Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (328)

Search Parameters:
Keywords = degradation in solutions and solids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 6171 KB  
Review
Atomistic Modeling of Microstructural Defect Evolution in Alloys Under Irradiation: A Comprehensive Review
by Yue Fan
Appl. Sci. 2025, 15(16), 9110; https://doi.org/10.3390/app15169110 - 19 Aug 2025
Viewed by 226
Abstract
Developing structural materials capable of maintaining integrity under extreme irradiation conditions is a cornerstone challenge for advancing sustainable nuclear energy technologies. The complexity and severity of radiation-induced microstructural changes—spanning multiple length and timescales—pose significant hurdles for purely experimental approaches. This review critically evaluates [...] Read more.
Developing structural materials capable of maintaining integrity under extreme irradiation conditions is a cornerstone challenge for advancing sustainable nuclear energy technologies. The complexity and severity of radiation-induced microstructural changes—spanning multiple length and timescales—pose significant hurdles for purely experimental approaches. This review critically evaluates recent advancements in atomistic modeling, emphasizing its transformative potential to decipher fundamental mechanisms driving microstructural evolution in irradiated alloys. Atomistic simulations, such as molecular dynamics (MD), have successfully unveiled initial defect formation processes at picosecond scales. However, the inherent temporal limitations of conventional MD necessitate advanced methodologies capable of exploring slower, thermally activated defect kinetics. We specifically traced the development of powerful potential energy landscape (PEL) exploration algorithms, which enable the simulation of high-barrier, rare events of defect evolution processes that govern long-term material degradation. The review systematically examines point defect behaviors in various crystal structures—BCC, FCC, and HCP metals—and elucidates their characteristic defect dynamics, respectively. Additionally, it highlights the pronounced effects of chemical complexity in concentrated solid-solution alloys and high-entropy alloys, notably their sluggish diffusion and enhanced defect recombination, underpinning their superior radiation tolerance. Further, the interaction of extended defects with mechanical stresses and their mechanistic implications for material properties are discussed, highlighting the critical interplay between thermal activation and strain rate in defect evolution. Special attention is dedicated to the diverse mechanisms of dislocation–obstacle interactions, as well as the behaviors of metastable grain boundaries under far-from-equilibrium environments. The integration of data-driven methods and machine learning with atomistic modeling is also explored, showcasing their roles in developing quantum-accurate potentials, automating defect analysis, and enabling efficient surrogate models for predictive design. This comprehensive review also outlines future research directions and fundamental questions, paving the way toward autonomous materials’ discovery in extreme environments. Full article
Show Figures

Figure 1

16 pages, 2065 KB  
Article
Selective Recovery of Zinc from Oxide Ores Using Monosodium Glutamate as a Green Lixiviant
by Yasemin Ozturk
Minerals 2025, 15(8), 870; https://doi.org/10.3390/min15080870 - 18 Aug 2025
Viewed by 245
Abstract
This study aims to develop an environmentally friendly hydrometallurgical process for the recovery of zinc from zinc oxide ores. The process includes monosodium glutamate (MSG) leaching, followed by zinc recovery from the pregnant leach solution via electrowinning, and the recirculation of the spent [...] Read more.
This study aims to develop an environmentally friendly hydrometallurgical process for the recovery of zinc from zinc oxide ores. The process includes monosodium glutamate (MSG) leaching, followed by zinc recovery from the pregnant leach solution via electrowinning, and the recirculation of the spent solution to the leaching stage. The study investigated the effects of key leaching parameters and identified the optimal conditions as a pH of 9.5, temperature of 70 °C, 5 h leaching time, solid-to-liquid ratio of 50 g/L, particle size of d80 = 115 µm, and initial MSG concentration of 1.0 M. Under these conditions, 82.3 ± 0.05% of the zinc was extracted with minimal co-dissolution of impurities. Subsequent electrowinning at 100 A/m2 for 150 min yielded 74.97 ± 2.43% zinc recovery with 96.4 ± 0.76% purity. The process achieved a current efficiency of 87.08%, while the specific energy consumption was calculated to be 3.98 kWh per kilogram of zinc recovered. The reusability of MSG was examined by recirculating spent electrowinning solution back to the leaching stage. Zinc extraction decreased from 82.2% to 28.5% over three electrowinning–leaching cycles, due to MSG degradation during electrowinning. The results of this study demonstrated that MSG is a selective and effective lixiviant for zinc recovery, while underlining the limitations of its reuse. Full article
Show Figures

Graphical abstract

19 pages, 1033 KB  
Article
Designing Nature-Based Solutions for Sediment Control in Impaired Humid Subtropical Forests: An Approach Based on the Environmental Benefits Assessment
by Águeda Bellver-Domingo, Carme Machí-Castañer and Francesc Hernández-Sancho
Water 2025, 17(16), 2381; https://doi.org/10.3390/w17162381 - 12 Aug 2025
Viewed by 311
Abstract
Land-use changes cause disturbance to sediment dynamics, increasing downstream sediment loads discharged into ecosystems and provoking impacts on stream quality and damage to current stormwater infrastructures. Wastewater nature-based solutions (NBSWT) are bioretention techniques that alleviate downstream degradation caused by runoff sediment accumulation and [...] Read more.
Land-use changes cause disturbance to sediment dynamics, increasing downstream sediment loads discharged into ecosystems and provoking impacts on stream quality and damage to current stormwater infrastructures. Wastewater nature-based solutions (NBSWT) are bioretention techniques that alleviate downstream degradation caused by runoff sediment accumulation and are projected as an off-line street device that enhances treatment of runoff contaminant loads. This research assesses the economic, social, and environmental benefits from sediment load reduction in runoff by designing a new NBSWT in a selected urban area of the Mantiqueira Mountain Range (São Paulo, Brazil), considered an irreplaceable protected area for biodiversity and urban water supply. To achieve this quantification, the shadow prices methodology has been used. The results obtained here show the adaptive capacity that NBSWT have according to the territory and its climatic particularities, quantified at USD 40,475,255. This value demonstrates that the retention of runoff sediment generates a direct environmental benefit related to the ecosystem improvement of the river system located downstream, preserving its environmental and social importance. Hence, this study demonstrates the potential of using shadow prices methodology as a management tool for quantifying the environmental benefit of removing runoff solids by using NBSWT in developing urban areas. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

23 pages, 23520 KB  
Article
Modification of Thermo-Chemical Properties of Hot-Pressed ZrB2-HfB2 Composites by Incorporation of Carbides (SiC, B4C, and WC) or Silicides (MoSi2 and CrSi2) Additives
by Agnieszka Gubernat, Kamil Kornaus, Dariusz Zientara, Łukasz Zych, Paweł Rutkowski, Sebastian Komarek, Annamaria Naughton-Duszova, Yongsheng Liu, Leszek Chlubny and Zbigniew Pędzich
Materials 2025, 18(16), 3761; https://doi.org/10.3390/ma18163761 - 11 Aug 2025
Viewed by 223
Abstract
ZrB2-HfB2 composites allow us to obtain materials characterized by the high chemical resistance characteristic of HfB2 while reducing density and improving sinterability due to the presence of ZrB2. Since boride composites are difficult-to-sinter materials. One way to [...] Read more.
ZrB2-HfB2 composites allow us to obtain materials characterized by the high chemical resistance characteristic of HfB2 while reducing density and improving sinterability due to the presence of ZrB2. Since boride composites are difficult-to-sinter materials. One way to achieve high density during sintering is to add phases that activate mass transport processes and, after sintering, remain as composite components that do not degrade and even improve some properties of the borides. The following paper is a comprehensive review of the effects of various and the most commonly used sintering aids, i.e., SiC, B4C, WC, MoSi2, and CrSi2, on the thermo-chemical properties of the ZrB2-HfB2 composites. High-density composites with a complex phase composition dominated by (Zr,Hf)B2 solid solutions were obtained using a hot pressing method. The tests showed differences in the properties of the composites due to the type of sintering additives used. From the point of view of the thermo-chemical properties, the best additive was silicon carbide. The composites containing SiC, when compared to the initial, pure borides, were characterized by high thermal conductivity λ (80–150 W/m·K at 20–1000 °C), a significantly reduced thermal expansion coefficient (CTE ~6.20 × 10−6 1/K at 20–1000 °C), and considerably improved oxidation resistance (up to 1400 °C). Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

18 pages, 3706 KB  
Article
Controllable Preparation of TiO2/SiO2@Blast Furnace Slag Fiber Composites Based on Solid Waste Carriers and Study on Mechanism of Photocatalytic Degradation of Urban Sewage
by Xinwen Luo, Jinhu Wu, Guangqian Zhu, Xinyu Han, Junjian Zhao, Yaqiang Li, Yingying Li and Shaopeng Gu
Catalysts 2025, 15(8), 755; https://doi.org/10.3390/catal15080755 - 7 Aug 2025
Viewed by 406
Abstract
Photocatalytic composite materials (TiO2/SiO2/BFSF) were first fabricated using the sol–gel method of loading SiO2 and TiO2 on blast furnace slag fibers (BFSFs) in sequence and using them as a new carrier. Then, TG-DTA, XRD, BET, SEM-EDS, and [...] Read more.
Photocatalytic composite materials (TiO2/SiO2/BFSF) were first fabricated using the sol–gel method of loading SiO2 and TiO2 on blast furnace slag fibers (BFSFs) in sequence and using them as a new carrier. Then, TG-DTA, XRD, BET, SEM-EDS, and UV-Vis absorption spectra, as well as spectrophotometric measurements, were employed to analyze the physicochemical properties of TiO2. The influence of SiO2 coating, the number of impregnations in TiO2 sol, the calcination temperature, and the number of repeated usages on the activity of TiO2/SiO2/BFSF was researched by analyzing the degradation of methylene blue (MB) aqueous solution. The results show that SiO2 could increase the load of TiO2, impede the growth of TiO2 grains, and inhibit the recombination of electron–hole pairs, ultimately enhancing the photocatalytic activity of samples. The activity of TiO2/SiO2/BFSF first quickly increased and then slowly decreased with an increase in the loading times of TiO2 sol and calcination temperature. After three impregnations in TiO2 sol and calcining at 450 °C for 2.5 h, a uniform and compact anatase TiO2 thin film was deposited on the surface of TiO2/SiO2/BFSF, showing the strongest activity. When this sample was used to degrade MB aqueous solution for 180 min under ultraviolet light irradiation, the degradation proportion reached a maximum of 96%. After four reuses, the degradation ratio could still reach 67%. In addition, three potential photocatalytic mechanisms were proposed. Finally, the high-value-added application of blast furnace slag for preparing photocatalytic composite materials was achieved, successfully turning solid waste into “treasure”. Full article
(This article belongs to the Special Issue Enhanced Photocatalytic Activity over Ti, Zn, or Sn-Based Catalysts)
Show Figures

Figure 1

22 pages, 2605 KB  
Article
Production of Bioadsorbents via Low-Temperature Pyrolysis of Exhausted Olive Pomace for the Removal of Methylene Blue from Aqueous Media
by Safae Chafi, Manuel Cuevas-Aranda, Mª Lourdes Martínez-Cartas and Sebastián Sánchez
Molecules 2025, 30(15), 3254; https://doi.org/10.3390/molecules30153254 - 3 Aug 2025
Viewed by 347
Abstract
In this work, biochars were produced by pyrolysis of exhausted olive pomace and evaluated as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The biochar obtained at 400 °C for 1 h, which exhibited the best adsorption performance, was [...] Read more.
In this work, biochars were produced by pyrolysis of exhausted olive pomace and evaluated as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The biochar obtained at 400 °C for 1 h, which exhibited the best adsorption performance, was characterized by FTIR, N2 adsorption–desorption isotherms, SEM-EDX, and proximate analysis, revealing a mesoporous structure with a relatively low specific surface area but enriched in surface functional groups, likely due to the partial degradation of lignocellulosic components. Adsorption experiments were conducted to optimize operational parameters such as solid particle size (2–3 mm), agitation speed (75 rpm), and bioadsorbent dosage (1 g per 0.05 L of MB solution), which allowed for dye removal efficiencies close to 100%. Kinetic studies showed that MB adsorption followed a pseudo-second-order model, while equilibrium data at 30 °C were best described by the Langmuir isotherm (R2 = 0.999; SE = 4.25%), suggesting monolayer coverage and strong adsorbate–adsorbent affinity. Desorption trials using water, ethanol, and their mixtures resulted in low MB recovery, whereas the addition of 10% acetic acid significantly improved desorption performance. Under optimal conditions, up to 52% of the retained dye was recovered. Full article
(This article belongs to the Special Issue Advances in Biomass Chemicals: Transformation and Valorization)
Show Figures

Graphical abstract

16 pages, 2261 KB  
Article
From Shale to Value: Dual Oxidative Route for Kukersite Conversion
by Kristiina Kaldas, Kati Muldma, Aia Simm, Birgit Mets, Tiina Kontson, Estelle Silm, Mariliis Kimm, Villem Ödner Koern, Jaan Mihkel Uustalu and Margus Lopp
Processes 2025, 13(8), 2421; https://doi.org/10.3390/pr13082421 - 30 Jul 2025
Viewed by 409
Abstract
The increasing need for sustainable valorization of fossil-based and waste-derived materials has gained interest in converting complex organic matrices such as kerogen into valuable chemicals. This study explores a two-step oxidative strategy to decompose and valorize kerogen-rich oil shale, aiming to develop a [...] Read more.
The increasing need for sustainable valorization of fossil-based and waste-derived materials has gained interest in converting complex organic matrices such as kerogen into valuable chemicals. This study explores a two-step oxidative strategy to decompose and valorize kerogen-rich oil shale, aiming to develop a locally based source of aliphatic dicarboxylic acids (DCAs). The method combines air oxidation with subsequent nitric acid treatment to enable selective breakdown of the organic structure under milder conditions. Air oxidation was conducted at 165–175 °C using 1% KOH as an alkaline promoter and 40 bar oxygen pressure (or alternatively 185 °C at 30 bar), targeting 30–40% carbon conversion. The resulting material was then subjected to nitric acid oxidation using an 8% HNO3 solution. This approach yielded up to 23% DCAs, with pre-oxidation allowing a twofold reduction in acid dosage while maintaining efficiency. However, two-step oxidation was still accompanied by substantial degradation of the structure, resulting in elevated CO2 formation, highlighting the need to balance conversion and carbon retention. The process offers a possible route for transforming solid fossil residues into useful chemical precursors and supports the advancement of regionally sourced, sustainable DCA production from unconventional raw materials. Full article
Show Figures

Graphical abstract

22 pages, 6823 KB  
Article
Design Optimization of Valve Assemblies in Downhole Rod Pumps to Enhance Operational Reliability in Oil Production
by Seitzhan Zaurbekov, Kadyrzhan Zaurbekov, Doszhan Balgayev, Galina Boiko, Ertis Aksholakov, Roman V. Klyuev and Nikita V. Martyushev
Energies 2025, 18(15), 3976; https://doi.org/10.3390/en18153976 - 25 Jul 2025
Viewed by 351
Abstract
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, [...] Read more.
This study focuses on the optimization of valve assemblies in downhole rod pumping units (DRPUs), which remain the predominant artificial lift technology in oil production worldwide. The research addresses the critical issue of premature failures in DRPUs caused by leakage in valve pairs, i.e., a problem that accounts for approximately 15% of all failures, as identified in a statistical analysis of the 2022 operational data from the Uzen oilfield in Kazakhstan. The leakage is primarily attributed to the accumulation of mechanical impurities and paraffin deposits between the valve ball and seat, leading to concentrated surface wear and compromised sealing. To mitigate this issue, a novel valve assembly design was developed featuring a flow turbulizer positioned beneath the valve seat. The turbulizer generates controlled vortex motion in the fluid flow, which increases the rotational frequency of the valve ball during operation. This motion promotes more uniform wear across the contact surfaces and reduces the risk of localized degradation. The turbulizers were manufactured using additive FDM technology, and several design variants were tested in a full-scale laboratory setup simulating downhole conditions. Experimental results revealed that the most effective configuration was a spiral plate turbulizer with a 7.5 mm width, installed without axis deviation from the vertical, which achieved the highest ball rotation frequency and enhanced lapping effect between the ball and the seat. Subsequent field trials using valves with duralumin-based turbulizers demonstrated increased operational lifespans compared to standard valves, confirming the viability of the proposed solution. However, cases of abrasive wear were observed under conditions of high mechanical impurity concentration, indicating the need for more durable materials. To address this, the study recommends transitioning to 316 L stainless steel for turbulizer fabrication due to its superior tensile strength, corrosion resistance, and wear resistance. Implementing this design improvement can significantly reduce maintenance intervals, improve pump reliability, and lower operating costs in mature oilfields with high water cut and solid content. The findings of this research contribute to the broader efforts in petroleum engineering to enhance the longevity and performance of artificial lift systems through targeted mechanical design improvements and material innovation. Full article
(This article belongs to the Special Issue Petroleum and Natural Gas Engineering)
Show Figures

Figure 1

18 pages, 12540 KB  
Article
SS-LIO: Robust Tightly Coupled Solid-State LiDAR–Inertial Odometry for Indoor Degraded Environments
by Yongle Zou, Peipei Meng, Jianqiang Xiong and Xinglin Wan
Electronics 2025, 14(15), 2951; https://doi.org/10.3390/electronics14152951 - 24 Jul 2025
Viewed by 439
Abstract
Solid-state LiDAR systems are widely recognized for their high reliability, low cost, and lightweight design, but they encounter significant challenges in SLAM tasks due to their limited field of view and uneven horizontal scanning patterns, especially in indoor environments with geometric constraints. To [...] Read more.
Solid-state LiDAR systems are widely recognized for their high reliability, low cost, and lightweight design, but they encounter significant challenges in SLAM tasks due to their limited field of view and uneven horizontal scanning patterns, especially in indoor environments with geometric constraints. To address these challenges, this paper proposes SS-LIO, a precise, robust, and real-time LiDAR–Inertial odometry solution designed for solid-state LiDAR systems. SS-LIO uses uncertainty propagation in LiDAR point-cloud modeling and a tightly coupled iterative extended Kalman filter to fuse LiDAR feature points with IMU data for reliable localization. It also employs voxels to encapsulate planar features for accurate map construction. Experimental results from open-source datasets and self-collected data demonstrate that SS-LIO achieves superior accuracy and robustness compared to state-of-the-art methods, with an end-to-end drift of only 0.2 m in indoor degraded scenarios. The detailed and accurate point-cloud maps generated by SS-LIO reflect the smoothness and precision of trajectory estimation, with significantly reduced drift and deviation. These outcomes highlight the effectiveness of SS-LIO in addressing the SLAM challenges posed by solid-state LiDAR systems and its capability to produce reliable maps in complex indoor settings. Full article
(This article belongs to the Special Issue Advancements in Robotics: Perception, Manipulation, and Interaction)
Show Figures

Figure 1

25 pages, 5169 KB  
Article
Natural Sunlight Driven Photocatalytic Degradation of Methylene Blue and Rhodamine B over Nanocrystalline Zn2SnO4/SnO2
by Maria Vesna Nikolic, Zorka Z. Vasiljevic, Milena Dimitrijevic, Nadezda Radmilovic, Jelena Vujancevic, Marija Tanovic and Nenad B. Tadic
Nanomaterials 2025, 15(14), 1138; https://doi.org/10.3390/nano15141138 - 21 Jul 2025
Cited by 1 | Viewed by 709
Abstract
The natural sunlight driven photocatalytic degradation of organic pollutants is a sustainable solution for water purification. The use of heterojunction nanocomposites in this process shows promise for improved photodegradation efficiency. In this work, nanocrystalline Zn2SnO4/SnO2 obtained by the [...] Read more.
The natural sunlight driven photocatalytic degradation of organic pollutants is a sustainable solution for water purification. The use of heterojunction nanocomposites in this process shows promise for improved photodegradation efficiency. In this work, nanocrystalline Zn2SnO4/SnO2 obtained by the solid-state synthesis method was tested as a heterojunction photocatalyst material for the degradation of methylene blue (MB) and Rhodamine B (RhB) dyes as single and multicomponent systems in natural sunlight. Characterization of the structure and morphology of the synthesized nanocomposite using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) combined with energy dispersive X-ray spectroscopy (EDS), and photoluminescence (PL) spectroscopy confirmed the formation of Zn2SnO4/SnO2 and heterojunctions between Zn2SnO4 and the SnO2 nanoparticles. A photodegradation efficiency of 99.1% was achieved in 120 min with 50 mg of the photocatalyst for the degradation of MB and 70.6% for the degradation of RhB under the same conditions. In the multicomponent system, the degradation efficiency of 97.9% for MB and 53.2% for RhB was obtained with only 15 mg of the photocatalyst. The degradation of MB occurred through N-demethylation and the formation of azure intermediates and degradation of RhB occurred through sequential deethylation and fragmentation of the xanthene ring, both in single and multicomponent systems. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Graphical abstract

17 pages, 9827 KB  
Article
High-Temperature Mechanical and Wear Behavior of Hypoeutectic Al–Si–(Cu)–Mg Alloys with Hardening Mechanisms Dictated by Varying Cu:Mg Ratios
by Jaehui Bang, Yeontae Kim and Eunkyung Lee
Appl. Sci. 2025, 15(14), 8047; https://doi.org/10.3390/app15148047 - 19 Jul 2025
Viewed by 378
Abstract
Enhancing damage tolerance and wear resistance in Al–Si-based alloys under thermomechanical stress remains a key challenge in lightweight structural applications. This study investigates the microstructural and tribomechanical behavior of hypoeutectic Al–Si–(Cu)–Mg alloys with varying Cu:Mg ratios (3:1 vs. 1:3) under a T6 heat [...] Read more.
Enhancing damage tolerance and wear resistance in Al–Si-based alloys under thermomechanical stress remains a key challenge in lightweight structural applications. This study investigates the microstructural and tribomechanical behavior of hypoeutectic Al–Si–(Cu)–Mg alloys with varying Cu:Mg ratios (3:1 vs. 1:3) under a T6 heat treatment. Alloys A and B, with identical Si contents but differing Cu and Mg levels, were subjected to multiscale microstructural characterization and mechanical and wear testing at 25 °C, 150 °C, and 250 °C. Alloy A (Cu-rich) exhibited refined α-Al(FeMn)Si phases and homogeneously dissolved Cu in the Al matrix, promoting lattice contraction and dislocation pinning. In contrast, Alloy B (Mg-rich) retained coarse Mg2Si and residual β-AlFeSi phases, which induced local stress concentrations and thermal instability. Under tribological testing, Alloy A showed slightly higher friction coefficients (0.38–0.43) but up to 26.4% lower wear rates across all temperatures. At 250 °C, Alloy B exhibited a 25.2% increase in the wear rate, accompanied by surface degradation such as delamination and spalling due to β-AlFeSi fragmentation and matrix softening. These results confirm that the Cu:Mg ratio critically influences the dominant hardening mechanism—the solid solution vs. precipitation—and determines the high-temperature performance. Alloy A maintained up to 14.1% higher tensile strength and 22.3% higher hardness, exhibiting greater shear resistance and interfacial stability. This work provides a compositionally guided framework for designing thermally durable Al–Si-based alloys with improved wear resistance under elevated temperature conditions. Full article
(This article belongs to the Special Issue Characterization and Mechanical Properties of Alloys)
Show Figures

Figure 1

22 pages, 1279 KB  
Review
State of the Art of Biomethane Production in the Mediterranean Region
by Antonio Comparetti, Salvatore Ciulla, Carlo Greco, Francesco Santoro and Santo Orlando
Agronomy 2025, 15(7), 1702; https://doi.org/10.3390/agronomy15071702 - 15 Jul 2025
Viewed by 539
Abstract
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for [...] Read more.
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for sustainable energy transition and circular resource management. This review examines the current state of biomethane production in the Mediterranean area, with a focus on anaerobic digestion (AD) technologies, feedstock availability, policy drivers, and integration into the circular bioeconomy (CBE) framework. Emphasis is placed on the valorisation of regionally abundant feedstocks such as olive pomace, citrus peel, grape marc, cactus pear (Opuntia ficus-indica) residues, livestock manure, and the Organic Fraction of Municipal Solid Waste (OFMSW). The multifunctionality of AD—producing renewable energy and nutrient-rich digestate—is highlighted for its dual role in reducing greenhouse gas (GHG) emissions and restoring soil health, especially in areas threatened by desertification such as Sicily (Italy), Spain, Malta, and Greece. The review also explores emerging innovations in biogas upgrading, nutrient recovery, and digital monitoring, along with the role of Renewable Energy Directive III (RED III) and national biomethane strategies in scaling up deployment. Case studies and decentralised implementation models underscore the socio-technical feasibility of biomethane systems across rural and insular territories. Despite significant potential, barriers such as feedstock variability, infrastructural gaps, and policy fragmentation remain. The paper concludes with a roadmap for research and policy to advance biomethane as a pillar of Mediterranean climate resilience, energy autonomy and sustainable agriculture within a circular bioeconomy paradigm. Full article
Show Figures

Figure 1

20 pages, 1759 KB  
Article
Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
by Malak Hamieh, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
AppliedChem 2025, 5(3), 15; https://doi.org/10.3390/appliedchem5030015 - 11 Jul 2025
Viewed by 371
Abstract
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were [...] Read more.
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were characterized using XRD, SEM, EDX, DRS, BET, and FTIR techniques. The FeCr/AC composite was applied as a heterogeneous photo-Fenton catalyst for the degradation of methylene blue (MB) dye in an aqueous solution under 25 W visible-light LED irradiation. Critical operational factors, such as FeCr/AC dosage, pH, MB concentration, and H2O2 levels, were optimized. Under optimal conditions, 97.56% of MB was removed within 120 min of visible-light exposure, following pseudo-first-order kinetics. The composite also exhibited high efficiency in degrading methyl orange dye (95%) and tetracycline antibiotic (88%) within 180 min, with corresponding first-order rate constants of 0.0225 min−1 and 0.0115 min−1, respectively. This study highlights the potential of FeCr/AC for treating water contaminated with dyes and pharmaceuticals, in line with the Sustainable Development Goals (SDGs) for water purification. Full article
Show Figures

Graphical abstract

22 pages, 5625 KB  
Article
Corrosion Resistance Mechanism in WC/FeCrNi Composites: Decoupling the Role of Spherical Versus Angular WC Morphologies
by Xiaoyi Zeng, Renquan Wang, Xin Tian and Ying Liu
Metals 2025, 15(7), 777; https://doi.org/10.3390/met15070777 - 9 Jul 2025
Cited by 1 | Viewed by 319
Abstract
In this study, we investigated the electrochemical corrosion behavior and mechanisms of FeCrNi/WC alloys with varying contents of CTC-S (spherical WC) and CTC-A (angular WC) in a 3.5 wt.% NaCl solution, addressing the corrosion resistance requirements for stainless steel composites in marine environments. [...] Read more.
In this study, we investigated the electrochemical corrosion behavior and mechanisms of FeCrNi/WC alloys with varying contents of CTC-S (spherical WC) and CTC-A (angular WC) in a 3.5 wt.% NaCl solution, addressing the corrosion resistance requirements for stainless steel composites in marine environments. The electrochemical test results demonstrate that the corrosion resistance of the alloy initially increases with the CTC-A content, followed by a decrease, which is associated with the formation, stability, and rupture of the passivated film. Nyquist and Bode diagrams for electrochemical impedance spectroscopy confirm that the charge transfer resistance of the passivated film is the primary determinant of the composite’s corrosion performance. A modest increase in CTC-A contributes to the formation of a more heterogeneous second phase, providing a physical barrier and enhancing solid solution strengthening, and thus delaying the cracking and corrosion processes of the passivation film. However, excessive CTC-A content leads to significant dissolution of the alloy’s reinforcement phase and promotes decarburization, resulting in the formation of corrosion pits, craters, and cracks that compromise the passivation film and expose fresh alloy surfaces to further corrosion. When the CTC-A content is 10% and the CTC-S content is 30%, this combination results in minimal degradation in the corrosion performance (0.213 μA·cm2) while balancing the hardness and toughness of the alloy. Additionally, electrochemical evaluations reveal that incorporating angular CTC-A particles at 10 vol% effectively delays the breakdown of the passivation film by mitigating the interfacial galvanic coupling through enhancing the mechanical interlocking at the WC/FeCrNi interface. The CTC-A/CTC-S hybrid system exhibits a remarkable 62% reduction in the pitting propagation rate compared to composites reinforced solely with spherical WC, which is attributed to the preferential dissolution of angular WC protrusions that sacrificially suppress crack initiation at the phase boundaries. Full article
Show Figures

Figure 1

15 pages, 9578 KB  
Article
Interface Engineering of NCMA Cathodes with LATP Coatings for High-Performance Solid-State Lithium Batteries
by Shih-Ping Cho, Muhammad Usman Hameed, Chien-Te Hsieh and Wei-Ren Liu
Nanomaterials 2025, 15(14), 1057; https://doi.org/10.3390/nano15141057 - 8 Jul 2025
Viewed by 589
Abstract
The development of high-performance and stable solid-state lithium batteries (SSBs) is critical for advancing next-generation energy storage technologies. This study investigates LATP (Li1.3Al0.3Ti1.7(PO4)3) coatings to enhance the electrochemical performance and interface stability of [...] Read more.
The development of high-performance and stable solid-state lithium batteries (SSBs) is critical for advancing next-generation energy storage technologies. This study investigates LATP (Li1.3Al0.3Ti1.7(PO4)3) coatings to enhance the electrochemical performance and interface stability of NCMA83 (LiNi0.83Co0.06Mn0.06Al0.05O2) cathodes. Compared to conventional combinations with LPSC (Li6PS5Cl) solid electrolytes, LATP coatings significantly reduce interfacial reactivity and improve cycling stability. Structural and morphological analyses reveal that LATP coatings maintain the crystallinity of NCMA83 while fine-tuning its lattice stress. Electrochemical testing demonstrates that LATP-modified samples (83L5) achieve superior capacity retention (65 mAh/g after 50 cycles) and reduced impedance (Rct ~200 Ω), compared to unmodified samples (83L0). These results highlight LATP’s potential as a surface engineering solution to mitigate degradation effects, enhance ionic conductivity, and extend the lifespan of high-capacity SSBs. Full article
(This article belongs to the Topic Surface Science of Materials)
Show Figures

Figure 1

Back to TopTop