Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = deodorizing preparation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2209 KB  
Article
Effect of Different Deodorants on SBS-Modified Asphalt Fume Emissions, Asphalt Road Performance, and Mixture Performance
by Zhaoyan Sheng, Ning Yan and Xianpeng Zhao
Processes 2025, 13(8), 2485; https://doi.org/10.3390/pr13082485 - 6 Aug 2025
Viewed by 443
Abstract
During large-scale pavement construction, the preparation of SBS-modified asphalt typically produces large amounts of harmful fumes. The emergence of deodorants can effectively alleviate the problem of smoke emissions during the asphalt manufacturing process. On the basis of ensuring the original road performance, exploring [...] Read more.
During large-scale pavement construction, the preparation of SBS-modified asphalt typically produces large amounts of harmful fumes. The emergence of deodorants can effectively alleviate the problem of smoke emissions during the asphalt manufacturing process. On the basis of ensuring the original road performance, exploring more suitable dosages and types of deodorant is urgently needed. Five commercial deodorants were evaluated using an asphalt smoke collection system, and UV-visible spectrophotometry (UV) was employed to screen the deodorants based on smoke concentration. Gas chromatography–mass spectrometry (GC-MS) was used to quantitatively analyze changes in harmful smoke components before and after adding two deodorants. Subsequently, the mechanisms of action of the two different types of deodorants were analyzed microscopically using fluorescence microscopy. Finally, the performance of bitumen and asphalt mixtures after adding deodorants was evaluated. The results showed that deodorant A (reactive type) and D (adsorption type) exhibited the best smoke suppression effects, with optimal addition rates of 0.6% and 0.5%, respectively. Deodorant A reduced benzene homologues by nearly 50% and esters by approximately 40%, while deodorant D reduced benzene homologues by approximately 70% and esters by approximately 60%, without producing new toxic gases. Both deodorants had a minimal impact on the basic properties of bitumen and the road performance of asphalt mixtures, with all indicators meeting technical specifications. This research provides a theoretical basis for the effective application of deodorants in the future, truly enabling a transition from laboratory research to large-scale engineering applications in the construction of environmentally friendly roads. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

18 pages, 6033 KB  
Article
Analysis of the Development and Thermal Properties of Chitosan Nanoparticle-Treated Palm Oil: An Experimental Investigation
by Varadharaja Kirthika, Chanaka Galpaya, Ashan Induranga, Amanda Sajiwanie, Vimukthi Vithanage and Kaveenga Rasika Koswattage
Nanomaterials 2025, 15(13), 972; https://doi.org/10.3390/nano15130972 - 22 Jun 2025
Viewed by 772
Abstract
This study is an effort to optimize the thermal properties of refined, bleached, and deodorized (RBD) oil by incorporating bionanoparticles. This study investigates the impact on thermal conductivity and thermal diffusivity by incorporating chitosan nanoparticles (CS-NPs) at different temperatures with varying weight fractions [...] Read more.
This study is an effort to optimize the thermal properties of refined, bleached, and deodorized (RBD) oil by incorporating bionanoparticles. This study investigates the impact on thermal conductivity and thermal diffusivity by incorporating chitosan nanoparticles (CS-NPs) at different temperatures with varying weight fractions of NPs. To the best of our knowledge, these synthesized CS-NPs from oyster mushrooms (Pleurotus ostreatus) and commercial marine-sourced CS-NPs are used for the first time to prepare nanofluids. These nanofluids offer high potential for industrial applications due to their biodegradability, biocompatibility, and nontoxicity. Fungal-sourced chitosan is a vegan-friendly alternative and does not contain allergic compounds, such as marine-sourced chitosan. The CS-NPs were synthesized using a chemical and mechanical treatment process at three different amplitudes, and CS-NPs at amplitude 80 were selected to prepare the nanofluid. Chitin, chitosan, and CS-NPs were characterized by the FTIR-ATR method, while the size and morphology of the CNs were analyzed by SEM. Thermal conductivity and thermal diffusivity of nanofluids and base fluid were measured using a multifunctional thermal conductivity meter (Flucon LAMBDA thermal conductivity meter) by ASTM D7896-19 within the temperature range 40–160 °C with step size 20. The thermal conductivity values were compared between commercial CS-NPs and synthesized CS-NPs treated with RBD palm olein with different weight percentages (0.01, 0.05, and 0.1 wt.%). It was confirmed that the thermal properties were enhanced in both kinds of nanoparticles added to RBD palm olein, and higher enhancement was observed in fungal-sourced CS-NPs treated with RBD palm olein. Maximum enhancement of thermal conductivity of commercial and synthesized CS-NPs treated with RBD palm olein were 4.28% and 7.33%, respectively, at 0.05 wt.%. Enhanced thermal conductivity of RBD palm olein by the addition of CS-NPs facilitates more effective heat transfer, resulting in quicker and more consistent cooking and other potential heat transfer applications. Full article
Show Figures

Figure 1

16 pages, 697 KB  
Article
Neutralization of Toxic Malodorous Gases from Cattle Slurry
by Katarzyna Kotarska, Wojciech Dziemianowicz, Anna Świerczyńska, Michał Lach and Barbara Sokołowska
Appl. Sci. 2025, 15(4), 1888; https://doi.org/10.3390/app15041888 - 12 Feb 2025
Viewed by 946
Abstract
This study investigated the ability of bacterial strains to neutralize odorous substances from cattle slurry (CS). The research was performed to develop a microbial preparation for the deodorization of CS. Among the strains of bacteria (Bacillus and Pseudomonas) isolated from natural [...] Read more.
This study investigated the ability of bacterial strains to neutralize odorous substances from cattle slurry (CS). The research was performed to develop a microbial preparation for the deodorization of CS. Among the strains of bacteria (Bacillus and Pseudomonas) isolated from natural environments, those with the highest ammonia and hydrogen sulfide reduction were selected, and the bacterial consortium was prepared. The biopreparation reduced ammonia by 98% in the unshaken culture and 100% in the aeration culture, after 10 days of incubation (compared to the initial sample). Complete elimination of hydrogen sulfide was noted on day 6 of the deodorization process for both cultures. The microbiological supplementation also had a positive effect on the chemical composition of the slurry, increasing its fertilizer value. The addition of biopreparation to the slurry resulted in a reduced loss of ammonium ions and increased nitrogen concentration by 29%. It was found that the use of the microbial consortium also increased the availability of potassium and phosphorus, which can be used in agricultural production. Nitrogen retention by microorganisms in the slurry increases its organic value and leads to a reduction in the use of mineral fertilizers. Full article
Show Figures

Figure 1

14 pages, 2606 KB  
Article
Characterization of Fume Suppression Effect and Performance of SBS-Modified Asphalt with Deodorant
by Yinan Guo, Yu Zhao, Lianghao Sun, Xiuchen Xu and Hongchao Zhang
Processes 2024, 12(11), 2603; https://doi.org/10.3390/pr12112603 - 19 Nov 2024
Cited by 4 | Viewed by 1020
Abstract
SBS-modified asphalt produces a large number of hazardous fumes in the preparation process, which severely endangers health and causes environmental pollution. This paper details the design of a fume generation and collection device for asphalt and proposed a comprehensive method for analyzing fume [...] Read more.
SBS-modified asphalt produces a large number of hazardous fumes in the preparation process, which severely endangers health and causes environmental pollution. This paper details the design of a fume generation and collection device for asphalt and proposed a comprehensive method for analyzing fume composition. Two deodorants were incorporated into SBS-modified asphalt to mitigate the hazards of the original hazardous emissions. Then, ultraviolet–visible spectrophotometry, gas chromatography–mass spectrometry, and Fourier-transform infrared spectroscopy were combined to analyze the main component differences between asphalt fumes before and after adding deodorant, and to specify the mechanism of action of deodorants on hazardous fumes and SBS-modified asphalt. Finally, the road performance, including the physical and rheological properties of SBS-modified asphalt blended with deodorant, was evaluated. The results indicated that both deodorizers were effective in reducing the emission of hazardous substances in the fumes of SBS-modified asphalt, and no new hazardous substances were generated. Under hot mixing conditions, the addition of 0.3% of deodorant A (high boiling point ester) was effective in reducing the emission of volatile organic compounds (VOCs) by up to 41.7%, while the reduction in benzene congeners reached at least 50%. On the other hand, 1% of deodorant B (silica–magnesium compounds) reduced the emissions of VOCs and benzene congeners by 36% and 20–42%, respectively, under the same conditions. Furthermore, the addition of deodorant did not affect the original road performance, and even improved the rheological properties to a certain extent, which was conducive to the application of deodorant in pavement engineering. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 738 KB  
Article
Effect of Mineral–Microbial Deodorizing Preparation on the Value of Poultry Manure as Soil Amendment
by Andrzej Cezary Żołnowski, Tadeusz Bakuła, Elżbieta Rolka and Andrzej Klasa
Int. J. Environ. Res. Public Health 2022, 19(24), 16639; https://doi.org/10.3390/ijerph192416639 - 11 Dec 2022
Cited by 13 | Viewed by 2425
Abstract
Poultry farming involves the production of poultry manures (PMs), which, if properly managed, are excellent organic soil amendments. Poultry farms generally do not have adequate arable land, and therefore, valuable fertilizer becomes a problematic waste. During the production and storage of PMs, odorous [...] Read more.
Poultry farming involves the production of poultry manures (PMs), which, if properly managed, are excellent organic soil amendments. Poultry farms generally do not have adequate arable land, and therefore, valuable fertilizer becomes a problematic waste. During the production and storage of PMs, odorous VOCs, NH4, H2S, and potent greenhouse gases such as CH4, CO2 are emitted. It influences the productivity of poultry and negatively affects the working conditions of working staff. In the present study, mineral–microbial deodorizing preparations (MMDP) based on perlite and bentonite as well as the following microorganism strains Lactobacillus plantarum, Leuconostoc mesenteroides, Bacillus megaterium, B. subtilis, and Pseudomonas fluorescens were added to the litter of turkey broilers (TB) and egg-laying hens (LH). PMs were compared with treatments without the addition of MMDP, and maize, sunflower, and rapeseed forage crops were tested. The influence on soil parameters such as pH, EC, HAC, SBC, CEC, BS, Ntot, Ctot, and plant yield and parameter of photosynthesis, i.e., SPAD index, was tested. Soil amending with manure resulted in an increase in pH and a decrease in HAC; in addition, an increase in EC, which was counteracted by the addition of MMDP, was noted. MMDP positively affected parameters such as SBC, CEC, and BS. It was shown that PMs, with the addition of MMDP, improved crops’ yield in the first year of the study, whereas this effect was not seen for the after-crop plants (lupine). The main ‘added value’ related to the usage of MMDP in poultry production is the improvement in the properties of PMs, which mainly had a positive effect on soil indicators. Full article
(This article belongs to the Special Issue Sustainable Agriculture: Soil Health and Waste Management)
Show Figures

Figure 1

19 pages, 7684 KB  
Article
3-Aminopyridine Salicylidene: A Sensitive and Selective Chemosensor for the Detection of Cu(II), Al(III), and Fe(III) with Application to Real Samples
by Yousef M. Hijji, Rajeesha Rajan and Amjad M. Shraim
Int. J. Mol. Sci. 2022, 23(21), 13113; https://doi.org/10.3390/ijms232113113 - 28 Oct 2022
Cited by 11 | Viewed by 2300
Abstract
Interest in developing selective and sensitive metal sensors for environmental, biological, and industrial applications is mounting. The goal of this work was to develop a sensitive and selective sensor for certain metal ions in solution. The goal was achieved via (i) preparing the [...] Read more.
Interest in developing selective and sensitive metal sensors for environmental, biological, and industrial applications is mounting. The goal of this work was to develop a sensitive and selective sensor for certain metal ions in solution. The goal was achieved via (i) preparing the sensor ((E)-2-((pyridine-3-ylimino)methyl)phenol) (3APS) using microwave radiation in a short time and high yield and (ii) performing spectrophotometric titrations for 3APS with several metal ions. 3APS, a Schiff base, was prepared in 5 min and in a high yield (95%) using microwave-assisted synthesis. The compound was characterized by FTIR, XRD, NMR, and elemental analysis. Spectrophotometric titration of 3APS was performed with Al(III), Ba(II), Cd(II), Co(II), Cu(II), Fe(III), Mn(II), Ni(II), and Zn(II). 3APS showed good abilities to detect Al(III) and Fe(III) ions fluorescently and Cu(II) ion colorimetrically. The L/M stoichiometric ratio was 2:1 for Cu(II) and 1:1 for Al(III) and Fe(III). Low detection limits (μg/L) of 324, 20, and 45 were achieved for Cu(II), Al(III), and Fe(III), respectively. The detection of aluminum was also demonstrated in antiperspirant deodorants, test strips, and applications in secret writing. 3APS showed high fluorescent selectivity for Al(III) and Fe(III) and colorimetric selectivity towards Cu(II) with detection limits lower than corresponding safe drinking water guidelines. Full article
Show Figures

Figure 1

16 pages, 2741 KB  
Article
Removal of Hydrogen Sulfide and Ammonia Using a Biotrickling Filter Packed with Modified Composite Filler
by Yue Wang, Ruoqi Cui, Hairong Jiang, Miao Bai, Kaizong Lin, Minglu Zhang and Lianhai Ren
Processes 2022, 10(10), 2016; https://doi.org/10.3390/pr10102016 - 5 Oct 2022
Cited by 9 | Viewed by 2594
Abstract
The purpose of this study was to evaluate the performance of laboratory-scale biotrickling filters (BTFs) packed with composite filler and pine bark filler under different operating conditions in purifying mixed gas containing H2S and NH3. The composite filler was [...] Read more.
The purpose of this study was to evaluate the performance of laboratory-scale biotrickling filters (BTFs) packed with composite filler and pine bark filler under different operating conditions in purifying mixed gas containing H2S and NH3. The composite filler was prepared with modified activated carbon and loaded with functional microbes, using the microbial immobilization technology combined with a nutrient sustained-release composite filler. The results showed that the composite filler could better adapt to low empty bed retention time (EBRT) and high inlet concentration than the pine bark filler. When EBRT was 40 s and the inlet load was 41 g/m3·h, the NH3 removal efficiency of the composite filler was kept above 80%, and when the inlet load was 61.5 g/m3·h, it could be stabilized at about 60%. When EBRT exceeds 34 s, the H2S removal efficiency of the two BTFs was maintained at 100%. Yet, when EBRT was 34 s, the H2S removal efficiency of the bark filler BTF dropped to <80%. The microbial diversity and richness of the bark filler BTF were significantly higher than those of the composite filler BTF, which had higher community similarity under each working condition. However, the proportion of predominant bacteria in the composite filler BTF was higher than that of the bark filler BTF. As the inlet load increased, the diversity of predominant bacteria of the composite filler BTF increased, which means that the predominant bacteria were less inhibited by high-concentration odorous gases. The predominant bacteria with deodorizing function in the composite filler BTF included Pseudomonas, Comamonas, and Trichococcus, which might jointly complete nitrogen’s nitrification and denitrification processes. The proportion of these three bacteria in the composite filler BTF was higher than in the bark filler BTF. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

3 pages, 222 KB  
Proceeding Paper
Effect of Temperature on Sorption and Strength Properties of Regenerated Activated Carbons
by Łukasz Winconek and Katarzyna Ignatowicz
Environ. Sci. Proc. 2022, 18(1), 6; https://doi.org/10.3390/environsciproc2022018006 - 12 Aug 2022
Viewed by 1439
Abstract
Activated carbon (AC) is produced by either a physical or chemical activation process. It is used in various industries such as water treatment, air purification, and in the processes of clarification, liquid deodorization, and alcohol distillation. They are also used for the recovery [...] Read more.
Activated carbon (AC) is produced by either a physical or chemical activation process. It is used in various industries such as water treatment, air purification, and in the processes of clarification, liquid deodorization, and alcohol distillation. They are also used for the recovery of volatile compounds from post-production and waste gases, as well as the recovery of active substances in the pharmaceutical industry. They are also used in technological processes during the production of a number of pharmaceutical, biochemical, and chemical preparations. In order to restore the original physicochemical parameters of granular activated carbon (GAC), we must carry out a regeneration process at high temperature (600–850 °C). During the process, high-pressure steam and carbon dioxide are injected into the regeneration kiln. The conducted research focused on the effect of the temperature of the regeneration process on the sorption and strength parameters of the WG-12 activated carbon samples tested. The entire process was carried out in a laboratory tube kiln MTTF-1200 under identical conditions for both samples. The results showed that the effect of temperature on the regeneration process is very significant. In both cases, it was observed that, as the specified temperature was exceeded, the adsorption capacity and mechanical strength of the tested activated carbon decreased. The efficiency of the process also deteriorated. Full article
(This article belongs to the Proceedings of Innovations-Sustainability-Modernity-Openness Conference (ISMO’22))
10 pages, 1592 KB  
Article
Anti-Aging Effects of Terminalia bellirica, Phyllanthus emblica, Triphala, and Carica papaya Extracts for Sustainable Youth
by Mijeong Choi
Sustainability 2022, 14(2), 676; https://doi.org/10.3390/su14020676 - 8 Jan 2022
Cited by 6 | Viewed by 5961
Abstract
As the human lifespan becomes longer, many people invest time and money in managing external beauty. However, managing external beauty has the disadvantage of causing side effects or that the effect does not last. Therefore, research and development are required to maximize effectiveness, [...] Read more.
As the human lifespan becomes longer, many people invest time and money in managing external beauty. However, managing external beauty has the disadvantage of causing side effects or that the effect does not last. Therefore, research and development are required to maximize effectiveness, eco-friendliness, and sustainably in beauty management. The purpose of this study was to experimentally identify the anti-aging effects, such as skin wrinkle and elasticity improvement, of extracts from Bahera, Phyllanthus emblica, Triphala, and Carica papaya, and to confirm their development as whitening and wrinkle functional cosmetic materials. In this study, a solid mixture was prepared using eco-friendly Terminalia bellirica, amla (Phyllanthus emblica), Triphala, and Carica papaya, and experimental samples were extracted. Antioxidant tests, antibacterial activity tests, polyphenol and flavonoid content, and deodorization tests were conducted to test the efficacy of experimental samples. The procedures and methods of these experiments are summarized in the following article. In this study, we found that the Bahera, Phyllanthus emblica, Triphala, and Carica papaya extracts had significant effects on whitening and wrinkle improvement, and that the effects of using ethanol-based extracts as the co-solvent were even greater. In other words, extracts of Bahera, Phyllanthus emblica, Triphala and Carica papaya showed antioxidant, whitening, and anti-wrinkle effects, and extracts that used ethanol as a co-solvent showed greater effects. In particular, we found that the optimal concentration of ethanol as a co-solvent maximizes its effectiveness at 70%. Full article
Show Figures

Figure 1

11 pages, 871 KB  
Article
Effect of a Mineral–Microbial Deodorizing Preparation on the Functions of Internal Organs and the Immune System in Commercial Poultry
by Joanna Kowalczyk, Bartłomiej Tykałowski, Marcin Śmiałek, Tomasz Stenzel, Daria Dziewulska and Andrzej Koncicki
Animals 2021, 11(9), 2592; https://doi.org/10.3390/ani11092592 - 3 Sep 2021
Cited by 3 | Viewed by 2643
Abstract
Animal production is identified as one of the main sources of high concentrations of odours, which are related to air pollution, health problems of living organisms and indirect negative impact on production results. One common method for reducing emissions of ammonia is using [...] Read more.
Animal production is identified as one of the main sources of high concentrations of odours, which are related to air pollution, health problems of living organisms and indirect negative impact on production results. One common method for reducing emissions of ammonia is using preparations containing probiotics and hygroscopic or disinfecting compounds. This study was undertaken in order to determine the impact of innovative mineral–microbial deodorizing preparation, which reduces odorous gases, applying to the litter once a week in poultry houses on the physiological status of breeder chickens, broiler chickens and turkeys. Samples were collected after slaughter and analyzed using ELISA tests, flow cytometry and biochemical methods. Biochemical markers of the liver and kidney profile (ALT, AST, LDH, ALP, CK, TP, CALC, PHOS) and the titers of specific antibodies against AEV, aMPV, AAvV-1, IBDV, HEV, BA were analyzed in serum samples. The percentage contribution of T and B lymphocyte subpopulations was determined in the samples of tracheal mucosa, blood, and spleen. No significant differences were found between the control and experimental group with regard to all the analyzed parameters, with some exceptions for biochemistry. The results of our study indicated that mineral–microbial deodorizing preparation did not affect the physiological status of birds. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

11 pages, 4078 KB  
Communication
An Efficient Catalyst Prepared from Residual Kaolin for the Esterification of Distillate from the Deodorization of Palm Oil
by Alex de Nazaré de Oliveira, Irlon Maciel Ferreira, David Esteban Quintero Jimenez, Fernando Batista Neves, Linéia Soares da Silva, Ana Alice Farias da Costa, Erika Tallyta Leite Lima, Luíza Helena de Oliveira Pires, Carlos Emmerson Ferreira da Costa, Geraldo Narciso da Rocha Filho and Luís Adriano Santos do Nascimento
Catalysts 2021, 11(5), 604; https://doi.org/10.3390/catal11050604 - 7 May 2021
Cited by 11 | Viewed by 3201
Abstract
The distillate from the deodorization of palm oil (DDPO) is an agro-industrial residue, approximately 84% of which consists of free fatty acids (FFAs), which can be used for the production of fatty acid ethyl esters (FAEE). A catalyst (10HPMo/AlSiM) obtained from a waste [...] Read more.
The distillate from the deodorization of palm oil (DDPO) is an agro-industrial residue, approximately 84% of which consists of free fatty acids (FFAs), which can be used for the production of fatty acid ethyl esters (FAEE). A catalyst (10HPMo/AlSiM) obtained from a waste material, Amazon flint kaolin, was applied in the esterification of the DDPO, reaching a conversion index of 94%, capable of maintaining satisfactory activity (>75%) after four consecutive cycles. Flint kaolin is therefore proven to be an efficient option in the search for new heterogeneous low-cost catalysts obtained from industrial by-products, contributing to the reduction of environmental impact and adding value to widely available wastes that would otherwise be discarded directly into the environment. Based on the catalytic results, esterification of DDPO using 10HPMo/AlSiM can be a cheaper alternative for the production of sustainable fuels. Full article
(This article belongs to the Special Issue Catalytic Applications of Clay Minerals and Hydrotalcites)
Show Figures

Graphical abstract

14 pages, 1053 KB  
Proceeding Paper
Profile of Volatile Organic Compounds (VOCs) from Cold-Processed and Heat-Treated Virgin Coconut Oil (VCO) Samples
by Ian Ken D. Dimzon, Grace B. Tantengco, Noel A. Oquendo and Fabian M. Dayrit
Proceedings 2021, 70(1), 85; https://doi.org/10.3390/foods_2020-07723 - 10 Nov 2020
Cited by 3 | Viewed by 4321
Abstract
Virgin coconut oil (VCO) can be prepared with or without heat. Fermentation and centrifuge processes can be done without the use of heat (cold process), while expelling involves heat due to friction. Volatile organic compounds (VOCs) from VCO samples prepared using these three [...] Read more.
Virgin coconut oil (VCO) can be prepared with or without heat. Fermentation and centrifuge processes can be done without the use of heat (cold process), while expelling involves heat due to friction. Volatile organic compounds (VOCs) from VCO samples prepared using these three methods were collected using solid phase microextraction (SPME) and analyzed using gas chromatography–mass spectrometry (GC-MS). Twenty-seven VCO samples from nine VCO producers were analyzed. The VOCs from refined, bleached, and deodorized coconut oil (RBDCO) were also obtained for comparison. Fourteen compounds were found to be common in more than 80% of the VCO samples analyzed. These included: Acetic acid; C6, C8, C10, C12, and C14 fatty acids, and their corresponding delta-lactones; and C8, C10 and C12 ethyl carboxylates. Fourteen minor VOCs were likewise detected which can be grouped into five types: Carboxylic acids (formic acid, butanoic acid, benzoic acid, and pentadecanoic acid), ketones (acetoin, 2-heptanone), an alcohol (ethanol), aldehydes (acetaldehyde, hexanal, benzaldehyde), esters (ethyl acetate, methyl tetradecanoate), and hydrocarbons (n-hexane and toluene). Five pyrazines were detected in expeller VCO. Various hydrocarbons from C5 to C14 were noted to be higher in old RBDCO and VCO samples. There were variations in the VOCs within each VCO process as each producer used different processing times, temperatures, and drying procedures. Principal components analysis (PCA) was able to group the samples according to the process used, but there were overlaps which may be due to variations in the specific procedures used by the manufacturers. These results may help VCO manufacturers control their production processes. Full article
Show Figures

Figure 1

11 pages, 503 KB  
Article
Fatty Acid Ethyl Esters in Virgin Olive Oils: In-House Validation of a Revised Method
by Rosa Palagano, Enrico Valli, Matilde Tura, Chiara Cevoli, María del Carmen Pérez-Camino, Wenceslao Moreda, Alessandra Bendini and Tullia Gallina Toschi
Foods 2020, 9(7), 924; https://doi.org/10.3390/foods9070924 - 14 Jul 2020
Cited by 3 | Viewed by 4632
Abstract
The content of fatty acid ethyl esters (FAEEs) is one of the quality parameters to define if an olive oil can be classified as extra virgin as these compounds are considered markers for virgin olive oils obtained from poor-quality olives. In addition, FAEEs [...] Read more.
The content of fatty acid ethyl esters (FAEEs) is one of the quality parameters to define if an olive oil can be classified as extra virgin as these compounds are considered markers for virgin olive oils obtained from poor-quality olives. In addition, FAEEs can also be indirect markers to detect soft deodorization treatment. In this study, an off-line HPLC-GC-FID method for determination of FAEEs is presented, revising the preparative step and the GC injector required by the official method (EU Reg. 61/2011). After optimization, the method was validated in-house by analyzing several parameters (linearity, limit of detection LOD, limit of quantification LOQ, robustness, recovery, precision, and accuracy) to determine its effectiveness. Linearity was measured in the 2.5–50 mg/L range; furthermore, intra-day and inter-day precision values were lower than 15%, while the LOD and LOQ were lower than 1 and 1.5 mg/kg, respectively, for all compounds considered. The main advantages of this revised protocol are: (i) significant reduction in time and solvents needed for each analytical determination; (ii) application of HPLC as an alternative to traditional LC, carried with manually packed glass columns, thus simplifying the separation step. Full article
Show Figures

Graphical abstract

14 pages, 674 KB  
Article
The Influence of the Mineral–Microbial Deodorizing Preparation on Ammonia Emission and Growth Performance in Turkey Production
by Remigiusz Gałęcki, Michał Dąbrowski, Tadeusz Bakuła, Kazimierz Obremski, Mirosław Baranowski, Adriana Nowak and Beata Gutarowska
Atmosphere 2020, 11(7), 743; https://doi.org/10.3390/atmos11070743 - 13 Jul 2020
Cited by 2 | Viewed by 3602
Abstract
In our previous in vitro research and also in laying hen production, attempts were made to minimise ammonia emissions in poultry houses with the use of Deodoric® biopreparation. The objective of the present research was to evaluate the influence of the Deodoric [...] Read more.
In our previous in vitro research and also in laying hen production, attempts were made to minimise ammonia emissions in poultry houses with the use of Deodoric® biopreparation. The objective of the present research was to evaluate the influence of the Deodoric® on ammonia (NH3) emission and turkey growth performance in a semi-industrial production system. Significant differences in NH3 emission (p-value < 0.001), body weight (p-value < 0.001) and relative humidity (p-value < 0.001) were observed between the control group (C) and the experimental group (E) where Deodoric® was applied. In group C, an increase in ammonia concentration in air could have contributed to a decrease in the body weight of turkeys, but the above correlation was not observed in group E. In the control group, a relatively strong correlation between NH3 emission and temperature (p-value = 0.0009; r = 0.74) and moderate correlations between NH3 emission vs. relative humidity (p-value = 0.01; r = 0.59), air speed (p-value = 0.015; r = 0.60) and cooling (p-value = 0.005; r = 0.66) were noted. Studied correlations were not observed in group E. The preparation did not affect microbial levels in manure or body samples. Throughout the experiment, significant differences in the number of mesophilic bacteria (for the model: F = 46.14, p-value = 0.09; for mesophilic microorganisms: F = 3.29, p-value = 0.045) and Campylobacter spp. (for the model: F = 24.96, p-value = 0.008; for Campylobacter spp.: F = 0.25, p-value = 0.64) were not observed between group C and group E. The administration of Deodoric® to manure decreased NH3 concentration in the air and increased weight gains in the experimental group of turkeys relative to group C. Preparation may be applied in poultry farms to improve poultry farming conditions. Full article
(This article belongs to the Special Issue Livestock Odor and Air Quality)
Show Figures

Figure 1

14 pages, 1727 KB  
Article
Concentrated Bioshell Calcium Oxide (BiSCaO) Water Kills Pathogenic Microbes: Characterization and Activity
by Shingo Nakamura, Masayuki Ishihara, Yoko Sato, Tomohiro Takayama, Sumiyo Hiruma, Naoko Ando, Koichi Fukuda, Kaoru Murakami and Hidetaka Yokoe
Molecules 2020, 25(13), 3001; https://doi.org/10.3390/molecules25133001 - 30 Jun 2020
Cited by 11 | Viewed by 3957
Abstract
Bioshell calcium oxide (BiSCaO) exhibits deodorizing properties and broad microbicidal activity. In this study, we examined possible utility of BiSCaO Water for that purpose. BiSCaO Water was prepared by adding 10 wt% BiSCaO to clean water and gently collecting the supernatant in a [...] Read more.
Bioshell calcium oxide (BiSCaO) exhibits deodorizing properties and broad microbicidal activity. In this study, we examined possible utility of BiSCaO Water for that purpose. BiSCaO Water was prepared by adding 10 wt% BiSCaO to clean water and gently collecting the supernatant in a bottle. The same volume of clean water was gently poured onto the BiSCaO precipitate and the supernatant was gently collected in a bottle; this process was repeated fifty times. The produced BiSCaO Water contained nanoparticles (about 400–800 nm) composed of smaller nanoparticles (100–200 nm), and was colorless and transparent, with a pH > 12.7. In vitro assays demonstrated that BiSCaO Water eliminated more than 99.9% of influenza A (H1N1) and Feline calicivirus, Escherichia coli such as NBRC 3972 and O-157:H7, Pseudomonas aeruginosa, Salmonella, and Staphylococcus aureus within 15 min. We compared BiSCaO Water with the other microbicidal reagents such as ethanol, BiSCaO, BiSCa(OH)2 suspensions, povidone iodine, NaClO, BiSCaO dispersion and colloidal dispersion with respect to deodorization activity and microbicidal efficacy. The results showed that BiSCaO Water was a potent reagent with excellent deodorization and disinfection activities against pathogenic bacteria and viruses (including both enveloped and nonenveloped viruses). Full article
(This article belongs to the Special Issue Recent Advances in the Development of Antimicrobial Agents)
Show Figures

Figure 1

Back to TopTop