Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (491)

Search Parameters:
Keywords = descriptive geometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3088 KB  
Article
Integrating CAD and Orthographic Projection in Descriptive Geometry Education: A Comparative Analysis with Monge’s System
by Simón Gutiérrez de Ravé, Eduardo Gutiérrez de Ravé and Francisco J. Jiménez-Hornero
Educ. Sci. 2025, 15(11), 1492; https://doi.org/10.3390/educsci15111492 - 5 Nov 2025
Abstract
Descriptive geometry plays a fundamental role in developing spatial reasoning and geometric problem-solving skills in engineering education. This study investigates the comparative effectiveness of two instructional methodologies—Monge’s traditional projection system and the CADOP method, which integrates computer-aided design tools with orthographic projection principles. [...] Read more.
Descriptive geometry plays a fundamental role in developing spatial reasoning and geometric problem-solving skills in engineering education. This study investigates the comparative effectiveness of two instructional methodologies—Monge’s traditional projection system and the CADOP method, which integrates computer-aided design tools with orthographic projection principles. A quasi-experimental design was implemented with 90 undergraduate engineering students randomly assigned to two groups. Both groups followed the same instructional sequence and were evaluated using baseline surveys, rubric-based performance assessments, and post-training reflections. Quantitative analysis included mean comparisons, t-tests, and effect sizes, while inter-rater reliability confirmed scoring consistency. The results showed that CADOP students significantly outperformed those taught with Monge’s method across all criteria—conceptual under-standing, graphical accuracy, procedural consistency, and spatial reasoning—with very large effect sizes. Qualitative data indicated that CADOP enhanced clarity, efficiency, and confidence, while Monge promoted conceptual rigor but higher cognitive effort. The findings confirm that CADOP effectively reduces procedural complexity and cognitive load, supporting deeper spatial comprehension. Integrating CADOP with selected manual practices offers a balanced pedagogical approach for modernizing descriptive geometry instruction in engineering education. Full article
(This article belongs to the Section Higher Education)
Show Figures

Figure 1

18 pages, 2861 KB  
Article
A Geometric Attribute Collaborative Method in Multi-Scale Polygonal Entity Matching Scenario: Integrating Sentence-BERT and Three-Branch Attention Network
by Zhuang Sun, Po Liu, Liang Zhai and Zutao Zhang
ISPRS Int. J. Geo-Inf. 2025, 14(11), 435; https://doi.org/10.3390/ijgi14110435 - 3 Nov 2025
Viewed by 248
Abstract
The cross-scale fusion and consistent representation of cross-source heterogeneous vector polygon data are fundamental tasks in the field of GIS, and they play an important role in areas such as the refined management of natural resources, territorial spatial planning, and the urban emergency [...] Read more.
The cross-scale fusion and consistent representation of cross-source heterogeneous vector polygon data are fundamental tasks in the field of GIS, and they play an important role in areas such as the refined management of natural resources, territorial spatial planning, and the urban emergency response. However, the existing methods suffer from two key limitations: the insufficient utilization of semantic information, especially non-standardized attributes, and the lack of differentiated modeling for 1:1, 1:M, and M:N matching relationships. To address these issues, this study proposes a geometric–attribute collaborative matching method for multi-scale polygonal entities. First, matching relationships are classified into 1:1, 1:M, and M:N based on the intersection of polygons. Second, geometric similarities including spatial overlap, size, shape, and orientation are computed for each relationship type. Third, semantic similarity is enhanced by fine-tuning the pre-trained Sentence-BERT model, which effectively captures the complex semantic information from non-standardized descriptions. Finally, a three-branch attention network is constructed to specifically handle the three matching relationships, with adaptive feature weighting via attention mechanisms. The experimental results on datasets from Tunxi District, Huangshan City, China show that the proposed method outperforms the existing approaches including geometry–attribute fusion and BPNNs in precision, recall, and F1-score, with improvements of 3.38%, 1.32%, and 2.41% compared to the geometry–attribute method, and 2.91%, 0.27%, and 1.66% compared to BPNNs, respectively. A generalization experiment on Hefei City data further validates its robustness. This method effectively enhances the accuracy and adaptability of multi-scale polygonal entity matching, providing a valuable tool for multi-source GIS database integration. Full article
Show Figures

Figure 1

29 pages, 419 KB  
Review
Modified Gravity with Nonminimal Curvature–Matter Couplings: A Framework for Gravitationally Induced Particle Creation
by Francisco S. N. Lobo, Tiberiu Harko and Miguel A. S. Pinto
Universe 2025, 11(11), 356; https://doi.org/10.3390/universe11110356 - 28 Oct 2025
Viewed by 173
Abstract
Modified gravity theories with a nonminimal coupling between curvature and matter offer a compelling alternative to dark energy and dark matter by introducing an explicit interaction between matter and curvature invariants. Two of the main consequences of such an interaction are the emergence [...] Read more.
Modified gravity theories with a nonminimal coupling between curvature and matter offer a compelling alternative to dark energy and dark matter by introducing an explicit interaction between matter and curvature invariants. Two of the main consequences of such an interaction are the emergence of an additional force and the non-conservation of the energy–momentum tensor, which can be interpreted as an energy exchange between matter and geometry. By adopting this interpretation, one can then take advantage of many different approaches in order to investigate the phenomenon of gravitationally induced particle creation. One of these approaches relies on the so-called irreversible thermodynamics of open systems formalism. By considering the scalar–tensor formulation of one of these theories, we derive the corresponding particle creation rate, creation pressure, and entropy production, demonstrating that irreversible particle creation can drive a late-time de Sitter acceleration through a negative creation pressure, providing a natural alternative to the cosmological constant. Furthermore, we demonstrate that the generalized second law of thermodynamics holds: the total entropy, from both the apparent horizon and enclosed matter, increases monotonically and saturates in the de Sitter phase, imposing constraints on the allowed particle production dynamics. Furthermore, we present brief reviews of other theoretical descriptions of matter creation processes. Specifically, we consider approaches based on the Boltzmann equation and quantum-based aspects and discuss the generalization of the Klein–Gordon equation, as well as the problem of its quantization in time-varying gravitational fields. Hence, gravitational theories with nonminimal curvature–matter couplings present a unified and testable framework, connecting high-energy gravitational physics with cosmological evolution and, possibly, quantum gravity, while remaining consistent with local tests through suitable coupling functions and screening mechanisms. Full article
17 pages, 5583 KB  
Article
An Iterative Method for the Design of Carbon-Fiber Reinforced Polymer Wheel Rims
by Dániel Bársony, Martin Kaszab and Dániel Feszty
Appl. Sci. 2025, 15(21), 11434; https://doi.org/10.3390/app152111434 - 26 Oct 2025
Viewed by 304
Abstract
This paper presents the design process of a composite wheel rim for a Formula Student race car. First, the design requirements for composite rims are outlined, which are driven to ensure safe operation as well as compliance with race regulations. Next, a novel [...] Read more.
This paper presents the design process of a composite wheel rim for a Formula Student race car. First, the design requirements for composite rims are outlined, which are driven to ensure safe operation as well as compliance with race regulations. Next, a novel methodology for the iterative design of composite wheel rims is proposed, and its steps are individually presented. The load cases were determined using data from lap time simulations and from practical experience from the operation of previous race cars. Material cards for the simulations were created by measuring the characteristics of the prepreg composites. The geometry of the rims was created by prioritizing the optimum contact with the tires. After creating the rim geometry, the composite material cards, and the simulation’s pre-processing, the layup iteration process began. In this manual iterative process, FEM simulations were run and their results were evaluated. The desired component properties were reached after 11 layup iterations. The final result is a weight reduction of 35% compared to the aluminum rims and 15% compared to the previous multi-piece CFRP rims, without a compromise in operational safety. The main novelty of the paper is the description of the iterative layup selection logic and process in detail, as well as demonstrating this on a concrete use case. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

25 pages, 11837 KB  
Article
Convergence Modeling Based on a Historical Underground Salt Chamber Example
by Zbigniew Szczerbowski, Krzysztof Skrzypkowski and Rafał Gawałkiewicz
Appl. Sci. 2025, 15(20), 11005; https://doi.org/10.3390/app152011005 - 14 Oct 2025
Viewed by 246
Abstract
The monitoring of the process of converging historic mining excavations in the medieval and still-active Bochnia Salt Mine, conducted for years using classic geodetic measurements, allows for determining the results of point displacements. The movements of the selected fragments of the excavation over [...] Read more.
The monitoring of the process of converging historic mining excavations in the medieval and still-active Bochnia Salt Mine, conducted for years using classic geodetic measurements, allows for determining the results of point displacements. The movements of the selected fragments of the excavation over time, determined on the basis of these displacements, allow for estimating the displacement field, characterizing the entire excavation together with the often-complicated surface layout of the sidewalls, roof and floor. However, this is a certain simplification of the model of this field, and so far, no stress field has been determined that would characterize the compressive forces and would correspond to the characteristics of the measured deformations. This issue has both scientific and practical importance. The latter involves determining the model characteristics of deformations that would be used in the strategy of the conducted protective works. The authors concluded that in modeling displacements, the results of classic geodetic measurements are insufficient for a precise description of the displacement field and reliable simulations of the stress field model. The use of a laser scanner made it possible to obtain an appropriate image of the geometry of the selected excavation and displacements over time. From a scientific point of view, it is interesting to explain the differentiation of displacements in different directions, and determine the nature and share of the acting compressive forces (gravitational forces, the impact of other excavations, tectonic forces). Full article
(This article belongs to the Special Issue Advances and Techniques in Rock Fracture Mechanics)
Show Figures

Figure 1

12 pages, 3021 KB  
Article
The Effect of Chemical Components of Thermally Treated Meranti Wood on the Higher Heating Value
by Viera Kučerová, Katarína Dúbravská, Tatiana Hýrošová and Jaroslava Štefková
Fire 2025, 8(10), 394; https://doi.org/10.3390/fire8100394 - 9 Oct 2025
Viewed by 701
Abstract
The effects of thermal treatment on the changes in the chemical composition and higher heating values (HHV) of tropical hardwood meranti were investigated in a study. The samples of light red meranti wood (Shorea spp.) with dimensions of 20 mm × 100 [...] Read more.
The effects of thermal treatment on the changes in the chemical composition and higher heating values (HHV) of tropical hardwood meranti were investigated in a study. The samples of light red meranti wood (Shorea spp.) with dimensions of 20 mm × 100 mm × 700 mm were conditioned at 20 °C (control samples) and thermally treated at 160, 180, 200, and 220 °C. The chemical composition and HHV of control samples and thermally treated samples were evaluated. The chemical composition was measured using the procedures of Seifert, Wise, and ASTM. After thermal treatment, a significant reduction in holocellulose and hemicellulose content and an increase in extractives and lignin were observed. Consequently, we observed a rise in HHVs. HHV of thermally treated wood was strongly positively linearly correlated with lignin content (Pearson r = 0.9850, p < 0.001, R2 = 0.9702, n = 15). Regression analysis showed that the model HHV = 0.1443(lig) + 16.012 is suitable for predicting the HHV of thermally treated wood, if the lignin content is known. Full article
Show Figures

Figure 1

16 pages, 1288 KB  
Article
Urban Geometry and Social Topology: A Computational Simulation of Urban Network Formation
by Daniel Lenz Costa Lima, Daniel Ribeiro Cardoso and Andrés M. Passaro
Buildings 2025, 15(19), 3555; https://doi.org/10.3390/buildings15193555 - 2 Oct 2025
Viewed by 455
Abstract
When a city decides to undertake a certain urban project, is it modifying just the physical environment or the social fabric that dwells within? This work investigates the relationship between the geometric configuration of urban space (geometry–city) and the topology of the networks [...] Read more.
When a city decides to undertake a certain urban project, is it modifying just the physical environment or the social fabric that dwells within? This work investigates the relationship between the geometric configuration of urban space (geometry–city) and the topology of the networks of encounters of its inhabitants (network–city) that form through daily interactions. The research departs from the hypothesis that changes in geometry–city would not significantly alter the topology of the network–city, testing this proposition conceptually through abstract computational simulations developed specifically for this study. In this simulator, abstract maps with buildings distributed over different primary geometries are generated and have activities (use: home or work) and a population assigned. Encounters of the “inhabitants” are registered while daily commute routines, enough to achieve differentiation and stability, are run. The initial results revealed that the geometry description was not enough, and definitions regarding activity attribution were also necessary. Thus, we could not confirm nor reject the original hypothesis exactly, but it had to be complemented, including the idea of an activity–city dimension. We found that despite the geometry–city per se not determining the structure of the network–city, the spatial (geometric) distribution of activities directly impacts the resulting topology. Urban geometry influences networks–city only insofar as it conforms to activity–city, defining areas for activities or restricting routing between them. But it is the geometry of localization of the activities that has a direct impact on the topology of the network–city. This conceptual discovery can have significant implications for urban planning if corroborated in real-world situations. It could suggest that land use policies may be more effective for intervening in network-based characteristics, like social cohesion and resilience, than purely morphological interventions. Full article
(This article belongs to the Special Issue Emerging Trends in Architecture, Urbanization, and Design)
Show Figures

Figure 1

26 pages, 4070 KB  
Article
Evaluation of Paper Mill Sludge Using Bioindicators: Response of Soil Microorganisms and Plants
by Adam Pochyba, Dagmar Samešová, Juraj Poništ, Michal Sečkár, Jarmila Schmidtová, Marián Schwarz and Darina Veverková
Sustainability 2025, 17(19), 8788; https://doi.org/10.3390/su17198788 - 30 Sep 2025
Viewed by 495
Abstract
The growing demand for sustainable waste management practices has prompted interest in the land application of paper sludge as an alternative to landfilling and incineration. This study evaluates the environmental potential of paper sludge derived from recycled hygienic paper production by investigating its [...] Read more.
The growing demand for sustainable waste management practices has prompted interest in the land application of paper sludge as an alternative to landfilling and incineration. This study evaluates the environmental potential of paper sludge derived from recycled hygienic paper production by investigating its effects on soil respiration, seed germination, and seedling development. A comprehensive set of respirometric tests using the OxiTop® system assessed microbial activity in soil amended with various concentrations of paper sludge (1–100%). Concurrently, bioassays using Lepidium sativum L. and Pisum sativum L. seeds examined the phytotoxicity and physiological response during germination. The results show that low to moderate sludge concentrations (1–20%) stimulated microbial activity and enhanced germination parameters, with a germination index (GI) up to 150% at 1%. However, higher concentrations (>40%) led to oxygen depletion, microbial stress, and decreased plant growth, indicating potential phytotoxicity and the need for application thresholds. For certain intermediate concentrations (e.g., 30–40%), a delay of approximately 21 days before sowing is recommended to allow microbial communities to stabilize and avoid initial stress conditions for plants. This study demonstrates that controlled application of paper sludge in soil systems can serve as a viable and sustainable disposal method, supporting circular economy principles and reducing the environmental burden of paper industry by-products. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

41 pages, 6056 KB  
Article
Comparison of Cu(II) Adsorption Using Fly Ash and Natural Sorbents During Temperature Change and Thermal–Alkaline Treatment
by Anna Ďuricová, Veronika Štefanka Prepilková, Michal Sečkár, Marián Schwarz, Dagmar Samešová, Tomáš Murajda, Peter Andráš, Adriana Eštoková, Miriama Čambál Hološová, Juraj Poništ, Andrea Zacharová, Jarmila Schmidtová, Darina Veverková and Adrián Biroň
Materials 2025, 18(19), 4552; https://doi.org/10.3390/ma18194552 - 30 Sep 2025
Viewed by 553
Abstract
Mine effluents represent a serious environmental problem on a global scale. Therefore, the effective treatment of this water is a serious issue in the scientific field. The adsorption process seems to be one of the attractive methods, especially due to the simplicity of [...] Read more.
Mine effluents represent a serious environmental problem on a global scale. Therefore, the effective treatment of this water is a serious issue in the scientific field. The adsorption process seems to be one of the attractive methods, especially due to the simplicity of design, affordability or high efficiency. The latest scientific knowledge has shown that the use of waste and natural adsorbents is economical and effective. This study aimed to evaluate the efficiency of the adsorption process of natural and waste materials—zeolite, bentonite and fly ash—under the influence of temperature and modification of these adsorbents. The novelty of this study resides in an adjustment of the modification method of adsorbents compared to previous research: thermal–alkaline treatment versus hydrothermal one. Another novelty is the use of modified fly ash from biomass combustion as an adsorbent in comparison with the previously used fly ash from coal combustion. The modification of the adsorbents made the adsorption process more effective at all experimental concentrations. The characterisation of adsorbent samples was performed using X-ray diffraction (XRD). The parameters of the adsorption isotherms, Langmuir, Freundlich and Temkin, were estimated by nonlinear regression analysis. The adsorption capacity of Cu(II) of fly ash was comparable to natural adsorbents. Adsorption processes were better described by pseudo-second-order kinetics. At the end of this study, the suitability of using the adsorbents to reduce the concentration of Cu(II) in neutral mine effluents was observed in the following order at 30 °C: unmodified fly ash > modified bentonite > unmodified zeolite. At the temperatures of 20 °C and 10 °C, the same trend of the suitability of adsorbents use was confirmed: modified bentonite > modified zeolite > modified fly ash. The practical applicability of this study lies in the expansion of knowledge in the field of adsorption processes and in the improvement of waste management efficiency of heating plants not only in Slovakia, but also globally. Full article
(This article belongs to the Special Issue Materials for Heavy Metals Removal from Waters (2nd Edition))
Show Figures

Figure 1

28 pages, 2703 KB  
Article
Theoretical Approaches to the Heating of an Extensive Homogeneous Plate with Convective Cooling
by Paweł Jabłoński, Tomasz Kasprzak, Sławomir Gryś and Waldemar Minkina
Energies 2025, 18(17), 4785; https://doi.org/10.3390/en18174785 - 8 Sep 2025
Viewed by 513
Abstract
The article presents a mathematical description of the thermal phenomena occurring both inside and on the surfaces of a homogeneous plate subjected to an external heat flux on one side. Analytical formulae for thermal excitation, with a given duration and constant power, are [...] Read more.
The article presents a mathematical description of the thermal phenomena occurring both inside and on the surfaces of a homogeneous plate subjected to an external heat flux on one side. Analytical formulae for thermal excitation, with a given duration and constant power, are derived, enabling the determination of temperature increases on both the heated and unheated surfaces of the plate under specific heat transfer conditions to the surroundings. Convective heat transfer, with individual heat transfer coefficients on both sides of the slab, is considered; however, radiative heat loss can also be included. The solution of the problem obtained using two methods is presented: the method of separation of variables (MSV) and the Laplace transform (LT). The advantages and disadvantages of both analytical formulae, as well as the impact of various factors on the accuracy of the solution, are discussed. Among others, the MSV solution works well for a sufficiently long time, whereas the LT solution is better for a sufficiently short time. The theoretical considerations are illustrated with diagrams for several configurations, each representing various heat transfer conditions on both sides of the plate. The presented solution can serve as a starting point for further analysis of more complex geometries or multilayered structures, e.g., in non-destructive testing using active thermography. The developed theoretical model is verified for a determination of the thermal diffusivity of a reference material. The model can be useful for analyzing the method’s sensitivity to various factors occurring during the measurement process, or the method can be adapted to a pulse of known duration and constant power, which is much easier to implement technically than a very short impulse (Dirac) with high energy. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

27 pages, 3219 KB  
Article
Towards Sustainable Road Safety: Feature-Level Interpretation of Injury Severity in Poland (2015–2024) Using SHAP and XGBoost
by Artur Budzyński and Andrzej Czerepicki
Sustainability 2025, 17(17), 8026; https://doi.org/10.3390/su17178026 - 5 Sep 2025
Cited by 3 | Viewed by 1241
Abstract
This study investigates the severity of injuries sustained by over seven million participants involved in road traffic incidents in Poland between 2015 and 2024, with a view to supporting sustainable mobility and the United Nations Sustainable Development Goals. Road safety is a crucial [...] Read more.
This study investigates the severity of injuries sustained by over seven million participants involved in road traffic incidents in Poland between 2015 and 2024, with a view to supporting sustainable mobility and the United Nations Sustainable Development Goals. Road safety is a crucial dimension of sustainable development, directly linked to public health, urban liveability, and the socio-economic costs of transportation systems. Using a harmonised participant-level dataset, this research identifies key demographic, behavioural, and environmental factors associated with injury outcomes. A novel five-level injury severity variable was developed by integrating inconsistent records on fatalities and injuries. Descriptive analyses revealed clear seasonal and weekly patterns, as well as substantial differences by participant type and driving licence status. Pedestrians and passengers faced the highest risk, with fatality rates more than five times higher than those of drivers. An XGBoost classifier was trained to predict injury severity, and SHAP analysis was applied to interpret the model’s outputs at the feature level. Participant role emerged as the most important predictor, followed by driving licence status, vehicle type, lighting conditions, and road geometry. These findings provide actionable insights for sustainable road safety interventions, including stronger protection for pedestrians and passengers, stricter enforcement against unlicensed driving, and infrastructural improvements such as better lighting and safer road design. By combining machine learning with interpretability tools, this study offers an analytical framework that can inform evidence-based policies aimed at reducing crash-related harm and advancing sustainable transport development. Full article
(This article belongs to the Special Issue New Trends in Sustainable Transportation)
Show Figures

Figure 1

19 pages, 12092 KB  
Article
Modelling Structural Material Damage Using the Cohesive Zone Approach Under Operational Conditions
by Vladislav Kozák, Jiří Vala and Anna Derevianko
Materials 2025, 18(17), 4039; https://doi.org/10.3390/ma18174039 - 28 Aug 2025
Viewed by 733
Abstract
This article is devoted to the prediction of the service life of selected structural materials under simulated operating conditions. Special attention is paid to the so-called representative volume element, which characterizes the damage behaviour, since it includes a critical number of microdefects. The [...] Read more.
This article is devoted to the prediction of the service life of selected structural materials under simulated operating conditions. Special attention is paid to the so-called representative volume element, which characterizes the damage behaviour, since it includes a critical number of microdefects. The overall damage prediction is based on the energy approach, and the development of damage comes from the traction separation laws; the shape of the damage varies for different materials. The calculations were performed using the extended finite element method (XFEM), where several minor modifications were made. This method has been successfully used in many areas of engineering sciences for research, simulation, and prediction of the behaviour of structures. XFEM reformulates the continuous boundary and initial value problems into similar variational forms instead of using the classical forms of differential equations. The simulation of fracture and damage phenomena is presented for two different materials: austenitic steel with a pronounced grain structure under creep (viscous) loading conditions and cement pasta reinforced with metal fibres under conditions of predominantly static loading. Full article
(This article belongs to the Special Issue Mechanical Behavior of Advanced Composite Materials and Structures)
Show Figures

Figure 1

17 pages, 1781 KB  
Article
Theoretical Examination on the Chiral Separation Mechanism of Ibuprofen on Cellulose Tris(4-methylbenzoate)
by Xiao Huang, Yuuichi Orimoto and Yuriko Aoki
Molecules 2025, 30(17), 3503; https://doi.org/10.3390/molecules30173503 - 26 Aug 2025
Viewed by 903
Abstract
The mechanism of separating the small chiral drug molecules on large soft polymers is essential in pharmaceutical science. As a case study, the differentiation mechanism of ibuprofen, (R,S)-2-(4-isobutylphenyl)propanoic acid, with cellulose tris(4-methylbenzoate) (CMB) as the chiral stationary phase (CSP) [...] Read more.
The mechanism of separating the small chiral drug molecules on large soft polymers is essential in pharmaceutical science. As a case study, the differentiation mechanism of ibuprofen, (R,S)-2-(4-isobutylphenyl)propanoic acid, with cellulose tris(4-methylbenzoate) (CMB) as the chiral stationary phase (CSP) was investigated by combining the molecular docking simulation and multi-level layered terminal-to-center elongation (ML-T2C-ELG) method. Our results demonstrated that, based on the optimized geometry using the ML-T2C-ELG method, the complexation energy of S-ibuprofen with CMB obtained at B3LYP-D3(BJ)/6-311G(d) level is more negative than that of R-ibuprofen, which is caused by the greater hydrogen bonding and π-π stacking interactions between CMB and S-ibuprofen. The results are in line with the experimental observations of high-performance liquid chromatography (HPLC) that the retention time of S-ibuprofen on CMB is longer than that of R-ibuprofen. Moreover, the ML-T2C-ELG method was found to be valuable for optimizing the geometries of such flexible and large systems, which allows for a more accurate description of interactions between soft polymers and small molecules when coupled with the docking simulation. It is anticipated that this study can provide beneficial insights for future optical resolution mechanisms of other chiral drugs. Full article
Show Figures

Graphical abstract

23 pages, 2095 KB  
Article
A Unified Theoretical Analysis of Geometric Representation Forms in Descriptive Geometry and Sparse Representation Theory
by Shuli Mei
Mathematics 2025, 13(17), 2737; https://doi.org/10.3390/math13172737 - 26 Aug 2025
Viewed by 1298
Abstract
The primary distinction between technical design and engineering design lies in the role of analysis and optimization. From its inception, descriptive geometry has supported military and engineering applications, and its graphical rules inherently reflect principles of optimization—similar to the core ideas of sparse [...] Read more.
The primary distinction between technical design and engineering design lies in the role of analysis and optimization. From its inception, descriptive geometry has supported military and engineering applications, and its graphical rules inherently reflect principles of optimization—similar to the core ideas of sparse representation and compressed sensing. This paper explores the geometric and mathematical significance of the center line in symmetrical objects and the axis of rotation in solids of revolution, framing these elements within the theory of sparse representation. It further establishes rigorous correspondences between geometric primitives—points, lines, planes, and symmetric solids—and their sparse representations in descriptive geometry. By re-examining traditional engineering drawing techniques from the perspective of optimization analysis, this study reveals the hidden mathematical logic embedded in geometric constructions. The findings not only support the deeper integration of mathematical reasoning in engineering education but also provide an intuitive framework for teaching abstract concepts such as sparsity and signal reconstruction. This work contributes to interdisciplinary understanding between descriptive geometry, mathematical modeling, and engineering pedagogy. Full article
Show Figures

Figure 1

17 pages, 4128 KB  
Article
In Vivo Evaluation of Laser-Textured Air Plasma in Osseointegration of Dental Implants
by Larissa Azeredo da Silva Lessa Nicolau, Suelen Cristina Sartoretto, Pamella Santana Nunes, Ezio Gheno, Jose Mauro Granjeiro, Domenico D’Angelo, Federico Mussano, Monica Diuana Calasans-Maia, Olivio Della Bella, Francesca Motta and Rafael Seabra Louro
Materials 2025, 18(16), 3810; https://doi.org/10.3390/ma18163810 - 14 Aug 2025
Viewed by 685
Abstract
The different macro and micro geometries of dental implants are parameters that directly affect osseointegration, making them an important area for research. The objective of this preclinical study was to compare, through histological and histomorphometric analyses, the biological response of two different dental [...] Read more.
The different macro and micro geometries of dental implants are parameters that directly affect osseointegration, making them an important area for research. The objective of this preclinical study was to compare, through histological and histomorphometric analyses, the biological response of two different dental implant surfaces in osseointegration. Surface morphology and chemistry were characterized by SEM/EDX, optical-emission spectroscopy, protein adsorption (BSA), and adipose-derived stem-cell morphology. For the in vivo arm, ten commercially pure titanium implants (n = 5 LS160 + 5 SBAE) were placed bilaterally in the tibiae of five skeletally mature New Zealand rabbits (one implant of each surface per animal). After six weeks, undecalcified sections were prepared and bone-to-implant contact (BIC) and bone-area-fraction occupancy (BAFO) were quantified histomorphometrically. Data normality was confirmed with the Shapiro–Wilk test; paired two-tailed Student’s t-tests were applied (α = 0.05). Results: The descriptive histological analysis showed a fraction of pre-existing bone in all experimental groups, which probably ensured primary stability. Adjacent to this area, it was possible to observe peri-implant newformed bone in all tested groups. The results of the histomorphometric analysis of BIC and BAFO were considered normal by the Shapiro–Wilk test (p > 0.05); after six weeks of implantation, the BIC values for the LS160 and SBAE groups were 44.13 (15.83–72.43) and 39.24 (10.72–89.21), respectively. The analysis of variance (ANOVA and Tukey’s post-test) showed no statistical differences between the groups tested. Likewise, the bone volume density showed no statistical differences between the groups (ANOVA and Tukey’s post-test) with averages of 41.27 (C.I. 24.00–58.55) and 26.52 (C.I. −17.51–70.54) in the LS160 and SBAE groups, respectively. Although both surfaces showed similar osseointegration after six weeks, the new surface appears to be a promising, eco-friendly alternative to SBAE. Future studies with shorter time points and larger samples are needed to assess early biological responses. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

Back to TopTop