Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,871)

Search Parameters:
Keywords = design parameter optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1401 KB  
Article
Wide-Band Characteristic Analysis and Compensation Research of Electromagnetic Current Transformer
by Xingyan Wu, Zhenhua Li, Zhenxing Li, Lei Zhang and Chenyi Yang
Energies 2025, 18(21), 5862; https://doi.org/10.3390/en18215862 (registering DOI) - 6 Nov 2025
Abstract
In order to realize the wide frequency applicability of the electromagnetic current transformer in a ‘double high’ power system, the equivalent circuit model of the electromagnetic current transformer under wide frequency is established. The complex permeability method is used to obtain the excitation [...] Read more.
In order to realize the wide frequency applicability of the electromagnetic current transformer in a ‘double high’ power system, the equivalent circuit model of the electromagnetic current transformer under wide frequency is established. The complex permeability method is used to obtain the excitation impedance value on the basis of the existing core parameters. Secondly, according to the equivalent circuit of the current transformer in the broadband domain, the error transfer function of the electromagnetic current transformer is derived. Through simulation calculation, the ratio difference and angle difference in the electromagnetic current transformer at 50 Hz–3000 Hz are obtained. The correctness of the theoretical analysis and simulation model is verified by comparing it with the existing model and measurement. The simulation and test results show that the electromagnetic current transformer has good linearity when the frequency is in the frequency range of 50 to 650 Hz. When the frequency exceeds this frequency, the ratio difference and angle difference in the current transformer will not reach the accuracy standard, which indicates that it is difficult to accurately measure the high frequency current. Aiming at the correlation of frequency characteristics, this paper proposes a method of optimizing parameters, which provides a certain reference for the error compensation and structural design of electromagnetic current transformers. Full article
13 pages, 3079 KB  
Article
A Novel Energetic Nitroform Salt Derived from Bis-(Triazolyl)-Furoxan
by Fawei Wang, Jiapeng Wang, Zihu Wang, Jianhua Wang and Yucun Liu
Crystals 2025, 15(11), 960; https://doi.org/10.3390/cryst15110960 (registering DOI) - 6 Nov 2025
Abstract
This study presents the synthesis and comprehensive characterization of a novel nitroform salt, bis(2-methyl-3-amino-1,2,4-triazolyl)furoxan trinitromethanide (compound 2), derived from the molecular scaffold of bis-(2-methyl-3-amino-1,2,4-triazolyl)-furoxan (compound 1). The incorporation of the nitroform anion significantly enhances the energetic performance while maintaining moderate stability. [...] Read more.
This study presents the synthesis and comprehensive characterization of a novel nitroform salt, bis(2-methyl-3-amino-1,2,4-triazolyl)furoxan trinitromethanide (compound 2), derived from the molecular scaffold of bis-(2-methyl-3-amino-1,2,4-triazolyl)-furoxan (compound 1). The incorporation of the nitroform anion significantly enhances the energetic performance while maintaining moderate stability. Single-crystal X-ray diffraction analysis revealed that compound 2 crystallizes in the orthorhombic space group P212121 with a density of 1.712 g·cm−3. Although its crystal packing adopts a less optimal zigzag-type mixed stacking mode and exhibits uneven electrostatic potential distribution, an extensive intramolecular hydrogen-bonding network contributes to its structural stability, as evidenced by a thermal decomposition temperature of 141 °C and impact sensitivity of 17 J. Detonation parameters calculated using EXPLO5 software demonstrate superior performance (detonation velocity = 8271 m·s−1, detonation pressure = 26.9 GPa) compared to TNT and close proximity to RDX, coupled with markedly improved mechanical stability over both RDX and HMX. Hirshfeld surface and electrostatic potential analyses further elucidate the relationship between molecular structure and sensitivity, highlighting the critical role of hydrogen bonding in moderating mechanical sensitivity despite high energy content. These results underscore the potential of nitroform functionalization for designing advanced energetic materials with balanced performance and safety. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

34 pages, 1590 KB  
Article
Cost Optimization in a GI/M/2/N Queue with Heterogeneous Servers, Working Vacations, and Impatient Customers via the Bat Algorithm
by Abdelhak Guendouzi and Salim Bouzebda
Mathematics 2025, 13(21), 3559; https://doi.org/10.3390/math13213559 - 6 Nov 2025
Abstract
This paper analyzes a finite-capacity GI/M/2/N queue with two heterogeneous servers operating under a multiple working-vacation policy, Bernoulli feedback, and customer impatience. Using the supplementary-variable technique in tandem with a tailored recursive scheme, we derive the [...] Read more.
This paper analyzes a finite-capacity GI/M/2/N queue with two heterogeneous servers operating under a multiple working-vacation policy, Bernoulli feedback, and customer impatience. Using the supplementary-variable technique in tandem with a tailored recursive scheme, we derive the stationary distributions of the system size as observed at pre-arrival instants and at arbitrary epochs. From these, we obtain explicit expressions for key performance metrics, including blocking probability, average reneging rate, mean queue length, mean sojourn time, throughput, and server utilizations. We then embed these metrics in an economic cost function and determine service-rate settings that minimize the total expected cost via the Bat Algorithm. Numerical experiments implemented in R validate the analysis and quantify the managerial impact of the vacation, feedback, and impatience parameters through sensitivity studies. The framework accommodates general renewal arrivals (GI), thereby extending classical (M/M/2/N) results to more realistic input processes while preserving computational tractability. Beyond methodological interest, the results yield actionable design guidance: (i) they separate Palm and time-stationary viewpoints cleanly under non-Poisson input, (ii) they retain heterogeneity throughout all formulas, and (iii) they provide a cost–optimization pipeline that can be deployed with routine numerical effort. Methodologically, we (i) characterize the generator of the augmented piecewise–deterministic Markov process and prove the existence/uniqueness of the stationary law on the finite state space, (ii) derive an explicit Palm–time conversion formula valid for non-Poisson input, (iii) show that the boundary-value recursion for the Laplace–Stieltjes transforms runs in linear time O(N) and is numerically stable, and (iv) provide influence-function (IPA) sensitivities of performance metrics with respect to (μ1,μ2,ν,α,ϕ,β). Full article
(This article belongs to the Section D1: Probability and Statistics)
23 pages, 2795 KB  
Article
Research on Position-Tracking Control Method for Fatigue Test Bed of Absorber Based on SCHO and Fuzzy Adaptive LADRC
by Muzhi Zhu, Zhilei Chen, Xingrong Huang, Xujie Zhang and Chao Xun
Machines 2025, 13(11), 1026; https://doi.org/10.3390/machines13111026 - 6 Nov 2025
Abstract
A collaborative control strategy combining the hyperbolic sine-cosine optimization (SCHO) algorithm with fuzzy adaptive linear active disturbance rejection control is proposed to address the nonlinearity and uncertainties in the hydraulic position servo system of shock absorber test benches. First, based on the dynamic [...] Read more.
A collaborative control strategy combining the hyperbolic sine-cosine optimization (SCHO) algorithm with fuzzy adaptive linear active disturbance rejection control is proposed to address the nonlinearity and uncertainties in the hydraulic position servo system of shock absorber test benches. First, based on the dynamic characteristics of the shock absorber fatigue test bench and the tested shock absorber, a linearized model of the valve-controlled hydraulic cylinder and its load was established. The coupling mechanism of system parameter perturbation and disturbance was also analyzed. A third-order LADRC (Linear Active Disturbance Rejection Control) was designed considering the linear model characteristics of the test bench hydraulic servo system model to quickly estimate internal system disturbances and perform real-time compensation. Secondly, a multi-objective optimization function was constructed by integrating system performance indicators and incorporating controller and observer bandwidths into the optimization objectives. The SCHO algorithm was used for the global search and optimization of key LADRC parameters. To enhance the controller’s adaptive capability of modeling uncertainties and external disturbances, a fuzzy adaptive module was introduced to adjust control gains online according to errors and their rates of change, further improving system robustness and dynamic performance. The results show that compared with traditional PID, under different working conditions, the proposed method reduced the maximum tracking error, overshoot, and system response time by an average of 45%, from 15% to 5%, and by approximately 30%, respectively. Meanwhile, the parameter combination obtained via SCHO effectively avoids the limitations of manual parameter tuning, significantly improving control accuracy and energy utilization. The simulation results indicate that this method can significantly enhance position-tracking accuracy compared with traditional LADRC, providing an effective solution for position-tracking control in hydraulic servo testing systems. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

7 pages, 217 KB  
Proceeding Paper
Effects of Deficit Irrigation on Growth, Yield, and Quality of Tomato Under Semi-Arid Regions
by Muhammad Sanwal Bakhsh, Maha Sarfraz, Noor Ilahi, Mujeeb Ur Rehman, Hasnain Shamshad, Muhammad Usman, Iqra Mobin and Maryam Bibi
Biol. Life Sci. Forum 2025, 51(1), 1; https://doi.org/10.3390/blsf2025051001 - 6 Nov 2025
Abstract
This research evaluated deficit irrigation effects on tomato (Solanum lycopersicum L.) growth, yield, and quality in semi-arid Pakistan during 2023–2024. Four treatments were applied: 100% ETc (control), 80% ETc, 60% ETc, and 40% ETc used a randomized complete block design. The treatment [...] Read more.
This research evaluated deficit irrigation effects on tomato (Solanum lycopersicum L.) growth, yield, and quality in semi-arid Pakistan during 2023–2024. Four treatments were applied: 100% ETc (control), 80% ETc, 60% ETc, and 40% ETc used a randomized complete block design. The treatment with 80% ETc maintained similar yields as full irrigation. It improved water use efficiency from 1.25 kg/m3 to 1.39 kg/m3. Plant height, SPAD values, and leaf area decreased with increasing water stress. Fruit quality parameters, including total soluble solids, improved under moderate deficit conditions. Moderate deficit irrigation (80% ETc) represents an optimal strategy for sustainable tomato production in water-scarce environments. Full article
17 pages, 1552 KB  
Article
Ultrasound Impact on Extraction Yield and Properties of Starch and Polyphenols from Canna indica L. Rhizomes
by Vigna Nivetha Chandrasekaran, Charlotte Silvestre, Julien Antih, Prakash Maran Jeganathan, Karine Portet, Gaelle Vesta, Hippolyte Kodja, Thomas Petit, Kaies Souidi, Florence Bichon and Patrick Poucheret
Separations 2025, 12(11), 307; https://doi.org/10.3390/separations12110307 - 6 Nov 2025
Abstract
In this present study, the efficiency of ultrasound-assisted extraction (UAE) in increasing the yields of extraction of starch and polyphenols from Canna indica L. (Canna) rhizomes were analyzed, along with its influence on the physiochemical properties of the extracted compounds. Extraction parameters (temperature, [...] Read more.
In this present study, the efficiency of ultrasound-assisted extraction (UAE) in increasing the yields of extraction of starch and polyphenols from Canna indica L. (Canna) rhizomes were analyzed, along with its influence on the physiochemical properties of the extracted compounds. Extraction parameters (temperature, time, and solid-to-liquid ratio) were optimized through Box–Behnken response surface design (BBD). The physiochemical and functional properties of starch and polyphenols were investigated through scanning electron microscopy (SEM), the swelling and solubility index, oil and water absorption index, total polyphenol yield, and antioxidant activity assays (DPPH and ORAC). The starch yield obtained from Canna at the optimum extraction conditions (temperature 40 °C, time 10 min, and solid-to-liquid ratio 1:30 g/mL) was 19.81%. The obtained starch yield was found to be significantly higher than the yield attained through the conventional extraction method without adverse changes in the physicochemical and functional properties. The total polyphenol extraction yield from the Canna rhizome, through UAE, was significantly higher (1061.72 mg GAE/100 g) than that of the conventional method. The antioxidant activity of bioactive compounds was proportional to the attained polyphenol yield. Our results suggest that UAE optimized conditions efficiently and improved Canna starch and polyphenol extraction yields while preserving their functional properties. Full article
(This article belongs to the Special Issue Isolation and Identification of Biologically Active Natural Compounds)
Show Figures

Figure 1

14 pages, 5761 KB  
Article
Ultra-High Voltage NV Center Magnetic Sensing System Based on Power over Fiber
by Linfeng Zhan, Chenggang Guan, Chaoqiang Dong, Xuelong Fan, Qingtao Guo, Weiqi Wang, Yifan Xiao, Xuan Chen, Junchang Huang, Xueyou Zhang, Wenxin Jiang and Jiaoli Gong
Photonics 2025, 12(11), 1093; https://doi.org/10.3390/photonics12111093 - 6 Nov 2025
Abstract
Aiming to address the insulation and power supply challenges faced by electrical measurement in ultra-high voltage (UHV) environments, this study proposes and implements a nitrogen-vacancy (NV) center magnetic sensing system based on Power over Fiber (PoF) technology. The system adopts a high-voltage and [...] Read more.
Aiming to address the insulation and power supply challenges faced by electrical measurement in ultra-high voltage (UHV) environments, this study proposes and implements a nitrogen-vacancy (NV) center magnetic sensing system based on Power over Fiber (PoF) technology. The system adopts a high-voltage and low-voltage separation design, realizing the isolated transmission of electrical energy and the reliable recovery of measurement signals through an optical fiber link. The sensing unit on the high-voltage side is composed of NV center sensors, microwave excitation modules, and signal processing modules. Its power supply is provided by an independently developed high-power laser power converter (LPC) assembly via 830 nm optical fiber laser transmission. Under an optical input of 10 W, this assembly can achieve an electrical output of 4.88 W with a conversion efficiency of 48.9%. The experimental results show that the system can operate stably in a simulated UHV environment; by optimizing modulation parameters, the optimal magnetic measurement sensitivity reaches 6.1 nT/Hz1/2. This research provides a safe and reliable solution for the power supply and precise sensing of high-potential side equipment in UHV scenarios, and demonstrates the application potential of PoF technology in advanced sensing for power systems. Full article
Show Figures

Figure 1

20 pages, 6691 KB  
Article
Study on Blast Mitigation Protection of Underground Station Structures Using Phononic Crystals
by Jihu Wu, Chuqiao Bo, Dai Wang, Zhongxian Liu, Filip Broniewicz and Miroslaw Broniewicz
Buildings 2025, 15(21), 4006; https://doi.org/10.3390/buildings15214006 (registering DOI) - 6 Nov 2025
Abstract
Urban subways, as critical strategic spaces, require underground structures with sufficient blast-resistant capabilities. To evaluate the blast resistance performance of underground station structures under ground-level nuclear explosion air shock waves, a three-dimensional finite element model of an underground station was developed using LS-DYNA. [...] Read more.
Urban subways, as critical strategic spaces, require underground structures with sufficient blast-resistant capabilities. To evaluate the blast resistance performance of underground station structures under ground-level nuclear explosion air shock waves, a three-dimensional finite element model of an underground station was developed using LS-DYNA. The blast mitigation effects of phononic crystals are primarily analyzed and the influence of parameters such as spatial arrangement, buried depth, and material properties of phononic crystals on the blast resistance of underground station structures is systematically examined. The results indicate that a denser configuration of phononic crystals enhances the blast mitigation effect, while the maximum displacement of the structure is increased. Considering the structure’s maximum response and economic feasibility, a spacing of 2 m between phononic crystals is recommended. Additionally, the blast mitigation effect stabilizes when the number of phononic crystal layers exceeds a certain threshold, with two layers being optimal. The buried depth of the phononic crystals has a limited effect on blast mitigation; therefore, positioning them midway between the ground surface and the structure at a depth of 2 m is advised. The material properties of the phononic crystals also have a significant impact on the blast protection. Rubber was found to yield the lowest dynamic response of the station structure, providing the best protective effect. These findings offer insights for designing phononic crystal-based blast protection in underground station structures. Full article
Show Figures

Figure 1

23 pages, 18157 KB  
Article
Proportional Multiaxial Fatigue Behavior and Life Prediction of Laser Powder Bed Fusion Ti-6Al-4V with Critical Plane-Based Building Direction Variations
by Tian-Hao Ma, Yu-Xin Wang, Wei Zhang, Jian-Ping Zhao and Chang-Yu Zhou
Materials 2025, 18(21), 5056; https://doi.org/10.3390/ma18215056 - 6 Nov 2025
Abstract
Laser powder bed fusion (L-PBF) is an additive manufacturing technique that enables the fabrication of complex geometries through a layer-by-layer approach, overcoming limitations of conventional manufacturing. In this study, multiaxial low-cycle fatigue (MLCF) tests were conducted on L-PBF Ti-6Al-4V (Ti64) specimens built in [...] Read more.
Laser powder bed fusion (L-PBF) is an additive manufacturing technique that enables the fabrication of complex geometries through a layer-by-layer approach, overcoming limitations of conventional manufacturing. In this study, multiaxial low-cycle fatigue (MLCF) tests were conducted on L-PBF Ti-6Al-4V (Ti64) specimens built in four different orientations, selected based on critical plane orientations identified from rolled titanium. Under proportional strain-controlled loading, the cyclic softening behavior, mean stress response, and fracture mechanisms of the material were systematically investigated. The results show that L-PBF Ti64 exhibits a three-stage softening characteristic (continuous softening, stable, and rapid softening). Fatigue cracks primarily initiate from inner-surface lack-of-fusion defects. Crack propagation shows cleavage and quasi-cleavage characteristics with tearing ridges, river patterns, and multi-directional striations. Proposed KBMP life prediction model, incorporating λ and building direction parameters, was developed. The KBMP-λ model demonstrates optimal accuracy, providing a reliable tool for the design of L-PBF titanium components subjected to complex multiaxial fatigue loading with relative errors within 20%. Full article
Show Figures

Figure 1

19 pages, 1530 KB  
Article
Bioremediation of High-Concentration Heavy Metal-Contaminated Soil by Combined Use of Acidithiobacillus ferrooxidans and Fe3O4–GO Anodes
by Alifeila Yilahamu, Xuewen Wu, Xiaonuan Wang, Shengjuan Peng and Weihua Gu
Toxics 2025, 13(11), 959; https://doi.org/10.3390/toxics13110959 - 6 Nov 2025
Abstract
Soils heavily contaminated with potentially toxic elements (PTEs) pose substantial risks to the environment and human health. However, conventional remediation methods are often plagued by high energy consumption and the potential for secondary pollution. To address this challenge, this study developed a synergistic [...] Read more.
Soils heavily contaminated with potentially toxic elements (PTEs) pose substantial risks to the environment and human health. However, conventional remediation methods are often plagued by high energy consumption and the potential for secondary pollution. To address this challenge, this study developed a synergistic system combining acidophilic bacteria with a Fe-modified anode, aiming to enhance the remediation of PTEs in such contaminated soils. This system integrates the following three core components: the catalytic function of Fe3O4–graphene-oxide (Fe3O4–GO) nanocomposites, the acclimation of microbial communities, and the optimization of process parameters—specifically, applied electric current, pH, and oxidation–reduction potential (ORP). Experimental treatments were designed to assess the individual and combined effects of three key factors: bacterial inoculation, the Fe-modified anode, and the addition of Fe3O4–GO. The results revealed that the integrated synergistic system effectively reduced the soil pH from 2.9 to 2.0 and maintained the ORP at approximately 600 mV. For PTE removal, the system achieved efficiencies of 89% for Zn, 85.89% for Cu, 66.3% for Pb, 77.89% for Cd, and 40.63% for Cr, respectively. In contrast, control groups lacking bacteria, applied current, or Fe3O4–GO exhibited significantly lower metal removal efficiencies. Notably, the bacteria-free treatment led to a more than 50% reduction in Cr removal. Additionally, the group with an unmodified anode only achieved 1/3 to 1/2 of the removal efficiencies observed in the full synergistic system; this discrepancy is likely attributed to reduced electron transfer efficiency and compromised microbial adhesion on the anode surface. These findings demonstrate that the coupling of electrochemical enhancement, acidophilic microbial activity, and Fe3O4–GO catalysis constitutes an effective and energy-efficient approach for remediating soils contaminated with high concentrations of PTEs while simultaneously minimizing the risk of secondary pollution. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

13 pages, 624 KB  
Article
Contrastive Learning with Gaussian Embeddings and Self-Attention for Few-Shot Named Entity Recognition
by Yihao Zhang, Wei Chen and Lei Ma
Appl. Sci. 2025, 15(21), 11819; https://doi.org/10.3390/app152111819 - 6 Nov 2025
Abstract
Named entity recognition (NER) in few-shot scenarios plays a critical role in entity annotation for low-resource domains. However, existing methods are often limited to learning semantic features and intermediate representations specific to the source domain, which restricts their generalization capability when applied to [...] Read more.
Named entity recognition (NER) in few-shot scenarios plays a critical role in entity annotation for low-resource domains. However, existing methods are often limited to learning semantic features and intermediate representations specific to the source domain, which restricts their generalization capability when applied to unseen target domains and leads to prominent performance degradation. To address this issue, we propose a novel few-shot NER model based on contrastive learning. Specifically, the model enhances token representations through Gaussian distribution embedding and a self-attention mechanism, while adaptively optimizing the weighting parameters of the contrastive loss to achieve performance improvement. This design effectively mitigates overfitting and enhances the model’s generalization ability. Experiments on multiple datasets (including CoNLL2003, GUM, and Few-NERD) demonstrate that our approach achieves performance gains of 2.05% to 15.89% compared to state-of-the-art methods. These results confirm the effectiveness of our model in few-shot NER tasks and suggest its potential for broader application in low-resource information extraction scenarios. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 4628 KB  
Article
Sensitivity Analysis of Foundation Soil Physical–Mechanical Properties on Pile Foundation Stability
by Yuan Ma, Xinghong He, Yao Guan, Debao Fan, Rui Gao, Fan Luo and Shiyuan Liu
Buildings 2025, 15(21), 4001; https://doi.org/10.3390/buildings15214001 - 6 Nov 2025
Abstract
The stability of pile foundation is influenced by many interacting factors, particularly geological conditions. Quantifying the impact of physical and mechanical soil properties on pile stability is critical for achieving optimal design outcomes. This study investigates the sensitivity of key soil parameters and [...] Read more.
The stability of pile foundation is influenced by many interacting factors, particularly geological conditions. Quantifying the impact of physical and mechanical soil properties on pile stability is critical for achieving optimal design outcomes. This study investigates the sensitivity of key soil parameters and validates the findings with a case study of a university building in Kashkar, Xinjiang, China. A three-dimensional pile–soil model was developed in Abaqus and calibrated with static load test data. Variable control and orthogonal experiments were conducted to examine settlement patterns and ultimate bearing capacity under varying soil parameters. Settlement and ultimate bearing capacity were adopted as stability indicators. Sensitivity analysis was performed through multi-factor variance analysis, sensitivity analysis of factors (SAF), and variance inflation factor (VIF) collinearity analysis. The results show that the most influential parameters are the friction coefficient of the soil above the pile tip, the Poisson’s ratio of the pile-end soil, the Poisson’s ratio of the soil above the pile tip, the friction coefficient of the pile-end soil, and the elastic modulus of the pile-end soil. These findings provide a quantitative basis for optimizing design parameters and improving the efficiency and reliability of pile foundation design in sandy soil regions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

39 pages, 14066 KB  
Article
Climatic Adaptability of Transitional Space in Traditional Courtyard Dwellings of Jinhua: A Case Study of the Lu Residence in Dongyang
by Jiaqi Wang, Huijie Liu and Li Bao
Buildings 2025, 15(21), 3999; https://doi.org/10.3390/buildings15213999 - 5 Nov 2025
Abstract
Amid the combined pressures of global carbon-reduction in architecture and the imperative of cultural heritage conservation, new courtyard-style buildings in hot-summer and cold-winter regions face a dual challenge of reconciling historical morphological constraints with contemporary comfort requirements. At the same time, the prevailing [...] Read more.
Amid the combined pressures of global carbon-reduction in architecture and the imperative of cultural heritage conservation, new courtyard-style buildings in hot-summer and cold-winter regions face a dual challenge of reconciling historical morphological constraints with contemporary comfort requirements. At the same time, the prevailing energy-efficiency codes in these regions, emphasizing high airtightness and strong insulation, have revealed shortcomings such as poor indoor air quality and insufficient summer ventilation. This study takes the Lu Residence in Dongyang, Jinhua, Zhejiang Province, as the primary case. It systematically examines the coupling mechanisms between the geometric configurations of transitional space in traditional courtyard dwellings and their environmental physical parameters using field surveys, multi-parameter environmental monitoring, and computer simulations. The results identify the optimal orientations and geometric parameters that balance summer ventilation with winter thermal buffering in hot-summer and cold-winter regions. The primary conclusions of this research are as follows: (1) The optimal orientation for axial buildings lies between 15° west of south and 15° east of south, as well as 30–60° east or west of south, with an angle of 45–60° in relation to the prevailing annual wind direction for all buildings. (2) The optimal height-to-width ratio of the courtyard is less than 1:2.5, while the range of the length-to-width ratio extends from 1:0.5 to 1:0.7. (3) The optimal eave depth varies from 900 to 1500 mm, effectively balancing winter heat retention and summer shading; however, a depth of 2400 mm is primarily advantageous for shading purposes. Furthermore, these findings are applied to the design of a new guesthouse within the conservation area of the Xu Zhen Er Gong Ancestral Hall in Yongkang, establishing a climate–geometry matching mechanism for transitional spaces. The study demonstrates that transitional space can serve as effective passive regulators, offering a scientific and sustainable pathway for the adaptive continuation of traditional courtyard architecture. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 4485 KB  
Article
Construction of an Immunosensor Based on the Affinity DNA Functional Ligands to the Fc Segment of IgG Antibody
by Qianyu Yang, Zhiwei Liu, Xinrui Xu, Zihao Zhao, Ze Fan, Bin Du, Jianjie Xu, Jiwei Xu, Jiang Wang, Bing Liu, Xihui Mu and Zhaoyang Tong
Biosensors 2025, 15(11), 747; https://doi.org/10.3390/bios15110747 - 5 Nov 2025
Abstract
Over the past few decades, Fc fragment-conjugated proteins, such as Protein A, have been extensively utilized across a range of applications, including antibody purification, site-specific immobilization of antibodies, and the development of biosensing platforms. In this study, building upon our group prior research, [...] Read more.
Over the past few decades, Fc fragment-conjugated proteins, such as Protein A, have been extensively utilized across a range of applications, including antibody purification, site-specific immobilization of antibodies, and the development of biosensing platforms. In this study, building upon our group prior research, we designed and screened an affinity DNA functional ligand (A-DNAFL) and experimentally validated its binding affinity (KD = 6.59 × 10−8) toward mouse IgG antibodies, whose binding performance was comparable to that of protein A. Systematic evaluations were performed to assess the binding efficiency under varying pH levels and ionic strength conditions. Optimal antibody immobilization was achieved in PBST-B buffer under physiological pH 7.2–7.4 and containing approximately 154 mM Na+ and 4 mM K+. Two competitive binding assays confirmed that the A-DNAFL binds to the Fc fragment of murine IgG antibody. Furthermore, molecular docking simulations were employed to investigate the interaction mode, revealing key residues involved in binding as well as the contributions of hydrogen bonding and hydrophobic interactions to complex stabilization. Leveraging these insights, A-DNAFL was utilized as a tool for oriented immobilization of antibodies on the sensing interface, enabling the construction of an immunosensor for ricin detection. Following optimization of immobilization parameters, the biosensor exhibited a detection limit of 30.5 ng/mL with the linear regression equation is lg(Response) = 0.329 lg(Cricin) − 2.027 (N = 9, R = 0.938, p < 0.001)—representing a 64-fold improvement compared to conventional protein A-based methods. The system demonstrated robust resistance to nonspecific interference. Sensing interface reusability was also evaluated, showing only 8.55% signal reduction after two regeneration cycles, indicating that glycine effectively elutes bound antibodies while preserving sensor activity. In summary, the A-DNAFL presented in this study represents a novel antibody-directed immobilization material that serves as a promising alternative to protein A. It offers several advantages, including high modifiability, low production cost, and a relatively small molecular weight. These features collectively contribute to its broad application potential in biosensing, antibody purification, and other areas of life science research. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

13 pages, 4511 KB  
Article
Optimization of Microstructure and Strength–Ductility Synergy in Selective Laser-Melted Ti6Al4V Alloy via Chessboard Scanning Strategy
by Haochun Zhang, Chilan Cai, Liang Yan, Hailin Gong and Jin Yang
Metals 2025, 15(11), 1224; https://doi.org/10.3390/met15111224 - 5 Nov 2025
Abstract
To optimize the microstructure and mechanical properties of Ti6Al4V alloys fabricated via Selective Laser Melting (SLM), this study proposes an optimization approach based on the chessboard scanning strategy. A systematic comparison of three scanning strategies—alternating, stripe, and chessboard scanning—was conducted to examine their [...] Read more.
To optimize the microstructure and mechanical properties of Ti6Al4V alloys fabricated via Selective Laser Melting (SLM), this study proposes an optimization approach based on the chessboard scanning strategy. A systematic comparison of three scanning strategies—alternating, stripe, and chessboard scanning—was conducted to examine their effects on thermal input distribution, grain refinement, phase composition, and mechanical performance. Characterization results from Scanning Electron Microscopy (SEM), Electron Backscatter Diffraction (EBSD), and Transmission Electron Microscopy (TEM) revealed that the chessboard scanning strategy effectively refines the grain size to 88.64 ± 10.79 μm and increases the strengthening phase α′ content to 53.3%. Mechanical testing showed a tensile strength of 1179 ± 17 MPa (11.02% higher than stripe scanning) and elongation of 7.9 ± 0.4%. This strategy promotes random grain orientation by altering the scanning path, disrupting directional solidification, and suppressing texture formation. Microstructural mechanism analysis suggests that dislocation strengthening, increased α′ content, and grain refinement synergistically enhance both strength and ductility. These findings provide theoretical support for optimizing SLM parameters and the design of Ti6Al4V alloys’ microstructure and mechanical properties. Full article
Show Figures

Figure 1

Back to TopTop