Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,319)

Search Parameters:
Keywords = depth profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2202 KB  
Article
Modulation of Piceatannol Skin Diffusion by Spilanthol and UV Filters: Insights from the Strat-M™ Model
by Gisláine C. da Silva, Rodney A. F. Rodrigues and Carla B. G. Bottoli
Dermato 2025, 5(4), 19; https://doi.org/10.3390/dermato5040019 - 7 Oct 2025
Abstract
Background: currently, there is a growing trend toward multifunctional cosmetics, which combine several active ingredients in a single product to enhance efficacy and user convenience. As ingredients may influence one another, it is important to study the behavior of mixing multiple compounds in [...] Read more.
Background: currently, there is a growing trend toward multifunctional cosmetics, which combine several active ingredients in a single product to enhance efficacy and user convenience. As ingredients may influence one another, it is important to study the behavior of mixing multiple compounds in complex formulations, especially regarding their interaction with the skin. Piceatannol, for instance, is a naturally occurring stilbene recognized for its in vitro potent antioxidant, anti-inflammatory, and anti-aging activities, making it a promising candidate for dermocosmetic use in suncare. But despite its beneficial biological activities, its cutaneous permeation remains poorly understood, particularly when delivered from complex formulations containing multiple ingredients. Objectives: in this sense, this study aimed to evaluate the in vitro skin diffusion profile of piceatannol from a passion fruit seed extract (Pext) incorporated into a topical base (Bem) or an organic sunscreen emulsion (Oem), with or without a spilanthol-rich Acmella oleracea extract (Jext) used as a natural permeation enhancer. Methods: due to ethical and variability issues with human and animal skins, the Strat-M™ synthetic membrane was chosen as a standardized model for the in vitro skin permeation assays. Piceatannol localization within membrane layers was examined by confocal Raman microscopy (CRM), while compound identification in donor and receptor compartments was performed via UHPLC-DAD. Results: piceatannol from Bem was detected up to 140 µm from the Strat-M™ surface and exceeded 180 µm in depth when Jext and organic sunscreens were included in the formulation. Notably, formulations containing Jext and those based on Oem promoted enhanced accumulation in both the stratum corneum and deeper skin layers, suggesting an improved delivery potential in lipid-rich vehicles. Conclusions: even though some instability issues were observed, piceatannol penetration into Strat-M™ from the proposed formulations was confirmed, and the results provide a foundation for further research on its topical delivery, supporting the rational development of formulations capable of harnessing its demonstrated biological properties. Full article
(This article belongs to the Special Issue Systemic Photoprotection: New Insights and Novel Approaches)
Show Figures

Figure 1

23 pages, 11972 KB  
Article
The Variability in the Thermophysical Properties of Soils for Sustainability of the Industrial-Affected Zone of the Siberian Arctic
by Tatiana V. Ponomareva, Kirill Yu. Litvintsev, Konstantin A. Finnikov, Nikita D. Yakimov, Georgii E. Ponomarev and Evgenii I. Ponomarev
Sustainability 2025, 17(19), 8892; https://doi.org/10.3390/su17198892 - 6 Oct 2025
Viewed by 24
Abstract
The sustainability of Arctic ecosystems that are extremely vulnerable is contingent upon the state of cryosoils. Understanding the principles of ecosystem stability in permafrost conditions, particularly under external natural or human-induced influences, necessitates an examination of the thermal and moisture regimes of the [...] Read more.
The sustainability of Arctic ecosystems that are extremely vulnerable is contingent upon the state of cryosoils. Understanding the principles of ecosystem stability in permafrost conditions, particularly under external natural or human-induced influences, necessitates an examination of the thermal and moisture regimes of the seasonally thawed soil layer. The study concentrated on the variability in the soil’s thermophysical properties in Central Siberia’s permafrost zone (the northern part of Krasnoyarsk Region, Taimyr, Russia). In the industrially affected area of interest, we evaluated and contrasted the differences in the thermophysical properties of soils between two opposing types of landscapes. On the one hand, these are soils that are characteristic of the natural landscape of flat shrub tundra, with a well-developed moss–lichen cover. An alternative is the soils in the landscape, which have exhibited significant degradation in the vegetation cover due to both natural and human-induced factors. The heat-insulating properties of background areas are controlled by the layer of moss and shrubs, while its disturbance determines the excessive heating of the soil at depth. In comparison to the background soil characteristics, degradation of on-ground vegetation causes the active layer depth of the soils to double and the temperature gradient to decrease. With respect to depth, we examine the changes in soil temperature and heat flow dynamics (q, W/m2). The ranges of thermal conductivity (λ, W/(m∙K)) were assessed using field-measured temperature profiles and heat flux values in the soil layers. The background soil was discovered to have lower thermal conductivity values, which are typical of organic matter, in comparison to the soil of the transformed landscape. Thermal diffusivity coefficients for soil layers were calculated using long-term temperature monitoring data. It is shown that it is possible to use an adjusted model of the thermal conductivity coefficient to reconstruct the dynamics of moisture content from temperature dynamics data. A satisfactory agreement is shown when the estimated (Wcalc, %) and observed (Wexp, %) moisture content values in the soil layer are compared. The findings will be employed to regulate the effects on landscapes in order to implement sustainable nature management in the region, thereby preventing the significant degradation of ecosystems and the concomitant risks to human well-being. Full article
(This article belongs to the Special Issue Land Use Strategies for Sustainable Development)
Show Figures

Figure 1

19 pages, 2404 KB  
Systematic Review
Multifaceted Antibiotic Resistance in Diabetic Foot Infections: A Systematic Review
by Weiqi Li, Oren Sadeh, Jina Chakraborty, Emily Yang, Paramita Basu and Priyank Kumar
Microorganisms 2025, 13(10), 2311; https://doi.org/10.3390/microorganisms13102311 - 6 Oct 2025
Viewed by 137
Abstract
Diabetic foot infections (DFIs) are a significant complication in patients with diabetes, often leading to severe clinical complications including amputation and increased mortality rates. The effective management of these infections is complicated by the rise in antibiotic resistance among the microbial populations involved. [...] Read more.
Diabetic foot infections (DFIs) are a significant complication in patients with diabetes, often leading to severe clinical complications including amputation and increased mortality rates. The effective management of these infections is complicated by the rise in antibiotic resistance among the microbial populations involved. In this paper, we undertake a systematic review and meta-analysis to explore the bacterial profiles, as well as their antibiotic resistance patterns in DFIs, encompassing studies published between 2014 and 2024. A total of 28 studies were selected from several databases, including PubMed, Google Scholar, EBSCOhost, and ScienceDirect, published from 2014 to 2024, specifically focusing on diabetic foot infections and antibiotic resistance. Diabetic foot infections arise from a combination of factors, including peripheral neuropathy, poor circulation, and immune system impairment, making diabetic patients prone to unnoticed injuries, impaired wound healing, and a higher risk of infections. The severity of DFIs often depends on the size and depth of the ulcers, with larger, deeper ulcers posing additional risks of infection and complications, such as osteomyelitis and sepsis. Our study synthesizes information on the total isolates of microbes, their resistance to one or more groups of antibiotics, and resistance panel results across multiple antibiotics, including amoxicillin/clavulanate, trimethoprim/sulfamethoxazole, ciprofloxacin, and others. We meticulously catalog the resistance of key bacterial strains—Escherichia coli, Enterobacter spp., Proteus spp., Pseudomonas spp., Staphylococcus aureus, and others—highlighting patterns of resistance to single and multiple antibiotic groups. This systematic review also analyzes the correlations of various comorbidities reported by the diabetic foot infection patient populations in the included studies with multiple antibiotic resistance patterns. Subsequently, this analytical review study addresses the rising prevalence of antibiotic-resistant pathogens and underscores the need for antibiotic stewardship programs to promote judicious use of antibiotics, reduce the spread of resistant strains, and enhance therapeutic outcomes. In addition, the review discusses the implications of resistance to empirical antibiotic treatments, underscoring the necessity for tailored antibiotic therapy based on culture and sensitivity results to optimize treatment outcomes. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

23 pages, 5736 KB  
Article
Novel Imaging Devices: Coding Masks and Varifocal Systems
by Cristina M. Gómez-Sarabia and Jorge Ojeda-Castañeda
Appl. Sci. 2025, 15(19), 10743; https://doi.org/10.3390/app151910743 - 6 Oct 2025
Viewed by 147
Abstract
To design novel imaging devices, we use masks coded with numerical sequences. These masks work in conjunction with varifocal systems that implement zero-throw tunable magnification. Some masks control field depth, even when the size of the pupil aperture remains fixed. Pairs of vortex [...] Read more.
To design novel imaging devices, we use masks coded with numerical sequences. These masks work in conjunction with varifocal systems that implement zero-throw tunable magnification. Some masks control field depth, even when the size of the pupil aperture remains fixed. Pairs of vortex masks are used to implement tunable phase radial profiles, like axicons and lenses. The autocorrelation properties of the Barker sequences are applied to the generation of narrow passband windows on the OTF. For this application, we apply Barker matrices in rectangular coordinates. A similar procedure, but now in polar coordinates, is useful for sensing in-plane rotations. We implement geometrical transformations by using zero-throw, tunable, anamorphic magnifications. Full article
Show Figures

Figure 1

13 pages, 2731 KB  
Article
Suitability of Polyacrylamide-Based Dosimetric Gel for Proton and Carbon Ion Beam Geometric Characterization
by Riccardo Brambilla, Luca Trombetta, Gabriele Magugliani, Stefania Russo, Alessia Bazani, Eleonora Rossi, Eros Mossini, Elena Macerata, Francesco Galluccio, Mario Mariani and Mario Ciocca
Gels 2025, 11(10), 794; https://doi.org/10.3390/gels11100794 - 2 Oct 2025
Viewed by 172
Abstract
Experimental measurement of dose distributions is a pivotal step in the quality assurance of radiotherapy treatments, especially for those relying on high delivery accuracy such as hadron therapy. This study investigated the response of a polymer gel dosimeter to determine its suitability in [...] Read more.
Experimental measurement of dose distributions is a pivotal step in the quality assurance of radiotherapy treatments, especially for those relying on high delivery accuracy such as hadron therapy. This study investigated the response of a polymer gel dosimeter to determine its suitability in performing geometric beam characterizations for hadron therapy under high-quenching conditions. Different extraction energies of proton and carbon ion beams were considered. Gel dose–response linearity and long-term stability were confirmed through optical measurements. Gel phantoms were irradiated with pencil beams and analyzed via magnetic resonance imaging. A multi-echo T2-weighted sequence was used to reconstruct depth–dose profiles and transversal distributions acquired by the gels, which were benchmarked against reference data. As expected, a response-quenching effect in the Bragg peak region was noted. Nonetheless, the studied gel formulation proved reliable in acquiring the geometric characteristics of the beams, even without correcting for the quenching effect. Indeed, depth–dose distributions acquired by the gels showed an excellent agreement with measured particle range with respect to reference values, with mean discrepancies of 0.5 ± 0.2 mm. Single-spot transverse FWHM values at increasing depths also presented an average agreement within 1 mm with values determined with radiochromic films, thus supporting the excellent spatial resolving capabilities of the dosimetric gel. Full article
(This article belongs to the Special Issue Application of Gel Dosimetry)
Show Figures

Figure 1

21 pages, 7155 KB  
Article
SERS Detection of Environmental Variability in Balneary Salt Lakes During Tourist Season: A Pilot Study
by Csilla Molnár, Karlo Maškarić, Lucian Barbu-Tudoran, Tudor Tămaș, Ilirjana Bajama and Simona Cîntă Pînzaru
Biosensors 2025, 15(10), 655; https://doi.org/10.3390/bios15100655 - 1 Oct 2025
Viewed by 267
Abstract
This pilot study uses Raman spectroscopy and SERS to monitor monthly water composition changes in two adjacent hypersaline lakes (L1 and L2) at a balneary resort, during the peak tourist season (May–October 2023). In situ pH and electrical conductivity (EC) measurements, along with [...] Read more.
This pilot study uses Raman spectroscopy and SERS to monitor monthly water composition changes in two adjacent hypersaline lakes (L1 and L2) at a balneary resort, during the peak tourist season (May–October 2023). In situ pH and electrical conductivity (EC) measurements, along with evaporite analyses, complemented the spectroscopic data. Although traditionally considered similar, the lakes frequently raise public questions about their relative bathing benefits. While not directly addressing the therapeutic effects, the study reveals distinct physicochemical profiles between the lakes. Raman data showed consistently higher sulfate levels in L2, a trend also observed in winter monitoring. pH levels were higher in L1 (8–9.8) than in L2 (7.2–8), except for one October depth reading. This trend held during winter, except in April. Surface waters showed more variability and slightly higher values than those at 1 m depth. SERS spectra featured β-carotene peaks, linked to cyanobacteria, and Ag–Cl bands, indicating nanoparticle aggregation from inorganic ions. SERS intensity strongly correlated with pH and EC, especially in L2 (r = 0.96), suggesting stable surface–depth chemistry. L1 exhibited more monthly variability, likely due to differing biological activity. Although salinity and EC were not linearly correlated at high salt levels, both reflected seasonal trends. The integration of Raman, SERS, and physicochemical data proves effective for monitoring hypersaline lake dynamics, offering a valuable tool for environmental surveillance and therapeutic water quality assessment, in support of evidence-based water management and therapeutic use of salt lakes, aligning with goals for sustainable medical tourism and environmental stewardship. Full article
(This article belongs to the Special Issue Advanced SERS Biosensors for Detection and Analysis)
Show Figures

Graphical abstract

29 pages, 8798 KB  
Article
Mitigating Waterlogging in Old Urban Districts with InfoWorks ICM: Risk Assessment and Cost-Aware Grey-Green Retrofits
by Yan Wang, Jin Lin, Tao Ma, Hongwei Liu, Aimin Liao and Peng Liu
Land 2025, 14(10), 1983; https://doi.org/10.3390/land14101983 - 1 Oct 2025
Viewed by 281
Abstract
Rapid urbanization and frequent extreme events have made urban flooding a growing threat to residents. This issue is acute in old urban districts, where extremely limited land resources, outdated standards and poor infrastructure have led to inadequate drainage and uneven pipe settlement, heightening [...] Read more.
Rapid urbanization and frequent extreme events have made urban flooding a growing threat to residents. This issue is acute in old urban districts, where extremely limited land resources, outdated standards and poor infrastructure have led to inadequate drainage and uneven pipe settlement, heightening flood risk. This study applies InfoWorks ICM Ultimate (version 21.0.284) to simulate flooding in a typical old urban district for six return periods. A risk assessment was carried out, flood causes were analyzed, and mitigation strategies were evaluated to reduce inundation and cost. Results show that all combined schemes outperform single-measure solutions. Among them, the green roof combined with pipe optimization scheme eliminated high-risk and medium-risk areas, while reducing low-risk areas by over 78.23%. It also lowered the ponding depth at key waterlogging points by 70%, significantly improving the flood risk profile. The permeable pavement combined with pipe optimization scheme achieved similar results, reducing low-risk areas by 77.42% and completely eliminating ponding at key locations, although at a 50.8% higher cost. This study underscores the unique contribution of cost-considered gray-green infrastructure retrofitting in old urban areas characterized by land scarcity and aging pipeline networks. It provides a quantitative basis and optimization strategies for refined modeling and multi-strategy management of urban waterlogging in such regions, offering valuable references for other cities facing similar challenges. The findings hold significant implications for urban flood control planning and hydrological research, serving as an important resource for urban planners engaged in flood risk management and researchers in urban hydrology and stormwater management. Full article
Show Figures

Figure 1

22 pages, 3208 KB  
Article
A High-Throughput Sequencing Strategy for Clinical Repertoire Profiling of T Cell Receptor Beta Chain: Development and Reference Values Across Healthy Adults, Paediatrics, and Cord Blood Units
by Emma Enrich, Mireia Antón-Iborra, Carlos Hobeich, Rut Mora-Buch, Ana Gabriela Lara-de-León, Alba Parra-Martínez, Belén Sánchez, Francisco Vidal, Pere Soler-Palacin and Francesc Rudilla
Int. J. Mol. Sci. 2025, 26(19), 9590; https://doi.org/10.3390/ijms26199590 - 1 Oct 2025
Viewed by 173
Abstract
T cell receptor (TCR) profiling using next-generation sequencing (NGS) enables high-throughput, in-depth analysis of repertoire diversity, offering numerous clinical applications. We developed a DNA-based strategy to analyse the TCRβ-chain using NGS and established reference values for T cell repertoire characteristics in 74 healthy [...] Read more.
T cell receptor (TCR) profiling using next-generation sequencing (NGS) enables high-throughput, in-depth analysis of repertoire diversity, offering numerous clinical applications. We developed a DNA-based strategy to analyse the TCRβ-chain using NGS and established reference values for T cell repertoire characteristics in 74 healthy donors, including 44 adults, 20 paediatrics, and 10 cord blood units (CBUs). Additionally, four paediatric patients with combined immunodeficiency (CID) or severe CID (SCID) due to deleterious mutations in recombination activating genes (RAG) were analysed. The developed strategy demonstrated high specificity, reproducibility, and sensitivity, and all functional variable and joining genes were detected with minimal PCR bias. All donors had a Gaussian-like distribution of complementary-determining region 3 length, with lower presence of non-templated nucleotides and higher proportion of non-functional clonotypes in CBUs. Both CBUs and paediatrics showed greater convergence and TCRβ diversity was significantly lower in adults and donors with cytomegalovirus-positive serostatus. Finally, an analysis of paediatric patients with RAG-SCID/CID showed significantly shorter CDR3 region length and lower repertoire diversity compared to healthy paediatrics. In summary, we developed a reliable and feasible TCRβ sequencing strategy for application in the clinical setting, and established reference values that could assist in the diagnosis and monitoring of pathological conditions affecting the T cell repertoire. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

15 pages, 3403 KB  
Article
Impact of Heavy Metal Contamination on Physical and Physicochemical Characteristics of Soil near Aurubis-Pirdop Copper Smelter in Bulgaria
by Milena Kercheva, Patrycja Boguta, Kamil Skic, Viktor Kolchakov, Katerina Doneva and Maya Benkova
Pollutants 2025, 5(4), 33; https://doi.org/10.3390/pollutants5040033 - 1 Oct 2025
Viewed by 211
Abstract
Soil contamination with heavy metals (HM) poses a risk to human health and can impact different soil functions. This study aimed to determine the influence of heavy metal pollution on the physical and physicochemical characteristics of the two profiles of alluvial–deluvial soil under [...] Read more.
Soil contamination with heavy metals (HM) poses a risk to human health and can impact different soil functions. This study aimed to determine the influence of heavy metal pollution on the physical and physicochemical characteristics of the two profiles of alluvial–deluvial soil under grassland located at different distances from the Aurubis-Pirdop Copper smelter in Bulgaria. Data for soil particle-size distribution, soil bulk and particle densities, mineralogical composition, soil organic carbon contents, cation exchange properties, surface charge, soil water retention curves, pore size distribution—obtained by mercury intrusion porosimetry (MIP)—and thermal properties were obtained. The contents of Pb, Cu, As, Zn, and Cd were above the maximum permissible level in the humic horizon and decreased with depth and distance from the Copper smelter. Depending on HM speciation, the correlations are established with SOC and most physicochemical parameters. It can be concluded that the HMs impact the clay content, specific surface area, distribution of pores, and the water stability of soil aggregate fraction 1–3 mm to varying degrees. Full article
Show Figures

Figure 1

24 pages, 1469 KB  
Review
Applications of Multiparameter Flow Cytometry in the Diagnosis, Prognosis, and Monitoring of Multiple Myeloma Patients
by Dimitrios Leonardos, Leonidas Benetatos, Elisavet Apostolidou, Epameinondas Koumpis, Lefkothea Dova, Eleni Kapsali, Ioannis Kotsianidis and Eleftheria Hatzimichael
Diseases 2025, 13(10), 320; https://doi.org/10.3390/diseases13100320 - 1 Oct 2025
Viewed by 140
Abstract
Multiple myeloma (MM) is one of the most common hematological malignancies and remains incurable. However, the survival of multiple myeloma patients has significantly increased due to the implementation of novel therapies along with autologous stem cell transplantation, changing the natural history of the [...] Read more.
Multiple myeloma (MM) is one of the most common hematological malignancies and remains incurable. However, the survival of multiple myeloma patients has significantly increased due to the implementation of novel therapies along with autologous stem cell transplantation, changing the natural history of the disease. Consequently, there is an unmet need for more sensitive response assessment techniques capable of quantifying minimal tumor burden to identify patients at higher risk of early relapse. Multiparameter flow cytometry (MFC) is an essential tool for diagnosing and monitoring patients with various hematological conditions and has recently gained prominence in identifying, characterizing, and monitoring malignant plasma cells. The implementation of Next-Generation Flow (NGF) by EuroFlow aims to overcome the pitfalls of conventional MFC, including lack of standardization and lower sensitivity, by offering standardized and optimized protocols for evaluating response depth. Both MFC and NGF have wide-ranging applications in MM for diagnosis and measurable residual disease (MRD) monitoring. Plasma cell identification and clonality evaluation through MFC and NGF assist in diagnostic workup and are routinely used to assess therapeutic response through MRD analysis. Additionally, flow cytometry is applied for circulating tumor plasma cell (CTPC) enumeration, which has demonstrated significant prognostic value. Immune composition studies through MFC may provide better understanding of disease biology. Furthermore, MFC provides additional information about other bone marrow cell populations, assessing cellularity, immunophenotypic characteristics of plasma cells, and possible hemodilution. This review explores the applications of MFC and NGF in MM, highlighting their roles in diagnosis, response assessment, and prognosis. Beyond their established use in MRD monitoring, flow cytometry-derived immunophenotypic profiles show strong potential as cost-effective prognostic tools. We advocate for future studies to validate and integrate these markers into risk stratification models, complementing cytogenetic analyses and guiding individualized treatment strategies. Full article
Show Figures

Figure 1

14 pages, 3363 KB  
Article
Design for Assembly of a Confocal System Applied to Depth Profiling in Biological Tissue Using Raman Spectroscopy
by Edgar Urrieta Almeida, Lelio de la Cruz May, Olena Benavides, Magdalena Bandala Garces and Aaron Flores Gil
Technologies 2025, 13(10), 440; https://doi.org/10.3390/technologies13100440 - 30 Sep 2025
Viewed by 127
Abstract
This work presents the development of a Z-depth system for Confocal Raman Spectroscopy (CRS), which allows for the acquisition of Raman spectra both at the surface and at depth profile in heterogeneous samples. The proposed CRS system consists of the coupling of a [...] Read more.
This work presents the development of a Z-depth system for Confocal Raman Spectroscopy (CRS), which allows for the acquisition of Raman spectra both at the surface and at depth profile in heterogeneous samples. The proposed CRS system consists of the coupling of a commercial 785 nm Raman Probe Bifurcated (RPB) with a 20x/0.40 infinity plan achromatic polarizing microscope objective, a Long Working Distance (LWD) of 1.2 cm, and a 50 μm core-multimode optical fiber used as a pinhole filter. With this implementation, it is possible to achieve both a high spatial resolution of approximately 16.2 μm and a spectral resolution of ∼14 cm1, which is determined by the FWHM of the thin 1004 cm1 Raman profile band. The system is configured to operate within 400–1800 cm1 spectral windows. The implementation of a system of this nature offers a favorable cost–benefit ratio, as commercial CRS is typically found in high-cost environments such as cosmetics, pharmaceutical, and biological laboratories. The proposed system is low-cost and employs a minimal set of optical components to achieve functionality comparable to that of a confocal Raman microscope. High signal-to-noise ratio (SNR) Raman spectra (∼660.05 at 1447 cm1) can be obtained with short integration times (∼25 s) and low laser power (30–35 mW) when analyzing biological samples such as in vivo human fingernails and fingertips. This power level is significantly lower than the exposure limits established by the American National Standards Institute (ANSI) for human laser experiments. Raman spectra were recorded from the surface of both the nails and fingertips of three volunteers, in order to characterize their biological samples at different depths. The measurements were performed in 50 μm steps to obtain molecular structural information from both surface and subsurface tissue layers. The proposed CRS enables the identification of differences between two closely spaced, centered, and narrow Raman bands. Additionally, broad Raman bands observed at the skin surface can be deconvolved into at least three sub-bands, which can be quantitatively characterized in terms of intensity, peak position, and bandwidth, as the confocal plane advances in depth. Moreover, the CRS system enables the detection of subtle, low-intensity features that appear at the surface but disappear beyond specific depth layers. Full article
22 pages, 3938 KB  
Article
Tree Species Overcome Edaphic Heterogeneity in Shaping the Urban Orchard Soil Microbiome and Metabolome
by Emoke Dalma Kovacs and Melinda Haydee Kovacs
Horticulturae 2025, 11(10), 1163; https://doi.org/10.3390/horticulturae11101163 - 30 Sep 2025
Viewed by 484
Abstract
Despite the increasing recognition of the role of urban orchard ecosystems in sustainable urban development, the mechanistic understanding of how tree species soil biochemical heterogeneity drives microbial community assembly, the spatial patterns governing microbe-environment interactions, and their collective contributions to ecosystem multifunctionality remain [...] Read more.
Despite the increasing recognition of the role of urban orchard ecosystems in sustainable urban development, the mechanistic understanding of how tree species soil biochemical heterogeneity drives microbial community assembly, the spatial patterns governing microbe-environment interactions, and their collective contributions to ecosystem multifunctionality remain poorly characterized. This study investigated how Prunus species and soil depth affect microbial biodiversity and metabolomic signatures in an urban orchard in Cluj-Napoca, Romania. Soil samples were collected from five fruit tree species (apricot, peach, plum, cherry, and sour cherry) across three depths (0–10, 10–20, and 20–30 cm), resulting in 225 samples. The microbial community structure was analyzed through phospholipid fatty acid (PLFA) profiling, whereas the soil metabolome was analyzed by mass spectrometry techniques, including gas chromatography–mass spectrometry (GC–MS/MS) and MALDI time-of-flight (TOF/TOF) MS, which identified 489 compounds across 18 chemical classes. The results revealed significant tree species-specific effects on soil microbial biodiversity, with bacterial biomarkers dominating and total microbial biomass varying among species. The soils related to apricot trees presented the highest microbial activity, particularly in the surface layers. Metabolomic analysis revealed 247 distinct KEGG-annotated metabolites, with sour cherry exhibiting unique organic acid profiles and cherry showing distinctive quinone accumulation. Depth stratification influenced both microbial communities and metabolite composition, reflecting oxygen gradients and substrate availability. These findings provide mechanistic insights into urban orchard soil biogeochemistry, suggesting that strategic species selection can harness tree species-soil microbe interactions to optimize urban soil ecosystem services and enhance urban biodiversity conservation. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

17 pages, 3677 KB  
Article
Improvement of Physical and Electrical Characteristics in 4H-SiC MOS Capacitors Using AlON Thin Films Fabricated via Plasma-Enhanced Atomic Layer Deposition
by Zhaopeng Bai, Chengxi Ding, Yunduo Guo, Man Luo, Zimo Zhou, Lin Gu, Qingchun Zhang and Hongping Ma
Materials 2025, 18(19), 4531; https://doi.org/10.3390/ma18194531 - 29 Sep 2025
Viewed by 226
Abstract
In this study, we investigate the improvement of physical and electrical characteristics in 4H-silicon carbide (SiC) MOS capacitors using Aluminum Oxynitride (AlON) thin films fabricated via Plasma-Enhanced Atomic Layer Deposition (PEALD). AlON thin films are grown on SiC substrates using a high ratio [...] Read more.
In this study, we investigate the improvement of physical and electrical characteristics in 4H-silicon carbide (SiC) MOS capacitors using Aluminum Oxynitride (AlON) thin films fabricated via Plasma-Enhanced Atomic Layer Deposition (PEALD). AlON thin films are grown on SiC substrates using a high ratio of NH3 and O2 as nitrogen and oxygen sources through PEALD technology, with improved material properties and electrical performance. The AlON films exhibited excellent thickness uniformity, with a minimal error of only 0.14%, a high refractive index of 1.90, and a low surface roughness of 0.912 nm, demonstrating the precision of the PEALD process. Through XPS depth profiling and electrical characterization, it was found that the AlON/SiC interface showed a smooth transition from Al-N and Al-O at the surface to Al-O-Si at the interface, ensuring robust bonding. Electrical measurements indicated that the SiC/AlON MOS capacitors demonstrated Type I band alignment with a valence band offset of 1.68 eV and a conduction band offset of 1.16 eV. Additionally, the device demonstrated a low interface state density (Dit) of 7.6 × 1011 cm−2·eV−1 with a high breakdown field strength of 10.4 MV/cm. The results highlight AlON’s potential for enhancing the performance of high-voltage, high-power SiC devices. Full article
Show Figures

Graphical abstract

25 pages, 6414 KB  
Article
Dependency Grammar Approach to the Syntactic Complexity in the Discourse of Alzheimer Patients
by Zhangjun Lian and Zeyu Wang
Behav. Sci. 2025, 15(10), 1334; https://doi.org/10.3390/bs15101334 - 29 Sep 2025
Viewed by 337
Abstract
This study aims to investigate the syntactic complexity in individuals with Alzheimer’s disease (AD) by conducting a comprehensive analysis that incorporates mean dependency distance (MDD), fine-grained grammatical metrics, and dependency network structures. A total of 150 adults with AD and 150 healthy controls [...] Read more.
This study aims to investigate the syntactic complexity in individuals with Alzheimer’s disease (AD) by conducting a comprehensive analysis that incorporates mean dependency distance (MDD), fine-grained grammatical metrics, and dependency network structures. A total of 150 adults with AD and 150 healthy controls (HC) responded in English to interview prompts based on the Cookie Theft picture description task, and the results were compared. The key findings are as follows: (1) The primary syntactic change is a strategic shift from hierarchical, clause-based constructions to linear, phrase-based ones, a direct consequence of working memory deficits designed to minimize cognitive load. (2) This shift is executed via a resource reallocation, where costly, long-distance clausal dependencies are systematically avoided in favor of a compensatory reliance on local dependencies, such as intra-phrasal modification and simple predicate structures. (3) This strategic reallocation leads to a systemic reorganization of the syntactic network, transforming it from a flexible, distributed system into a rigid, centralized one that becomes critically dependent on the over-leveraged structural role of function words to maintain basic connectivity. (4) The overall syntactic profile is the result of a functional balance governed by the principle of cognitive economy, where expressive richness and grammatical depth are sacrificed to preserve core communicative functions. These findings suggest that the syntactic signature of AD is not a random degradation of linguistic competence but a profound and systematic grammatical adaptation, where the entire linguistic system restructures itself to function under the severe constraints of diminished cognitive resources. Full article
Show Figures

Figure 1

32 pages, 7034 KB  
Article
Short-Term Electrical Load Forecasting Based on XGBoost Model
by Hristo Ivanov Beloev, Stanislav Radikovich Saitov, Antonina Andreevna Filimonova, Natalia Dmitrievna Chichirova, Oleg Evgenievich Babikov and Iliya Krastev Iliev
Energies 2025, 18(19), 5144; https://doi.org/10.3390/en18195144 - 27 Sep 2025
Viewed by 407
Abstract
Forecasting electricity consumption is one of the most important scientific and practical tasks in the field of electric power engineering. The forecast accuracy directly impacts the operational efficiency of the entire power system and the performance of electricity markets. This paper proposes algorithms [...] Read more.
Forecasting electricity consumption is one of the most important scientific and practical tasks in the field of electric power engineering. The forecast accuracy directly impacts the operational efficiency of the entire power system and the performance of electricity markets. This paper proposes algorithms for source data preprocessing and tuning XGBoost models to obtain the most accurate forecast profiles. The initial data included hourly electricity consumption volumes and meteorological conditions in the power system of the Republic of Tatarstan for the period from 2013 to 2025. The novelty of the study lies in defining and justifying the optimal model training period and developing a new evaluation metric for assessing model efficiency—financial losses in Balancing Energy Market operations. It was shown that the optimal depth of the training dataset is 10 years. It was also demonstrated that the use of traditional metrics (MAE, MAPE, MSE, etc.) as loss functions during training does not always yield the most effective model for market conditions. The MAPE, MAE, and financial loss values for the most accurate model, evaluated on validation data from the first 5 months of 2025, were 1.411%, 38.487 MWh, and 16,726,062 RUR, respectively. Meanwhile, the metrics for the most commercially effective model were 1.464%, 39.912 MWh, and 15,961,596 RUR, respectively. Full article
Show Figures

Figure 1

Back to TopTop