Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = dehydron

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2659 KB  
Article
Analysis of Heterodimeric “Mutual Synergistic Folding”-Complexes
by Anikó Mentes, Csaba Magyar, Erzsébet Fichó and István Simon
Int. J. Mol. Sci. 2019, 20(20), 5136; https://doi.org/10.3390/ijms20205136 - 16 Oct 2019
Cited by 9 | Viewed by 2358
Abstract
Several intrinsically disordered proteins (IDPs) are capable to adopt stable structures without interacting with a folded partner. When the folding of all interacting partners happens at the same time, coupled with the interaction in a synergistic manner, the process is called Mutual Synergistic [...] Read more.
Several intrinsically disordered proteins (IDPs) are capable to adopt stable structures without interacting with a folded partner. When the folding of all interacting partners happens at the same time, coupled with the interaction in a synergistic manner, the process is called Mutual Synergistic Folding (MSF). These complexes represent a discrete subset of IDPs. Recently, we collected information on their complexes and created the MFIB (Mutual Folding Induced by Binding) database. In a previous study, we compared homodimeric MSF complexes with homodimeric and monomeric globular proteins with similar amino acid sequence lengths. We concluded that MSF homodimers, compared to globular homodimeric proteins, have a greater solvent accessible main-chain surface area on the contact surface of the subunits, which becomes buried during dimerization. The main driving force of the folding is the mutual shielding of the water-accessible backbones, but the formation of further intermolecular interactions can also be relevant. In this paper, we will report analyses of heterodimeric MSF complexes. Our results indicate that the amino acid composition of the heterodimeric MSF monomer subunits slightly diverges from globular monomer proteins, while after dimerization, the amino acid composition of the overall MSF complexes becomes more similar to overall amino acid compositions of globular complexes. We found that inter-subunit interactions are strengthened, and additionally to the shielding of the solvent accessible backbone, other factors might play an important role in the stabilization of the heterodimeric structures, likewise energy gain resulting from the interaction of the two subunits with different amino acid compositions. We suggest that the shielding of the β-sheet backbones and the formation of a buried structural core along with the general strengthening of inter-subunit interactions together could be the driving forces of MSF protein structural ordering upon dimerization. Full article
Show Figures

Figure 1

12 pages, 2098 KB  
Article
Physical Background of the Disordered Nature of “Mutual Synergetic Folding” Proteins
by Csaba Magyar, Anikó Mentes, Erzsébet Fichó, Miklós Cserző and István Simon
Int. J. Mol. Sci. 2018, 19(11), 3340; https://doi.org/10.3390/ijms19113340 - 26 Oct 2018
Cited by 7 | Viewed by 3690
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined 3D structure. Their disordered nature enables them to interact with several other proteins and to fulfil their vital biological roles, in most cases after coupled folding and binding. In this paper, we analyze IDPs involved in [...] Read more.
Intrinsically disordered proteins (IDPs) lack a well-defined 3D structure. Their disordered nature enables them to interact with several other proteins and to fulfil their vital biological roles, in most cases after coupled folding and binding. In this paper, we analyze IDPs involved in a new mechanism, mutual synergistic folding (MSF). These proteins define a new subset of IDPs. Recently we collected information on these complexes and created the Mutual Folding Induced by Binding (MFIB) database. These protein complexes exhibit considerable structural variation, and almost half of them are homodimers, but there is a significant amount of heterodimers and various kinds of oligomers. In order to understand the basic background of the disordered character of the monomers found in MSF complexes, the simplest part of the MFIB database, the homodimers are analyzed here. We conclude that MFIB homodimeric proteins have a larger solvent-accessible main-chain surface area on the contact surface of the subunits, when compared to globular homodimeric proteins. The main driving force of the dimerization is the mutual shielding of the water-accessible backbones and the formation of extra intermolecular interactions. Full article
Show Figures

Graphical abstract

Back to TopTop