Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (160)

Search Parameters:
Keywords = diaphragm wall

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8974 KB  
Article
Deformation Analysis of Wall-Pile-Anchor Retaining Structures During Shield Tunneling Considering Tunnel-Pit Spatial Interaction
by Yuran Lu, Hongsheng Qiu and Bin Zhu
Appl. Sci. 2025, 15(17), 9310; https://doi.org/10.3390/app15179310 - 25 Aug 2025
Viewed by 340
Abstract
In recent years, the increasing complexity of shield tunneling environments has made it critical to control the deformation of adjacent excavation structures and surrounding soils. This study employs numerical simulation using MIDAS GTS/NX to comprehensively analyze the spatial interaction factors between shield tunnels [...] Read more.
In recent years, the increasing complexity of shield tunneling environments has made it critical to control the deformation of adjacent excavation structures and surrounding soils. This study employs numerical simulation using MIDAS GTS/NX to comprehensively analyze the spatial interaction factors between shield tunnels and wall-pile-anchor-supported foundation pits. Structural parameters of the retaining system and tunneling conditions are also evaluated to identify the key factors influencing construction-induced deformation. The results show that the maximum settlement of the adjacent retaining wall occurs when the tunnel burial depth reaches 1.4L, where L is the height of the diaphragm wall. In addition, when the horizontal distance between the tunnel and the excavation is less than 0.75D (D being the tunnel diameter), significant settlement deformation is observed in the nearby support structures. A linear correlation is also identified between the variation in tunnel crown settlement and the excavation depth of the overlying pit during tunnel undercrossing. Furthermore, sensitivity analysis indicates that increasing the embedment depth of the diaphragm wall effectively reduces horizontal displacement at the wall base. Increasing the wall thickness decreases displacement in the upper section of the wall. Similarly, increasing pile diameter and anchor length and diameter, while reducing the inclination angle of anchors, are all effective in minimizing the lateral displacement of the support structure. Full article
Show Figures

Figure 1

22 pages, 14335 KB  
Article
A Simplified Multi-Linear Spring Model for Cross-Plate Joint in Diaphragm Walls Based on Model Tests
by Ming Yang, Chenxi Tong, Rongxing Wu, Gaoke Wang and Shenglei Tong
Buildings 2025, 15(16), 2890; https://doi.org/10.3390/buildings15162890 - 15 Aug 2025
Viewed by 258
Abstract
Cross-plate joints between panels are commonly used in diaphragm wall construction to ensure structural integrity. However, research on the mechanical behaviour of these joints remains limited, and they are often disregarded in numerical modelling due to their complexity. This paper fabricated two types [...] Read more.
Cross-plate joints between panels are commonly used in diaphragm wall construction to ensure structural integrity. However, research on the mechanical behaviour of these joints remains limited, and they are often disregarded in numerical modelling due to their complexity. This paper fabricated two types of specimens with cross-plate joints, which were subsequently employed in bending and shear tests, respectively. The load–displacement curves and the joint openings were experimentally measured. It was found that the load–displacement curves exhibited approximately four linear stages in the bending tests and two in the shear tests. Based on the test results, a multi-linear spring model was proposed to simplify the mechanical behaviour of the joints, and the stiffness of each linear stage was determined through back-analysis of the tested data. The calculated load–displacement curves ultimately agreed well with those obtained from the tests, with average errors of 3.6% in the bending test and 2.6% in the shear test. The proposed model was then applied to a devised case study, thereby demonstrating its capacity to capture joint opening phenomena and revealing the spatial variability of joint opening within the excavation depth. Compared with conventional 2D and 3D models, the proposed model yields displacement results that better reflect the actual deformation of the diaphragm wall. Furthermore, the precise modelling calculation for joints, which is time-consuming, is also avoided, and the calculation time of the proposed model is only 1.52 times that of the conventional 3D model. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

34 pages, 6115 KB  
Article
Intelligent Rebar Optimization Framework for Urban Transit Infrastructure: A Case Study of a Diaphragm Wall in a Singapore Mass Rapid Transit Station
by Daniel Darma Widjaja and Sunkuk Kim
Smart Cities 2025, 8(4), 130; https://doi.org/10.3390/smartcities8040130 - 7 Aug 2025
Viewed by 482
Abstract
As cities densify, deep underground infrastructure construction such as mass rapid transit (MRT) systems increasingly demand smarter, digitalized, and more sustainable approaches. RC diaphragm walls, essential to these systems, present challenges due to complex rebar configurations, spatial constraints, and high material usage and [...] Read more.
As cities densify, deep underground infrastructure construction such as mass rapid transit (MRT) systems increasingly demand smarter, digitalized, and more sustainable approaches. RC diaphragm walls, essential to these systems, present challenges due to complex rebar configurations, spatial constraints, and high material usage and waste, factors that contribute significantly to carbon emissions. This study presents an AI-assisted rebar optimization framework to improve constructability and reduce waste in MRT-related diaphragm wall construction. The framework integrates the BIM concept with a custom greedy hybrid Python-based metaheuristic algorithm based on the WOA, enabling optimization through special-length rebar allocation and strategic coupler placement. Unlike conventional approaches reliant on stock-length rebars and lap splicing, this approach incorporates constructability constraints and reinforcement continuity into the optimization process. Applied to a high-density MRT project in Singapore, it demonstrated reductions of 19.76% in rebar usage, 84.57% in cutting waste, 17.4% in carbon emissions, and 14.57% in construction cost. By aligning digital intelligence with practical construction requirements, the proposed framework supports smart city goals through resource-efficient practices, construction innovation, and urban infrastructure decarbonization. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

16 pages, 19063 KB  
Article
Numerical Analysis of Diaphragm Wall Deformation and Surface Settlement Caused by Dewatering and Excavation at Center and End Positions in a Subway Foundation Pit
by Kaifang Yang, Mingdong Jiang, Minliang Chi and Guohui Feng
Buildings 2025, 15(15), 2796; https://doi.org/10.3390/buildings15152796 - 7 Aug 2025
Viewed by 276
Abstract
Metro foundation pits are important components of urban infrastructure projects. Dewatering and excavation are essential stages in foundation pit construction; however, this process can significantly induce groundwater drawdown, as well as diaphragm wall deformation and surface settlement. Based on a subway station foundation [...] Read more.
Metro foundation pits are important components of urban infrastructure projects. Dewatering and excavation are essential stages in foundation pit construction; however, this process can significantly induce groundwater drawdown, as well as diaphragm wall deformation and surface settlement. Based on a subway station foundation pit project, in this study, we employ three-dimensional numerical software to simulate the process of dewatering and excavation. A refined model is used to investigate groundwater seepage, the deformation of the retaining structure, and surface settlement under spatial effects. The finite element model accounts for stratified excavation and applied prestress conditions for the support system within the foundation pit. Its accuracy is validated through a comparison and analysis with measured data from the actual foundation pit. The results indicate that foundation pit excavation leads to significant groundwater drawdown around the pit and the formation of a characteristic “funnel-shaped” drawdown curve. Moreover, extending the diaphragm wall length contributes to maintaining a higher external groundwater level surrounding the foundation pit. The horizontal displacement of the diaphragm wall increases progressively during dewatering and excavation, and the bending moment of the diaphragm wall exhibits a trend consistent with its horizontal displacement. Surface settlement decreases as the length of the diaphragm wall increases. Full article
Show Figures

Figure 1

34 pages, 12831 KB  
Article
Behavior of Large-Diameter Circular Deep Excavation Under Asymmetric Surface Surcharge
by Ping Zhao, Youqiang Qiu, Feng Liu, Zhanqi Wang and Panpan Guo
Symmetry 2025, 17(8), 1194; https://doi.org/10.3390/sym17081194 - 25 Jul 2025
Viewed by 341
Abstract
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity [...] Read more.
Circular deep excavations, characterized by their symmetrical geometry, are commonly employed in constructing foundations for large-span suspension bridges and as launching shafts for shield tunneling. However, the mechanical behavior of such excavations under asymmetric surface surcharge remains inadequately understood due to a paucity of relevant investigations. This study addresses this knowledge gap by establishing a three-dimensional finite element model (3D-FEA) based on the anchor deep excavation project of a specific bridge. The model is utilized to investigate the influence of asymmetric surcharge on the forces and deformations within the supporting structure. The results show that both the internal force and displacement cloud diagrams of the support structure exhibit asymmetric characteristics. The distribution of displacement and internal forces has spatial effects, and the maximum values all occur in the areas where asymmetric loads are applied. The maximum values of the displacement, axial force, and shear force of underground continuous walls increase with the increase in the excavation depth. The total displacement curves all show the feature of a “bulging belly”. The maximum displacement is 13.3 mm. The axial force is mainly compression, with a maximum value of −9514 kN/m. The maximum positive and negative values of the shear force are 333 kN/m and −705 kN/m, respectively. The bending moment diagram of different monitoring points shows the characteristics of “bow knot”. The maximum values of the positive bending moment and negative bending moment are 1509.4 kN·m/m and −2394.3 kN·m/m, respectively. The axial force of the ring beam is mainly compression, with a maximum value of −5360 kN, which occurs in ring beams 3, 4, and 5. The displacement cloud diagram of the support structure under symmetrical loads shows symmetrical characteristics. Under different load conditions, the displacement curve of the diaphragm wall shows the characteristics of “bulge belly”. The forms of loads with displacements from largest to smallest at the same position are as follows: asymmetric loads, symmetrical loads, and no loads. These findings provide valuable insights for optimizing the structural design of similar deep excavation projects and contribute to promoting sustainable urban underground development. Full article
(This article belongs to the Special Issue Symmetry, Asymmetry and Nonlinearity in Geomechanics)
Show Figures

Figure 1

24 pages, 5988 KB  
Article
Research on Construction Sequencing and Deformation Control for Foundation Pit Groups
by Ziwei Yin, Ruizhe Jin, Shouye Guan, Zhiwei Chen, Guoliang Dai and Wenbo Zhu
Appl. Sci. 2025, 15(14), 7719; https://doi.org/10.3390/app15147719 - 9 Jul 2025
Cited by 1 | Viewed by 439
Abstract
With the rapid urbanization and increasing development of underground spaces, foundation pit groups in complex geological environments encounter considerable challenges in deformation control. These challenges are especially prominent in cases of adjacent constructions, complex geology, and environmentally sensitive areas. Nevertheless, existing research is [...] Read more.
With the rapid urbanization and increasing development of underground spaces, foundation pit groups in complex geological environments encounter considerable challenges in deformation control. These challenges are especially prominent in cases of adjacent constructions, complex geology, and environmentally sensitive areas. Nevertheless, existing research is lacking in systematic analysis of construction sequencing and the interaction mechanisms between foundation pit groups. This results in gaps in comprehending stress redistribution and optimal excavation strategies for such configurations. To address these gaps, this study integrates physical model tests and PLAXIS 3D numerical simulations to explore the Nanjing Jiangbei New District Phase II pit groups. It concentrates on deformations in segmented and adjacent configurations under varying excavation sequences and spacing conditions. Key findings reveal that simultaneous excavation in segmented pit groups optimizes deformation control through symmetrical stress relief via bilateral unloading, reducing shared diaphragm wall displacement by 18–25% compared to sequential methods. Sequential excavations induce complex soil stress redistribution from asymmetric unloading, with deep-to-shallow sequencing minimizing exterior wall deformation (≤0.12%He). For adjacent foundation pit groups, simultaneous excavation achieves minimum displacement interference, while phased construction requires prioritizing large-section excavation first to mitigate cumulative deformations through optimized stress transfer. When the spacing-to-depth ratio (B/He) is below 1, horizontal displacements of retaining structures increase by 43% due to spacing effects. This study quantifies the effects of excavation sequences and spacing configurations on pit group deformation, establishing a theoretical framework for optimizing construction strategies and enhancing retaining structure stability. The findings are highly significant for underground engineering design and construction in complex urban geological settings, especially in high-density areas with spatial and geotechnical constraints. Full article
Show Figures

Figure 1

23 pages, 4982 KB  
Article
Analysis of Influence of Cut-and-Cover Method on Retaining Structures and Differential Settlement in Subway Foundation Pit Construction
by Yi Liu, Lei Huang, Xiaolin Tang, Yanbin Xue, Wenbin Ke, Yang Luo and Lingxiao Guan
Appl. Sci. 2025, 15(13), 7520; https://doi.org/10.3390/app15137520 - 4 Jul 2025
Viewed by 376
Abstract
This study established a numerical model for a foundation pit at the Zhongyilu Station of the Wuhan Metro Line 12, using Plaxis3D version 2021 finite element software to examine the horizontal displacement of the diaphragm wall, ground surface settlement, and differential settlement between [...] Read more.
This study established a numerical model for a foundation pit at the Zhongyilu Station of the Wuhan Metro Line 12, using Plaxis3D version 2021 finite element software to examine the horizontal displacement of the diaphragm wall, ground surface settlement, and differential settlement between the diaphragm wall and the lattice columns across various construction stages. A comparison with the cut-and-cover method prompted the adoption of a strategy that integrates segmental pouring of the main structure and the installation of internal supports to optimize the original scheme. The results indicated that as the foundation pit was excavated, both the horizontal displacement of diaphragm wall and the ground surface settlement gradually increased, while the differential settlement between the diaphragm wall and the lattice columns shows exhibited an initial decrease followed by an increase. In comparison to the cut-and-cover method, the cover-and-cut method demonstrated greater efficacy in controlling foundation pit deformation and minimizing disturbances to surrounding environment. As the number of segmental pouring layers and support levels increased, the overall deformation of the foundation pit showed a gradual decreasing trend, and the differential settlement between the diaphragm wall and the lattice columns continued to fluctuate. When each floor slab was poured in three layers with two supports placed in the middle, the maximum horizontal displacement of the diaphragm wall could be reduced by 22.47%, and the maximum ground surface settlement could be decreased by 19.01%. The findings in this research can provide valuable basis and reference for the design and construction of similar projects. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

23 pages, 5089 KB  
Review
Optimizing Airway Function Through Craniofacial and Cervical Manipulations and Emergency-Anesthesia Maneuvers: Applications in Airway Function Enhancement, Pneumonia, and Asthma—Narrative Review
by Jason Park, Luz Benitez, Amethyst Hamanaka, Ghulam Husain Abbas, Emmanuel Faluade, Sjaak Pouwels and Jamie Eller
J. Clin. Med. 2025, 14(13), 4494; https://doi.org/10.3390/jcm14134494 - 25 Jun 2025
Viewed by 858
Abstract
Background: Even with advanced management involving pharmacologic and ventilatory strategies, respiratory dysfunction increases morbidity and reduces the quality of life. This narrative review examines how craniofacial and cervical manipulative interventions—including nasomaxillary skeletal expansion, breathing re-education, and structural techniques—may holistically optimize airway function by [...] Read more.
Background: Even with advanced management involving pharmacologic and ventilatory strategies, respiratory dysfunction increases morbidity and reduces the quality of life. This narrative review examines how craniofacial and cervical manipulative interventions—including nasomaxillary skeletal expansion, breathing re-education, and structural techniques—may holistically optimize airway function by enhancing neurological and lymphatic dynamics, modulating vagal tone, reducing pharyngeal collapsibility, and supporting immune regulation across diverse clinical settings. Objectives: To explore manual techniques that influence respiratory and autonomic function and to evaluate their reported clinical efficacy and supporting evidence, particularly in the context of airway disorders such as asthma and pneumonia. Methods: A narrative review of the literature from PubMed and Google Scholar was conducted using search terms related to airway function and osteopathic manipulative techniques (OMTs). The inclusion criteria spanned 2010–2025 English-language peer-reviewed full-text articles on airway function, OMT, and emergency airway maneuvers. Clinical trials, observational studies, and reviews were included; non-peer-reviewed content and animal studies (unless mechanistically relevant) were excluded. Chapman’s reflexes related to respiratory function were incorporated to highlight somatic–visceral correlations. Key Findings: The techniques reviewed included frontal lift, vomer manipulation, maxillary and zygomatic balancing, and cervical adjustments. Thoracic OMT methods, such as diaphragm doming and lymphatic pump techniques, were also addressed. Emergency techniques, such as the BURP and Larson maneuvers, prone positioning, and high-frequency chest wall oscillation, were presented as comparative strategies to OMTs for acute airway management. Conclusions: Craniofacial and cervical manipulations can be a promising adjunct for enhancing airway function. However, the current literature displays heterogeneity and lack of large-scale randomized trials, which emphasize the necessity for standardized research and the establishment of clinical guidelines with the collected evidence. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

24 pages, 5864 KB  
Article
Deformation Characteristics and Base Stability of a Circular Deep Foundation Pit with High-Pressure Jet Grouting Reinforcement
by Xiaoliang Zhu, Wenqing Zhao, Junchen Zhao, Guoliang Dai, Ruizhe Jin, Zhiwei Chen and Wenbo Zhu
Appl. Sci. 2025, 15(12), 6825; https://doi.org/10.3390/app15126825 - 17 Jun 2025
Cited by 1 | Viewed by 576
Abstract
This study investigates the deformation characteristics and base stability of a circular diaphragm wall support system (external diameter: 90 m, wall thickness: 1.5 m) with pit bottom reinforcement for the South Anchorage deep foundation pit of the Zhangjinggao Yangtze River Bridge, which uses [...] Read more.
This study investigates the deformation characteristics and base stability of a circular diaphragm wall support system (external diameter: 90 m, wall thickness: 1.5 m) with pit bottom reinforcement for the South Anchorage deep foundation pit of the Zhangjinggao Yangtze River Bridge, which uses layered and partitioned top-down excavation combined with lining construction. Through field monitoring (deep horizontal displacement of the diaphragm wall, vertical displacement at the wall top, and earth pressure) and numerical simulations (PLAXIS Strength Reduction Method), we systematically analyzed the deformation evolution and failure mechanisms during construction. The results indicate the following: (1) Under the synergistic effect of the circular diaphragm wall, lining, and pit bottom reinforcement, the maximum horizontal displacement at the wall top was less than 30 mm and the vertical displacement was 0.04%H, both significantly below code-specified thresholds, verifying the effectiveness of the support system and pit bottom reinforcement. (2) Earth pressure exhibited a “decrease-then-increase” trend during the excavation proceeds. High-pressure jet grouting pile reinforcement at the pit base significantly enhanced basal constraints, leading to earth pressure below the Rankine active limit during intermediate stages and converging toward theoretical values as deformation progressed. (3) Without reinforcement, hydraulic uplift failure manifested as sand layer suspension and soil shear. After reinforcement, failure modes shifted to basal uplift and wall-external soil sliding, demonstrating that high-pressure jet grouting pile reinforcement had positive contribution basal heave stability by improving soil shear strength. (4) Improved stability verification methods for anti-heave and anti-hydraulic-uplift were proposed, incorporating soil shear strength contributions to overcome the underestimation of reinforcement effects in traditional pressure equilibrium and Terzaghi bearing capacity models. This study provides theoretical and practical references for similar deep foundation pit projects and offers systematic solutions for the safety design and deformation characteristics of circular diaphragm walls with pit bottom reinforcement. Full article
Show Figures

Figure 1

20 pages, 2790 KB  
Article
Model Tests of the Influence of Excavation Unloading and Servo Loading on Subway Foundation Pits
by Gang Wei, Weihao Feng, Xuehua Wu, Pengfei Wu, Kuan Chang, Hang Li, Shuaihua Ye and Zhe Wang
Buildings 2025, 15(12), 2054; https://doi.org/10.3390/buildings15122054 - 15 Jun 2025
Cited by 1 | Viewed by 367
Abstract
In deep foundation pit engineering, the rational arrangement of internal struts plays a crucial role in controlling diaphragm wall displacement and minimizing environmental impacts. This study investigates the effects of servo steel struts through model tests, analyzing diaphragm wall displacement, bending moment, surface [...] Read more.
In deep foundation pit engineering, the rational arrangement of internal struts plays a crucial role in controlling diaphragm wall displacement and minimizing environmental impacts. This study investigates the effects of servo steel struts through model tests, analyzing diaphragm wall displacement, bending moment, surface settlement, and surrounding soil pressure during both excavation and active servo control phases. The results show that installing servo struts near the pit bottom significantly improves deformation control, whereas strut placement in shallow zones more effectively mitigates surface settlement. The servo system dynamically adjusts strut displacements, thereby inducing internal force redistribution in the diaphragm wall and modifying the stress field in surrounding soils. This mechanism leads to an increase in positive bending moments on the wall’s backside, which may necessitate the localized reinforcement of the diaphragm wall at servo strut connections to ensure structural integrity. The lateral wall and surrounding soil pressure exhibit further increase, effectively compensating for the pressure loss induced by excavation unloading. Notably, the influence on soil pressure demonstrates a dissipating trend with an increasing distance from the excavation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 9917 KB  
Article
Experimental Investigation of Soil Settlement Mechanisms Induced by Staged Dewatering and Excavation in Alternating Multi-Aquifer–Aquitard Systems
by Cheng Zhao, Yimei Cheng, Guohong Zeng, Guoyun Lu and Yuwen Ju
Buildings 2025, 15(9), 1534; https://doi.org/10.3390/buildings15091534 - 2 May 2025
Viewed by 532
Abstract
Dewatering and excavation are fundamental processes influencing soil deformation in deep foundation pit construction. Excavation causes stress redistribution through unloading, while dewatering lowers the groundwater level, increases effective stress, and generates seepage forces and compressive deformation in the surrounding soil. To systematically investigate [...] Read more.
Dewatering and excavation are fundamental processes influencing soil deformation in deep foundation pit construction. Excavation causes stress redistribution through unloading, while dewatering lowers the groundwater level, increases effective stress, and generates seepage forces and compressive deformation in the surrounding soil. To systematically investigate their combined influence, this study conducted a scaled physical model test under staged excavation and dewatering conditions within a layered multi-aquifer–aquitard system. Throughout the experiment, soil settlement, groundwater head, and pore water pressure were continuously monitored. Two dimensionless parameters were introduced to quantify the contributions of dewatering and excavation: the total dewatering settlement rate ηdw and the cyclic dewatering settlement rate ηdw,i. Under different experimental conditions, ηdw ranges from 0.35 to 0.63, while ηdw,i varies between 0.32 and 0.82. Both settlement rates decrease with increasing diaphragm wall insertion depth and increase with greater dewatering depth inside the pit and higher soil permeability. An analytical formula for dewatering-induced soil settlement was developed using a modified layered summation method that accounts for deformation coordination between soil layers and includes correction factors for unsaturated zones. Although this approach is limited by scale effects and simplified boundary conditions, the findings offer valuable insights into soil deformation mechanisms under the combined influence of excavation and dewatering. These results provide practical guidance for improving deformation control strategies in complex hydrogeological environments. Full article
(This article belongs to the Special Issue Advances in Foundation Engineering for Building Structures)
Show Figures

Figure 1

23 pages, 6398 KB  
Article
Numerical Analysis and Optimization of Displacement of Enclosure Structure Based on MIDAS Finite Element Simulation Software
by Guansheng Han, Youjian Zhang, Jiqing Zhang and Haibin Zhang
Buildings 2025, 15(9), 1462; https://doi.org/10.3390/buildings15091462 - 25 Apr 2025
Cited by 3 | Viewed by 426
Abstract
The use of envelope structures is crucial in enhancing the safety and stability of foundation pits. However, excavation activities in the foundation pit can result in deformations affecting the envelope structure. To investigate the impact of the excavation process on the envelope structure [...] Read more.
The use of envelope structures is crucial in enhancing the safety and stability of foundation pits. However, excavation activities in the foundation pit can result in deformations affecting the envelope structure. To investigate the impact of the excavation process on the envelope structure and surrounding soil, the Midas GTS NX 2022R1 (64-bit) finite element software was employed to model the excavation process of Nantong East Railway Station. The settlement of the soil around the envelope structure and the horizontal displacement of the underground diaphragm wall (UDW) were compared with field measurements. The analysis demonstrated that the numerical analysis results exhibited a similar trend to the data obtained from field monitoring. This comparison provided valuable insights for selecting an optimal excavation method for the foundation pit and offered guidance for addressing similar challenges in the future. Additionally, a new method using metamaterials as a frame to improve the stability of continuous walls is proposed. The method relies on the excellent mechanical properties of metamaterials, improves the integrity and stability of the underground diaphragm wall, and provides a new way to solve the stability problem of underground diaphragm walls. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 6433 KB  
Article
Application of Advanced Multi-Parameter Monitoring in Concrete Structure Defect Detection: Integrating Thermal Integrity Profiling and Strain Analysis
by Linhai Lu, Xin Zhang, Xiaojun Li and Yanyun Lu
Buildings 2025, 15(8), 1350; https://doi.org/10.3390/buildings15081350 - 18 Apr 2025
Viewed by 527
Abstract
Thermal Integrity Profiling (TIP) effectively monitors concrete integrity. TIP detects structural defects and locates them through anomalies in hydration–temperature curves. However, TIP alone cannot accurately identify the defect types. To resolve this limitation, strain monitoring is integrated with TIP. A dual-parameter temperature–strain monitoring [...] Read more.
Thermal Integrity Profiling (TIP) effectively monitors concrete integrity. TIP detects structural defects and locates them through anomalies in hydration–temperature curves. However, TIP alone cannot accurately identify the defect types. To resolve this limitation, strain monitoring is integrated with TIP. A dual-parameter temperature–strain monitoring system using fiber-optic sensing was implemented in a diaphragm wall of Weizishan Station, Jinan. This study investigated the spatial distribution and variation patterns of concrete temperature–strain during the different stages of hydration. A thermal–mechanical–chemical multi-field coupling model was established based on the concrete mix ratio and the theoretical thermal parameters, and its feasibility was verified. This study also analyzed the impact mechanisms of four defect types—voids, mud inclusions, necking, and widening—on the surrounding concrete’s heat release and deformation during hydration. It presents specific hydration–temperature–strain characteristic curves that can accurately differentiate the defect types and established the correspondence between the defect types and these characteristic patterns. Finally, a rapid and accurate defect identification process is proposed for practical application, improving efficiency and precision in detecting anomalies. The findings provide a reference for implementing appropriate defect prevention and remediation measures on-site and hold promise for enhancing the prediction and control of defects during the hydration period of concrete structures. Full article
Show Figures

Figure 1

20 pages, 7275 KB  
Article
Deformation Patterns and Control of Existing Tunnels Induced by Coastal Foundation Pit Excavation
by Tao Liu, Yunlong Liang, Huadong Peng, Liucheng Yu, Tongju Xing, Yuanzhe Zhan and Jianguo Zheng
J. Mar. Sci. Eng. 2025, 13(4), 773; https://doi.org/10.3390/jmse13040773 - 13 Apr 2025
Viewed by 516
Abstract
The rapid development of coastal cities has intensified land resource constraints and is leading to an increasing number of foundation pit projects near existing operational tunnels. This necessitates careful consideration of coastal excavation impacts on adjacent tunnels. Taking a foundation pit project in [...] Read more.
The rapid development of coastal cities has intensified land resource constraints and is leading to an increasing number of foundation pit projects near existing operational tunnels. This necessitates careful consideration of coastal excavation impacts on adjacent tunnels. Taking a foundation pit project in Qingdao as a case study, this paper investigates tunnel deformation through statistical analysis, numerical simulation, and field monitoring. By adjusting numerical model parameters, the research examines the influence of horizontal clearance distances, existing structure burial depths, and different retaining structure configurations on tunnel deformation, providing guidance for deformation control. Key findings include the following: (1) Statistical analysis reveals that tunnels in silty clay strata experience more significant excavation-induced deformation compared to those in silt strata, with relative positional relationships between pits and tunnels playing a critical role. (2) Numerical and monitoring results demonstrate that pit excavation induces tunnel displacement towards the excavation zone. Maximum lateral displacement reached 3.57 mm (simulated) and 4.79 mm (measured), while maximum vertical displacement was 3.11 mm (simulated) and 3.85 mm (measured), all within safety thresholds. (3) Sensitivity analysis shows that shallower tunnels exhibit more pronounced deformations. Increasing horizontal separation distance from 10 m to 25 m reduces deformation by one-third. However, adjusting diaphragm wall thickness and retaining structure embedment depth proves limited in deformation control, necessitating reinforcement measures on the tunnel side. These findings provide valuable references for protecting coastal silty clay stratum tunnels. Full article
(This article belongs to the Special Issue Advances in Marine Geological and Geotechnical Hazards)
Show Figures

Figure 1

29 pages, 29974 KB  
Article
Restoration Study of a Masonry Monumental Building in Thrapsano, Greece
by Barbara Charalambidi, Maria E. Stavroulaki and Georgios E. Stavroulakis
Buildings 2025, 15(8), 1266; https://doi.org/10.3390/buildings15081266 - 12 Apr 2025
Viewed by 564
Abstract
This study investigates structural integrity and proposes retrofitting solutions for the historical two-storey school building in Thrapsano, Crete, severely impacted by the September 2021 earthquake. An extensive methodology was adopted, incorporating field surveys, material characterization, finite element modeling, and experimental analysis. The assessment [...] Read more.
This study investigates structural integrity and proposes retrofitting solutions for the historical two-storey school building in Thrapsano, Crete, severely impacted by the September 2021 earthquake. An extensive methodology was adopted, incorporating field surveys, material characterization, finite element modeling, and experimental analysis. The assessment is focused on identifying structural damage, such as cracking and delamination in masonry walls, and evaluating the dynamic and static performance of the load-bearing system under seismic loads. Key interventions include grouting for masonry reinforcement, replacement of mortar with compatible materials, stitching of cracks, and the addition of reinforced concrete and metallic tie elements to enhance diaphragm action. Advanced numerical simulations, validated through experimental data, were employed to model the pre- and post-retrofit behavior of the structure. The proposed retrofitting measures align with Eurocodes 6 and 8, and the Greek code for masonry structures (KADET), aiming to restore the structural stability and improve seismic resilience while respecting the building’s historical significance. The results from the finite element analysis confirm the effectiveness of the interventions in reducing tensile stresses and improving load redistribution, ensuring compliance with modern safety standards. This case study offers a framework for the seismic retrofitting of heritage structures in a similar context. Full article
(This article belongs to the Special Issue Challenges in Seismic Analysis and Assessment of Buildings)
Show Figures

Figure 1

Back to TopTop