the occurrence and development of microcracks. However, the fine-scale assessment of compaction degree and deformation process using the equivalent void diameter indicator is not sufficiently differentiated. Full article
(This article belongs to the Special Issue Sustainable Asphalt Pavement Technologies)
29 pages, 5957 KB  
Article
Multistage Fluid Evolution and P-T Path at Ity Gold Deposit and Dahapleu Prospect (Western Ivory Coast)
by Yacouba Coulibaly, Michel Cathelineau and Marie-Christine Boiron
Minerals 2025, 15(9), 918; https://doi.org/10.3390/min15090918 (registering DOI) - 28 Aug 2025
Abstract
Gold mineralisation at Ity (Ivory Coast) is spatially associated with skarns formed at contacts between carbonate-rich Birimian volcano-sedimentary rocks and felsic intrusions, whereas at Dahapleu, a nearby skarn-free prospect, gold occurs in structurally controlled shear zones. Gold occurs as native gold in pyrite [...] Read more.
Gold mineralisation at Ity (Ivory Coast) is spatially associated with skarns formed at contacts between carbonate-rich Birimian volcano-sedimentary rocks and felsic intrusions, whereas at Dahapleu, a nearby skarn-free prospect, gold occurs in structurally controlled shear zones. Gold occurs as native gold in pyrite or as a Bi–Te–Au–Ag telluride assemblage. Fluid inclusion data indicate that Ity formed through a hybrid model: a mesothermal orogenic gold system dominated by CO2–CH4 fluids at >350 °C, superimposed on earlier skarn mineralisation characterised by saline fluids. At Dahapleu, no skarn fluids were identified, but volatile-rich inclusions with more variable signatures (CO2, CO2–CH4, CO2–N2) indicate metamorphic fluids circulating in convective, fault-related systems and recording distinct fluid–rock interactions. The Ity–Dahapleu mineralising system thus displays fluid inclusion characteristics typical of mesothermal orogenic gold systems, likely at higher temperatures than most West African Birimian deposits. Overall, the Ity system reflects a long-lived thermal anomaly driving fluid circulation and metal deposition, with successive favourable events: rapid exhumation of hot lithospheric crust, granite intrusion, and skarn formation, followed by shear deformation and hydrothermal activity. Full article
Show Figures

Figure 1

15 pages, 3325 KB  
Review
A Minireview on Multiscale Structural Inheritance and Mechanical Performance Regulation of SiC Wood-Derived Ceramics via Reactive Sintering and Hot-Pressing
by Shuying Ji, Yixuan Sun and Haiyang Zhang
Forests 2025, 16(9), 1383; https://doi.org/10.3390/f16091383 - 28 Aug 2025
Abstract
Wood-derived ceramics represent a novel class of bio-based composite materials that integrate the hierarchical porous architecture of natural wood with high-performance ceramic phases such as silicon carbide (SiC). This review systematically summarizes recent advances in the fabrication of SiC woodceramics via two predominant [...] Read more.
Wood-derived ceramics represent a novel class of bio-based composite materials that integrate the hierarchical porous architecture of natural wood with high-performance ceramic phases such as silicon carbide (SiC). This review systematically summarizes recent advances in the fabrication of SiC woodceramics via two predominant sintering routes—reactive infiltration sintering and hot-press sintering—and elucidates their effects on the resulting microstructure and mechanical properties. This review leverages the intrinsic anisotropic vascular network and multiscale porosity and mechanical strength, achieving ultralightweight yet mechanically robust ceramics with tunable anisotropy and dynamic energy dissipation capabilities. Critical process–structure–property relationships are highlighted, including the role of ceramic reinforcement phases, interfacial engineering, and multiscale toughening mechanisms. The review further explores emerging applications spanning extreme protection (e.g., ballistic armor and aerospace thermal shields), multifunctional devices (such as electromagnetic shielding and tribological components), and architectural innovations including seismic-resistant composites and energy-efficient building materials. Finally, key challenges such as sintering-induced deformation, interfacial bonding limitations, and scalability are discussed alongside future prospects involving low-temperature sintering, nanoscale interface reinforcement, and additive manufacturing. This mini overview provides essential insights into the design and optimization of wood-derived ceramics, advancing their transition from sustainable biomimetic materials to next-generation high-performance structural components. This review synthesizes data from over 50 recent studies (2011–2025) indexed in Scopus and Web of Science, highlighting three key advancements: (1) bio-templated anisotropy breaking the porosity–strength trade-off, (2) reactive vs. hot-press sintering mechanisms, and (3) multifunctional applications in extreme environments. Full article
(This article belongs to the Special Issue Uses, Structure and Properties of Wood and Wood Products)
Show Figures

Graphical abstract

16 pages, 3429 KB  
Article
Enhancing the Resistance to Shear Instability in Cu/Zr Nanolaminates Through Amorphous Interfacial Layer
by Feihu Chen and Feng Qin
Nanomaterials 2025, 15(17), 1323; https://doi.org/10.3390/nano15171323 - 28 Aug 2025
Abstract
Metallic nanolaminates generally show ultra-high strength but low ductility due to their vulnerability to shear instability during deformation. Herein, we report the simultaneous enhancement in hardness (by 11.9%) and suppression of shear instability in a 10 nm Cu/Zr nanolaminate, achieved by introducing a [...] Read more.
Metallic nanolaminates generally show ultra-high strength but low ductility due to their vulnerability to shear instability during deformation. Herein, we report the simultaneous enhancement in hardness (by 11.9%) and suppression of shear instability in a 10 nm Cu/Zr nanolaminate, achieved by introducing a nanoscale Cu63Zr37 amorphous interfacial layer (AIL) between the crystalline Cu and Zr layers via magnetron sputtering. The effect of AIL and its thickness (h) (h = 2, 5, and 10 nm) on the hardness and shear instability behavior was explored using nano- and micro-indentation tests. An abnormal increase in hardness occurs at h = 2 nm when h is decreased from 10 to 2 nm, deviating from the prediction of the rule of mixtures. This abnormal strengthening is attributed to thinner AIL, which induces an increased density of crystalline/amorphous interfaces, thereby generating a pronounced interface strengthening effect. The micro-indentation results show that shear banding was suppressed in the nanolaminate with AIL, as evidenced by fewer shear bands as compared to its homogeneous counterpart. This enhanced resistance to shear instability may originate from the crystalline/amorphous interface that provides more sites for dislocation nucleation, emission, and annihilation. Furthermore, two distinct shear banding modes were observed in the nanolaminate with AIL; i.e., a cutting-like shear banding emerged at h = 10 nm, whereas a kinking-like shear banding occurred at h = 2 nm. The potential mechanism of the AIL-thickness-dependent shear banding was analyzed based on the crack propagation model of the Griffith criterion. This study provides a comprehensive insight into the strengthening and tunable shear instability of super-nano metallic laminates by AIL. Full article
(This article belongs to the Topic New Research on Thin Films and Nanostructures)
Show Figures

Figure 1

24 pages, 3844 KB  
Article
Structural Failure and Mechanical Response of Buried Pipelines Under Offshore Fault Dislocation
by Chengzhu Qiu, Shuai Tian and Yujie Wang
Appl. Sci. 2025, 15(17), 9450; https://doi.org/10.3390/app15179450 (registering DOI) - 28 Aug 2025
Abstract
Fault activity represents a significant geological hazard to buried pipeline infrastructure. The associated stratigraphic dislocation may lead to severe deformation, instability, or even rupture of the pipeline, thereby posing a serious threat to the safe operation of oil and gas transportation systems. This [...] Read more.
Fault activity represents a significant geological hazard to buried pipeline infrastructure. The associated stratigraphic dislocation may lead to severe deformation, instability, or even rupture of the pipeline, thereby posing a serious threat to the safe operation of oil and gas transportation systems. This study employs the 3D nonlinear finite element method to systematically investigate the mechanical behavior of buried steel pipes subjected to fault-induced dislocation, with particular emphasis on critical parameters including fault offset, internal pressure, and the diameter-to-thickness ratio. The study reveals that buried pipelines subjected to fault dislocation typically undergo a progressive failure process, transitioning from the elastic stage to yielding, followed by plastic deformation and eventual fracture. The diameter-to-thickness ratio is found to significantly affect the structural stiffness and deformation resistance of the pipeline. A lower diameter-to-thickness ratio improves deformation compatibility and enhances the overall structural stability of the pipeline. Internal pressure exhibits a dual effect: within a moderate range, it enhances pipeline stability and delays the onset of structural buckling; however, excessive internal pressure induces circumferential tensile stress concentration, thereby increasing the risk of local buckling and structural instability. The findings of this study provide a theoretical basis and practical guidance for the design of buried pipelines in fault-prone areas to withstand and accommodate ground misalignment. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

33 pages, 2354 KB  
Article
Stiffness and Lightweight Enhancement in Biomimetic Design of a Grinding Machine-Tool Structure
by Shen-Yung Lin and Yen-Ting Lai
Appl. Sci. 2025, 15(17), 9449; https://doi.org/10.3390/app15179449 (registering DOI) - 28 Aug 2025
Abstract
As global manufacturing faces rising energy costs, environmental pressures, and machining precision, the development trends of the machine tools are moving towards lightweight and high-rigidity structures. While those approaches of increasing key component geometrical size or enhancing rib design do enhance rigidity performance, [...] Read more.
As global manufacturing faces rising energy costs, environmental pressures, and machining precision, the development trends of the machine tools are moving towards lightweight and high-rigidity structures. While those approaches of increasing key component geometrical size or enhancing rib design do enhance rigidity performance, they also usually increase weight, which conflicts with the goals of achieving high performance and environmental sustainability. Therefore, how to achieve system lightweightness while maintaining or enhancing structural rigidity has become a key research challenge. This study adopts a biomimetic design approach, drawing inspiration from the natural growth features of biological structures. By integrating these natural structural features, the design aims to enhance rigidity while reducing weight. Static and modal analyses are conducted firstly by using FEM software to simulate the total deformation, natural frequency, and modal shape, respectively. The biomimetic designs are then performed on those subsystems in a grinding machine-tool, which exhibit larger deformation and weaker stiffness by incorporating the structural features of leaf veins, cacti, and bamboos. Single or multiple structural feature combinations are constituted during the biomimetic design processes for worktable, base, and column subsystems, and the natural frequencies and weight obtained from the numerical analysis were compared subsequently to identify the better bionic subsystems that replace the corresponding ones originally assembled in the grinding machine-tool finally. The results show that one of the first three mode natural frequencies of a better bionic worktable (leaf vein and cactus) is increased up to 7.07%, with a 1.12% weight reduction. A better bionic base (leaf vein) with corner trimming exhibits a 14.04% increase in natural frequency and a 2.04% weight reduction. Similarly, a better bionic column (bamboo) achieves a 5.58% increase in natural frequency and a 0.14% weight reduction. After these better bionic subsystems are substituted in the grinding machine-tool, one of the first three mode natural frequencies is increased up to 14.56%, the weight is reduced by 1.25%, and the maximum total deformation is decreased by 39.64%. The maximum total deformation for the headstock is reduced by 26.95% after the original grinding machine-tool is replaced by better bionic subsystems. The increases in the specific stiffness for these better bionic subsystems are also investigated in this study to illustrate the effectiveness of the biomimetic designs. Full article
(This article belongs to the Section Mechanical Engineering)
24 pages, 7584 KB  
Article
Estimation of Strain-Softening Parameters of Marine Clay Using the Initial T-Bar Penetration Test
by Qinglai Fan, Zhaoxia Lin, Mengmeng Sun, Yunrui Han and Ruiying Yin
J. Mar. Sci. Eng. 2025, 13(9), 1648; https://doi.org/10.3390/jmse13091648 - 28 Aug 2025
Abstract
T-bar penetrometers have been widely used to measure strength parameters of marine clay in laboratory and in situ tests. However, using the deep resistance factor derived from full-flow conditions to evaluate the undrained shear strength of shallow clay layers may lead to significant [...] Read more.
T-bar penetrometers have been widely used to measure strength parameters of marine clay in laboratory and in situ tests. However, using the deep resistance factor derived from full-flow conditions to evaluate the undrained shear strength of shallow clay layers may lead to significant underestimation. Furthermore, the deep resistance factor is inherently influenced by the strain-softening behavior of clay rather than maintaining the constant value (typically 10.5) as conventionally assumed in practice. To address this issue, large-deformation finite element (LDFE) simulations incorporating an advanced exponential strain-softening constitutive model were performed to replicate the full T-bar penetration process—from shallow embedment to deeper depths below the mudline. A series of parametric studies were conducted to examine the influence of key parameters on the resistance factor and the associated failure mechanisms during penetration. Based on numerical results, empirical formulas were derived to predict critical penetration depths for both trapped cavity formation and full-flow mechanism initiation. For penetration depths shallower than the full-flow depth, an expression for the softening correction factor was developed to calibrate the shallow resistance factor. Finally, combined with global optimization algorithms, a computer-aided back-analysis procedure was established to estimate strain-softening parameters using resistance-penetration curves from initial penetration tests in marine clay. The reliability of the back-analysis procedure was validated through extensive comparisons with a series of numerical simulation results. This procedure can be applied to the interpretation of T-bar in situ test results in soft marine clay, enabling the evaluation of its strain-softening behavior. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

12 pages, 1965 KB  
Article
Quantifying Influence of Beam Drift on Linear Retardance Measurement in Dual-Rotating Retarder Mueller Matrix Polarimetry
by Kaisha Deng, Nan Zeng, Liangyu Deng, Shaoxiong Liu, Hui Ma, Chao He and Honghui He
Photonics 2025, 12(9), 868; https://doi.org/10.3390/photonics12090868 - 28 Aug 2025
Abstract
Mueller matrix polarimetry is recently attracting more and more attention for its diagnostic potentials. However, for prevalently used division of time Mueller matrix polarimeter based on dual-rotating retarder scheme, beam drift induced by rotating polarizers and waveplates introduces spatial misalignment and pseudo-edge artifacts [...] Read more.
Mueller matrix polarimetry is recently attracting more and more attention for its diagnostic potentials. However, for prevalently used division of time Mueller matrix polarimeter based on dual-rotating retarder scheme, beam drift induced by rotating polarizers and waveplates introduces spatial misalignment and pseudo-edge artifacts in imaging results, hindering following accurate microstructural features characterization. In this paper, we quantitatively analyze the beam drift phenomenon in dual-rotating retarder Mueller matrix microscopy and its impact on linear retardance measurement, which is frequently used to reflect tissue fiber arrangement. It is demonstrated that polarizer rotation induces larger beam drift than waveplate rotation due to surface non-uniformity and stress deformation. Furthermore, for waveplates rotated constantly in dual-rotating retarder scheme, their tilt within polarization state analyzer can result in more drift and throughput loss than those within polarization state generator. Finally, phantom and tissue experiments confirm that beam drift, rather than inherent optical path changes, dominates the systematic overestimation of linear retardance in boundary image regions. The findings highlight beam drift as a dominant error source for quantifying linear retardance, necessitating careful optical design alignment and a reliable registration algorithm to obtain highly accurate polarization data for training machine learning models of pathological diagnosis using Mueller matrix microscopy. Full article
Show Figures

Figure 1

23 pages, 3314 KB  
Article
Optimization of Manifold Learning Using Differential Geometry for 3D Reconstruction in Computer Vision
by Yawen Wang
Mathematics 2025, 13(17), 2771; https://doi.org/10.3390/math13172771 - 28 Aug 2025
Abstract
Manifold learning is a significant computer vision task used to describe high-dimensional visual data in lower-dimensional manifolds without sacrificing the intrinsic structural properties required for 3D reconstruction. Isomap, Locally Linear Embedding (LLE), Laplacian Eigenmaps, and t-SNE are helpful in data topology preservation but [...] Read more.
Manifold learning is a significant computer vision task used to describe high-dimensional visual data in lower-dimensional manifolds without sacrificing the intrinsic structural properties required for 3D reconstruction. Isomap, Locally Linear Embedding (LLE), Laplacian Eigenmaps, and t-SNE are helpful in data topology preservation but are typically indifferent to the intrinsic differential geometric characteristics of the manifolds, thus leading to deformation of spatial relations and reconstruction accuracy loss. This research proposes an Optimization of Manifold Learning using Differential Geometry Framework (OML-DGF) to overcome the drawbacks of current manifold learning techniques in 3D reconstruction. The framework employs intrinsic geometric properties—like curvature preservation, geodesic coherence, and local–global structure correspondence—to produce structurally correct and topologically consistent low-dimensional embeddings. The model utilizes a Riemannian metric-based neighborhood graph, approximations of geodesic distances with shortest path algorithms, and curvature-sensitive embedding from second-order derivatives in local tangent spaces. A curvature-regularized objective function is derived to steer the embedding toward facilitating improved geometric coherence. Principal Component Analysis (PCA) reduces initial dimensionality and modifies LLE with curvature weighting. Experiments on the ModelNet40 dataset show an impressive improvement in reconstruction quality, with accuracy gains of up to 17% and better structure preservation than traditional methods. These findings confirm the advantage of employing intrinsic geometry as an embedding to improve the accuracy of 3D reconstruction. The suggested approach is computationally light and scalable and can be utilized in real-time contexts such as robotic navigation, medical image diagnosis, digital heritage reconstruction, and augmented/virtual reality systems in which strong 3D modeling is a critical need. Full article
Show Figures

Figure 1

23 pages, 4352 KB  
Article
Quantifying Inter-Ply Friction and Clamping Effects via an Experimental–Numerical Framework: Advancing Non-Coherent Deformation Control of Uncured Metal–Fiber-Reinforced Polymer Laminates
by Yunlong Chen and Shichen Liu
Polymers 2025, 17(17), 2330; https://doi.org/10.3390/polym17172330 - 28 Aug 2025
Abstract
Pre-stacked uncured metal–fiber-reinforced polymer (FRP) laminates, which are critical for aerospace components like double-curved fuselage panels, wing ribs, and engine nacelles, exhibit better deformation behavior than their fully cured counterparts. However, accurate process simulation requires precise material characterization and process optimization to achieve [...] Read more.
Pre-stacked uncured metal–fiber-reinforced polymer (FRP) laminates, which are critical for aerospace components like double-curved fuselage panels, wing ribs, and engine nacelles, exhibit better deformation behavior than their fully cured counterparts. However, accurate process simulation requires precise material characterization and process optimization to achieve a defect-free structural design. This study focuses on two core material behaviors of uncured laminates—inter-ply friction at metal–prepreg interfaces and out-of-plane bending—and optimizes process parameters for their non-coherent deformation. Experimental tests included double-lap sliding tests (to quantify inter-ply friction) and clamped-beam bending tests (to characterize out-of-plane bending); a double-curved dome part was designed to assess the effects of the material constituent, fiber orientation, inter-ply friction, and clamping force, with validation via finite element modeling (FEM) in Abaqus software. The results indicate that the static–kinetic friction model effectively predicts inter-ply friction behavior, with numerical friction coefficient–displacement trends closely matching experimental data. Additionally, the flexural bending model showed that greater plastic deformation in metal layers increased bending force while reducing post-unloading spring-back depth. Furthermore, for non-coherent deformation, higher clamping forces improve FRP prepreg deformation and mitigate buckling, but excessive plastic deformation raises metal cracking risk. This work helps establish a combined experimental–numerical framework for the defect prediction and process optimization of complex lightweight components, which address the core needs of modern aerospace manufacturing. Full article
Show Figures

Figure 1

15 pages, 3325 KB  
Article
Model Test of Strip Footing Behavior on Embankment Reinforced with Geogrid with Strengthened Nodes Under Static and Dynamic Loadings
by Chengchun Qiu, Zhuyi Xu, Dan Zhang and Mengxi Zhang
Polymers 2025, 17(17), 2331; https://doi.org/10.3390/polym17172331 - 28 Aug 2025
Abstract
The rapid development of transportation infrastructure in mountainous terrains, soft-soil foundations, and high-fill embankments poses stability challenges for conventional embankments, driving the application of advanced three-dimensional reinforced soil technologies. Geogrid with Strengthened Nodes (GSN) is one such innovation, forming a three-dimensional structure by [...] Read more.
The rapid development of transportation infrastructure in mountainous terrains, soft-soil foundations, and high-fill embankments poses stability challenges for conventional embankments, driving the application of advanced three-dimensional reinforced soil technologies. Geogrid with Strengthened Nodes (GSN) is one such innovation, forming a three-dimensional structure by placing block-shaped nodes at geogrid rib intersections. Current research on GSN focuses mainly on pullout tests and numerical simulations, while model-scale studies of its load-bearing deformation behavior and soil pressure distribution remain scarce. This study presents laboratory model tests to assess the reinforcement performance of GSN-reinforced embankments under static and dynamic strip loads. Under static loading, the ultimate bearing capacity of GSN-reinforced embankments increased by 74.58% compared with unreinforced cases and by 26.2% compared with conventional geogrids. Under dynamic loading, cumulative settlement decreased by 32.82%, and lateral displacement at the slope crest was reduced by 64.34%. The strengthened node design improved soil shear strength and controlled lateral deformation via enhanced lateral resistance, creating a more stable “reinforced zone” that alleviated local stress concentrations. Overall, GSN significantly enhanced embankment bearing capacity and stability, outperforming traditional geogrid reinforcement under both static and dynamic conditions, and providing a promising solution for challenging geotechnical environments. Full article
(This article belongs to the Special Issue Mechanics of Polymer-Based Soft Materials)
Show Figures

Figure 1

Back to TopTop