Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,480)

Search Parameters:
Keywords = dielectric parameters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12417 KB  
Article
Optimizing EDM of Gunmetal with Al2O3-Enhanced Dielectric: Experimental Insights and Machine Learning Models
by Saumya Kanwal, Usha Sharma, Saurabh Chauhan, Anuj Kumar Sharma, Jitendra Kumar Katiyar, Rabesh Kumar Singh and Shalini Mohanty
Materials 2025, 18(19), 4578; https://doi.org/10.3390/ma18194578 - 2 Oct 2025
Abstract
This study investigates the optimization of electric discharge machining (EDM) parameters for gunmetal using copper electrodes in two different dielectric environments, which are conventional EDM oil and EDM oil infused with Al2O3 nanoparticles. A Taguchi L27 orthogonal array design was [...] Read more.
This study investigates the optimization of electric discharge machining (EDM) parameters for gunmetal using copper electrodes in two different dielectric environments, which are conventional EDM oil and EDM oil infused with Al2O3 nanoparticles. A Taguchi L27 orthogonal array design was used to evaluate the effects of current, voltage, and pulse-on time on Material Removal Rate (MRR), Electrode Wear Rate (EWR), and surface roughness (Ra, Rq, and Rz). Analysis of Variance (ANOVA) was used to statistically evaluate the influence of each parameter on machining performance. In addition, machine learning models including Linear Regression, Ridge Regression, Support Vector Regression, Random Forest, Gradient Boosting, and Neural Networks were implemented to predict performance outcomes. The originality of this research is not only rooted in the introduction of new models; rather, it is also found in the comparative analysis of various machine learning methodologies applied to the performance of electrical discharge machining (EDM) utilizing Al2O3-enhanced dielectrics. This investigation focuses specifically on gunmetal, a material that has not been extensively studied within this framework. The nanoparticle-enhanced dielectric demonstrated improved machining performance, achieving approximately 15% higher MRR, 20% lower EWR, and 10% improved surface finish compared to conventional EDM oil. Neural Networks consistently outperformed other models in predictive accuracy. Results indicate that the use of nanoparticle-infused dielectrics in EDM, coupled with data-driven optimization techniques, enhances productivity, tool life, and surface quality. Full article
(This article belongs to the Special Issue Non-conventional Machining: Materials and Processes)
Show Figures

Figure 1

22 pages, 3340 KB  
Article
Microstrip Patch Antenna for GNSS Applications
by Hatice-Andreea Topal and Teodor Lucian Grigorie
Appl. Sci. 2025, 15(19), 10663; https://doi.org/10.3390/app151910663 - 2 Oct 2025
Abstract
This research paper presents the results of an analysis conducted on a microstrip patch antenna designed to operate within the 1.559–1.591 GHz frequency band, which encompasses three major satellite constellations: GPS, Galileo and BeiDou. The objective of this study is to perform a [...] Read more.
This research paper presents the results of an analysis conducted on a microstrip patch antenna designed to operate within the 1.559–1.591 GHz frequency band, which encompasses three major satellite constellations: GPS, Galileo and BeiDou. The objective of this study is to perform a comparative evaluation of the materials used in the antenna design, assess the geometric configuration and analyze the key performance parameters of the proposed microstrip patch antenna. Prior to the numerical modeling and simulation process, a preliminary assessment was conducted to evaluate how different substrate materials influence antenna efficiency. For instance, a comparison between FR-4 and RT Duroid 5880 dielectric substrates revealed signal attenuation differences of approximately −1 dB at the target frequency. The numerical simulations were carried out using Ansys HFSS design. The antenna was mounted on a dielectric substrate, which was also mounted on a ground plane. The microstrip antenna was fed using a coaxial cable at a single point, strategically positioned to achieve circular polarization within the operating frequency band. The aim of this study is to design and analyze a microstrip antenna that operates within the previously specified frequency range, ensuring optimal impedance matching of 50 Ω with a return loss of S11 < −10 dB at the operating frequency (with these parameters also contributing to the definition of the antenna’s operational bandwidth). Furthermore, the antenna is required to provide a gain greater than 3 dB for integration into GNSS’ receivers and to achieve an Axial Ratio value below 3 dB in order to ensure circular polarization, thereby facilitating the antenna’s integration into GNSSs. Full article
Show Figures

Figure 1

16 pages, 296 KB  
Article
Nonlocal Internal Variable and Superfluid State in Liquid Helium II
by Vito Antonio Cimmelli
Mathematics 2025, 13(19), 3134; https://doi.org/10.3390/math13193134 - 1 Oct 2025
Abstract
We present a model of superfluidity based on the internal variable theory. We consider a two-component fluid endowed with a scalar internal variable whose gradient is the counterflow velocity. The restrictions imposed by the second law of thermodynamics are obtained by applying a [...] Read more.
We present a model of superfluidity based on the internal variable theory. We consider a two-component fluid endowed with a scalar internal variable whose gradient is the counterflow velocity. The restrictions imposed by the second law of thermodynamics are obtained by applying a generalized Coleman–Noll procedure. A set of constitutive equations of the Landau type, with entropy, entropy flux and stress tensor depending on the counterflow velocity, is obtained. The propagation of acceleration waves is investigated as well. It is shown that the first-and-second sound waves may propagate along the system with speeds depending on the physical parameters of the two fluids. First sound waves may propagate in the same direction or in the opposite direction of the counterflow velocity, depending on the concentration of normal and superfluid components. The speeds of second sound waves have the same mathematical form of those propagating in dielectric crystals. Full article
(This article belongs to the Section E4: Mathematical Physics)
86 pages, 1368 KB  
Article
Nonlinear Quasi-Classical Model of Isothermal Relaxation Polarization Currents in Functional Elements of Microelectronics, Optoelectronics, and Fiber Optics Based on Crystals with Ionic-Molecular Chemical Bonds with Complex Crystalline Structure
by Valeriy Kalytka, Ali Mekhtiyev, Yelena Neshina, Aleksey Yurchenko, Aliya Аlkina, Felix Bulatbayev, Valeriy Issayev, Kanat Makhanov, Dmitriy Lukin, Damir Kayumov and Alexandr Zaplakhov
Crystals 2025, 15(10), 863; https://doi.org/10.3390/cryst15100863 - 30 Sep 2025
Abstract
In this article, the mechanism of relaxation polarization currents occurring at a constant temperature (isothermal process) in crystals with ionic-molecular chemical bonds (CIMBs) in an alternating electric field was investigated. Methods of the quasi-classical kinetic theory of dielectric relaxation, based on solutions of [...] Read more.
In this article, the mechanism of relaxation polarization currents occurring at a constant temperature (isothermal process) in crystals with ionic-molecular chemical bonds (CIMBs) in an alternating electric field was investigated. Methods of the quasi-classical kinetic theory of dielectric relaxation, based on solutions of the nonlinear system of Fokker–Planck and Poisson equations (for the blocking electrode model) and perturbation theory (by expanding into an infinite series in powers of a dimensionless small parameter) were used. Generalized nonlinear mathematical expressions for calculating the complex amplitudes of relaxation modes of the volume-charge distribution of the main charge carriers (ions, protons, water molecules, etc.) were obtained. On this basis, formulas for the current density of relaxation polarization (for transient processes in a dielectric) in the k-th approximation of perturbation theory were constructed. The isothermal polarization currents are investigated in detail in the first four approximations (k = 1, 2, 3, 4) of perturbation theory. These expressions will be applied in the future to compare the results of theory and experiment, in analytical studies of the kinetics of isothermal ion-relaxation (in crystals with hydrogen bonds (HBC), proton-relaxation) polarization and in calculating the parameters of relaxers (molecular characteristics of charge carriers and crystal lattice parameters) in a wide range of field parameters (0.1–1000 MV/m) and temperatures (1–1550 K). Asymptotic (far from transient processes) recurrent formulas are constructed for complex amplitudes of relaxation modes and for the polarization current density in an arbitrary approximation k of perturbation theory with a multiplicity r by the polarizing field (a multiple of the fundamental frequency of the field). The high degree of reliability of the theoretical results obtained is justified by the complete agreement of the equations of the mathematical model for transient and stationary processes in the system with a harmonic external disturbance. This work is of a theoretical nature and is focused on the construction and analysis of nonlinear properties of a physical and mathematical model of isothermal ion-relaxation polarization in CIMB crystals under various parameters of electrical and temperature effects. The theoretical foundations for research (construction of equations and working formulas, algorithms, and computer programs for numerical calculations) of nonlinear kinetic phenomena during thermally stimulated relaxation polarization have been laid. This allows, with a higher degree of resolution of measuring instruments, to reveal the physical mechanisms of dielectric relaxation and conductivity and to calculate the parameters of a wide class of relaxators in dielectrics in a wide experimental temperature range (25–550 K). Full article
(This article belongs to the Section Inorganic Crystalline Materials)
17 pages, 10881 KB  
Article
Femtosecond Laser Precision Etching of Silver Layer on Silica Aerogel Surfaces
by Shengtian Lin, Congyi Wu, Guojun Zhang and Jinjin Wu
Micromachines 2025, 16(10), 1107; https://doi.org/10.3390/mi16101107 - 29 Sep 2025
Abstract
Silica fiber-reinforced silica aerogel (SFRSA) has low dielectric constant, light weight and high temperature resistance characteristics, making it one of the preferred materials for heat-resistant absorptive layers on the surfaces of high-speed aircraft. However, due to its ultra-high porosity, poor rigidity, and sensitivity [...] Read more.
Silica fiber-reinforced silica aerogel (SFRSA) has low dielectric constant, light weight and high temperature resistance characteristics, making it one of the preferred materials for heat-resistant absorptive layers on the surfaces of high-speed aircraft. However, due to its ultra-high porosity, poor rigidity, and sensitivity to organic solvents, existing machining and chemical etching processes struggle to achieve patterned preparation of metallic layers on aerogel substrates. In order to address this issue, the present study employs femtosecond laser etching of the metal layer on the SFRSA surface. Orthogonal experiments were conducted to analyze the impact of different laser process parameters on the etching quality. With straightness as the primary factor, the optimal process parameters obtained were a laser power set to 2.15 W, a laser etching speed of 200 mm/s, and a laser etching time of 9. This achieved an etching width of 26.16 μm, a heat-affected zone of 39.16 μm, and straightness of 7.9 μm. Finally, Raman spectroscopy was used to study laser-ablated samples; thermogravimetric analysis (TGA) and Pyrolysis-Gas Chromatography–Mass Spectrometry analysis (Py-GC-MS) were employed to investigate the changes in the metal layer at high temperatures. A compositional analysis was conducted, revealing a decrease in carbon content within the etched region following laser ablation. The production of CO2 gas and surface oxidation indicated that laser etching primarily operates via a photothermal mechanism. Full article
(This article belongs to the Special Issue Advances in Digital Manufacturing and Nano Fabrication)
Show Figures

Figure 1

25 pages, 921 KB  
Article
The Effect of Plasma-Activated Water on Zea mays L. Landraces Under Abiotic Stress
by Paula-Maria Galan, Silvia Strajeru, Danela Murariu, Catalin-Ioan Enea, Denisa-Elena Petrescu, Alina-Carmen Tanasa, Dumitru-Dorel Blaga and Livia-Ioana Leti
Agriculture 2025, 15(19), 2037; https://doi.org/10.3390/agriculture15192037 - 28 Sep 2025
Abstract
A major challenge in the agricultural industry is finding innovative and sustainable methods that can lead to enhanced crop resistance to abiotic stress factors and increased productivity. Research in recent years has proven the potential of non-thermal plasma in various fields, including agriculture, [...] Read more.
A major challenge in the agricultural industry is finding innovative and sustainable methods that can lead to enhanced crop resistance to abiotic stress factors and increased productivity. Research in recent years has proven the potential of non-thermal plasma in various fields, including agriculture, with relevance in promoting plant growth and development, plant immune response to abiotic stress or pathogen resistance. In the present study, distilled water was activated using dielectric barrier discharge equipment; subsequently, plasma-activated water (PAW) was used to irrigate maize plants subjected to cold stress. Two different maize accessions were studied in this work, SVGB-11742 and SVGB-718, previously identified as highly and moderately resistant to cold stress, respectively. After plant exposure to cold and irrigation with plasma-activated water, morphological, morpho-agronomical and physiological parameters and molecular data were assessed. The two genotypes showed distinct, often opposing, responses to PAW treatment depending on the parameter assessed. Generally, the obtained data at the molecular level showed that treatment with PAW increased the expression of certain genes involved in growth and development of the SVGB-718 variant subjected to cold stress. Irrigation of plants exposed to low temperatures with PAW did not have the predicted effects at the morphological and even the physiological level regarding the concentration of assimilatory pigments and the cold test index. While morphological benefits were limited and genotype-specific, PAW induced significant molecular changes (upregulated stress-responsive genes in SVGB-718), suggesting a priming effect that may not have been captured in the short-term morphological assays. However, the results obtained represent an important background for future studies. Full article
(This article belongs to the Section Crop Production)
18 pages, 5314 KB  
Article
Development and Optimization of a 10-Stage Solid-State Linear Transformer Driver
by Keegan Kelp, Dawson Wright, Kirk Schriner, Jacob Stephens, James Dickens, John Mankowski, Zach Shaw and Andreas Neuber
Energies 2025, 18(19), 5129; https://doi.org/10.3390/en18195129 - 26 Sep 2025
Abstract
This work details the development of a 10-stage solid-stage linear transformer driver (SSLTD) capable of producing 24 kV, 1 kA pulses with a rise-time of ∼10 ns utilizing SiC MOSFET switches. Throughout the development process, various design parameters were investigated for their influence [...] Read more.
This work details the development of a 10-stage solid-stage linear transformer driver (SSLTD) capable of producing 24 kV, 1 kA pulses with a rise-time of ∼10 ns utilizing SiC MOSFET switches. Throughout the development process, various design parameters were investigated for their influence on the LTD’s performance. Among these considerations was an evaluation of the behavior of several nanocrystalline magnetic core materials subject to high-voltage pulsed conditions, with an emphasis on minimizing energy losses. Another design parameter of interest lies in the physical layout of the LTD structure, particularly the diameter of the central stalk and the dielectric material, which together define the characteristics of the coaxial transmission line, as well as the overall height of each stage. The influence of each of these parameters was weighed to optimize the final design for fastest output pulse rise-time, highest efficiency, and cleanest output pulse waveform profile across varying load resistance. This work also introduces a pulsed reset technique, where repetition-rated burst testing was used to find the maximum operational frequency of the LTD without driving the magnetic cores into saturation. Full article
(This article belongs to the Special Issue Advancements in Electromagnetic Technology for Electrical Engineering)
19 pages, 2445 KB  
Article
Prediction of Multi-Hole Copper Electrodes’ Influence on Form Tolerance and Machinability Using Grey Relational Analysis and Adaptive Neuro-Fuzzy Inference System in Electrode Discharge Machining Process
by Sandeep Kumar, Subramanian Dhanabalan, Wilma Polini and Andrea Corrado
Appl. Sci. 2025, 15(19), 10445; https://doi.org/10.3390/app151910445 - 26 Sep 2025
Abstract
Electric discharge machining processes are prominent in the fastest-growing industries because of their accuracy, achievable complex workpiece shapes, and cost-effectiveness. Furthermore, the machining of high-quality difficult-to-machine alloys is becoming critical in the aerospace, manufacturing, and defence industries. While the optimisation of EDM parameters [...] Read more.
Electric discharge machining processes are prominent in the fastest-growing industries because of their accuracy, achievable complex workpiece shapes, and cost-effectiveness. Furthermore, the machining of high-quality difficult-to-machine alloys is becoming critical in the aerospace, manufacturing, and defence industries. While the optimisation of EDM parameters is essential for improving machining outcomes, it is also important to consider the trade-offs between different performances metrics, such as material removal rate and part accuracy. Part accuracy in terms of dimensional and geometric deviations from nominal values was rarely considered in the literature, if not by the authors. Balancing these factors remains a challenge in the field of EDM. Therefore, this work aims to carry out a multi-objective optimisation of both MRR and part accuracy. A Ni-based alloy (Inconel-625) was used that is widely used in creep-resistant turbine blades and vanes and turbine disks in gas turbine engines for aerospace and defence industries. Four performance indices were optimised simultaneously: two related to the performance of the EDM process and two connected with the form deviations of the manufactured surfaces. Multi-hole copper electrodes having different diameters and three process parameters were varied during the experimental tests. Grey relational analysis and the Adaptive Neuro-Fuzzy Inference System method were used for optimisation. Grey relational analysis found that the following values of the process parameter—0.16 mm of multi-hole electrode diameter, 12 Amperes of Peak current, 200 µs of pulse on time and 0.2 kg/m2 as dielectric pressure—produce the optimal performance, i.e., a material removal rate of 0.099 mm3/min, an electrode wear rate of 0.0002 g/min, a circularity deviation of 0.0043 mm and a cylindricity deviation of 0.027 mm. From the experimental examination using multi-hole electrodes, it is concluded that the material removal rate increases and the electrode wear rate decreases because of the availability of higher spark discharge areas between the electrode and work material interface. The Adaptive Neuro-Fuzzy Inference System models showed minimum mean percentage error and, therefore, better performance in comparison with regression models. Full article
Show Figures

Figure 1

29 pages, 1623 KB  
Review
Electric Field Effects on Microbial Cell Properties: Implications for Detection and Control in Wastewater Systems
by Camelia Ungureanu, Silviu Răileanu, Daniela Simina Ștefan, Iosif Lingvay, Attila Tokos and Mircea Ștefan
Environments 2025, 12(10), 343; https://doi.org/10.3390/environments12100343 - 25 Sep 2025
Abstract
Electric fields (EFs) have emerged as effective, non-chemical tools for modulating microbial populations in complex matrices such as wastewater. This review consolidates current advances on EF-induced alterations in microbial structures and functions, focusing on both vegetative cells and spores. Key parameters affected include [...] Read more.
Electric fields (EFs) have emerged as effective, non-chemical tools for modulating microbial populations in complex matrices such as wastewater. This review consolidates current advances on EF-induced alterations in microbial structures and functions, focusing on both vegetative cells and spores. Key parameters affected include membrane thickness, transmembrane potential, electrical conductivity, and dielectric permittivity, with downstream impacts on ion homeostasis, metabolic activity, and viability. Such bioelectrical modifications underpin EF-based detection methods—particularly impedance spectroscopy and dielectrophoresis—which enable rapid, label-free, in situ microbial monitoring. Beyond detection, EFs can induce sublethal or lethal effects, enabling selective inactivation without chemical input. This review addresses the influence of field type (DC, AC, pulsed), intensity, and exposure duration, alongside limitations such as species-specific variability, heterogeneous environmental conditions, and challenges in achieving uniform field distribution. Emerging research highlights the integration of EF-based platforms with biosensors, machine learning, and real-time analytics for enhanced environmental surveillance. By linking microbiological mechanisms with engineering solutions, EF technologies present significant potential for sustainable water quality management. Their multidisciplinary applicability positions them as promising components of next-generation wastewater monitoring and treatment systems, supporting global efforts toward efficient, adaptive, and environmentally benign microbial control strategies. Full article
(This article belongs to the Special Issue Advanced Technologies for Contaminant Removal from Water)
Show Figures

Figure 1

17 pages, 4717 KB  
Article
Intelligent Fast Calculation of Petrophysical Parameters of Clay-Bearing Shales Based on a Novel Dielectric Dispersion Model and Machine Learning
by Jianshen Gao and Jing Li
Appl. Sci. 2025, 15(19), 10381; https://doi.org/10.3390/app151910381 - 24 Sep 2025
Viewed by 25
Abstract
Dielectric dispersion and its interpretation process through clay-bearing shales is very complicated, which makes the saturation evaluation of clay-bearing shales difficult. This paper focuses on developing a model that considers the clay effect on the dielectric dispersion of clay-bearing shales. The effects of [...] Read more.
Dielectric dispersion and its interpretation process through clay-bearing shales is very complicated, which makes the saturation evaluation of clay-bearing shales difficult. This paper focuses on developing a model that considers the clay effect on the dielectric dispersion of clay-bearing shales. The effects of water saturation, clay content, and other factors on the dielectric dispersion characteristics of clay-bearing shale rocks are analyzed. By combining a dielectric dispersion response database with backpropagation neural network (BPNN) models, this paper develops a calculation model that can simultaneously calculate five petrophysical parameters, i.e., the water salinity, rock cementation exponent, clay content, clay moisture content, and water saturation. The results indicate that the newly developed dielectric dispersion model can characterize the effects of clay content and clay moisture content. The correlation coefficients of the five parameters can all exceed 99% for each sub-sample database and reach an average of 95.06% in an application case, and the calculation efficiency is also very satisfactory, which significantly outperforms the traditional optimization algorithms. The proposed method provides a practical alternative to traditional inversion approaches for shale evaluation. Full article
Show Figures

Figure 1

12 pages, 13084 KB  
Article
Characterization of Sub-Resonant Dielectric Spheres by Millimeter-Wave Scattering Measurements
by Max Lippoldt and Jan Hesselbarth
Sensors 2025, 25(18), 5687; https://doi.org/10.3390/s25185687 - 12 Sep 2025
Viewed by 285
Abstract
When measuring the size or relative permittivity of a dielectric particle, usually one of the parameters needs to be known for determining the other one. Scattering measurement methods offer an alternative that allows for extracting both the size and the permittivity of the [...] Read more.
When measuring the size or relative permittivity of a dielectric particle, usually one of the parameters needs to be known for determining the other one. Scattering measurement methods offer an alternative that allows for extracting both the size and the permittivity of the particle under test at the same time. In this paper, bi-static scattering measurements at millimeter-wave frequencies are applied to characterize sub-resonant dielectric spheres of sub-wavelength size. The size and relative permittivity are extracted simultaneously from measurements at Ka-band (26.5–40 GHz). The experimental setup and the data processing procedure are detailed in depth, and the sources of the systematic errors are discussed. Alumina ceramic spheres (with relative permittivity of approximately 10) of diameter as small as 0.8 mm (less than 1/10 of free-space wavelength) were investigated. The extracted diameters and permittivities agree well with the expected values. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

15 pages, 2148 KB  
Article
Simulation-Based Analysis and Optimization of High-Performance Dielectric Strength Polymers in the Injection Molding of Electrical Connectors
by Fuat Tan
Polymers 2025, 17(18), 2465; https://doi.org/10.3390/polym17182465 - 12 Sep 2025
Viewed by 367
Abstract
In this research, the thermal and structural responses of high-performance dielectric strength polymers in the injection molding process for multi-pin electrical connectors were thoroughly studied using Moldflow simulations and optimized via a Box–Behnken experimental design under the Response Surface Methodology (RSM). Injection molding [...] Read more.
In this research, the thermal and structural responses of high-performance dielectric strength polymers in the injection molding process for multi-pin electrical connectors were thoroughly studied using Moldflow simulations and optimized via a Box–Behnken experimental design under the Response Surface Methodology (RSM). Injection molding analyses were performed on Polyether-ether-ketone (PEEK), Polyetherimide (PEI), and Polyamide-imide (PAI) polymers using the MS3102A 16S-1P electrical connector model. In the conducted simulations, the melt temperature, injection time, and mold open time were evaluated as three fundamental process parameters through multivariate analysis. The volumetric shrinkage, sink mark depth, residual stress, warpage, and surface temperature homogeneity were considered as the major output qualities. According to the results, the PAI material provided superior thermal stability with an average heat removal capacity of 0.127 kW, whereas the PEI material exhibited the most homogeneous cooling behavior with a surface temperature of 45.5 °C. The minimum warpage was found to be 0.254 mm, whereas the sink mark depth was recorded within the range of 0.018–0.031 mm and the rate of volume shrinkage was between 1.03% and 1.41% in the investigations. The PAI material gave the maximum residual stress of 81.9 MPa in oriented regions of the mold. This study fills a considerable gap in the field by investigating material choice and process parameter adjustments via multivariate analysis, particularly for decision making in the production of high-reliability electrical components. Full article
Show Figures

Figure 1

19 pages, 5645 KB  
Article
Low-Backward Radiation Circular Polarization RFID Reader Antenna Design for Sports-Event Applications
by Chia-Hung Chang, Ting-An Chang, Ming-Zhang Kuo, Tung-Ming Koo, Chung-I G. Hsu and Xinhua Wang
Electronics 2025, 14(18), 3582; https://doi.org/10.3390/electronics14183582 - 9 Sep 2025
Viewed by 622
Abstract
This paper presents the design of a circularly polarized RFID ground mat antenna for UHF-band sports-event applications. Considering a practical sports-event timing system, the ground-based mat antenna with characteristics of a low-backward radiation and circular polarization is proposed. A multilayer square patch antenna [...] Read more.
This paper presents the design of a circularly polarized RFID ground mat antenna for UHF-band sports-event applications. Considering a practical sports-event timing system, the ground-based mat antenna with characteristics of a low-backward radiation and circular polarization is proposed. A multilayer square patch antenna using an acrylic dielectric substrate with a wideband branch-line coupler feeding network is employed to improve overall radiation efficiency, which, in turn, provides two excitation port with a phase difference of 90°. Thus, right-hand circular polarization can be obtained. Instead of a conventional FR4–air–FR4 structure, the proposed FR4–acrylic–FR4 composite configuration is adopted to substantially increase the antenna’s mechanical strength and durability against external pressure from runners. The antenna’s performance is attributed to the use of an effective composite dielectric constant and an optimized design of its parameters. Additionally, the patch antenna’s low-backward radiation characteristic helps reduce multipath interference in real-world applications. The measured results are in good agreement with the simulated data, validating the proposed antenna design. In order to further assess the practical performance of the antenna, outdoor measurements are carried out to validate the estimated reading distances derived from controlled anechoic chamber tests. The measured return loss remained below −10 dB across the frequency range of 755–990 MHz, exhibiting a slight discrepancy compared to the simulated bandwidth of 800–1030 MHz. For the characteristic of the circular polarization, the measured axial ratio is below 3 dB within the range of 860–920 MHz. While a more relaxed criterion of an axial ratio below 6 dB is considered, the operating frequency range extends from 560 MHz to 985 MHz, which falls within the frequency band relevant for RFID reader applications. Full article
(This article belongs to the Special Issue Analog/RF Circuits: Latest Advances and Prospects)
Show Figures

Figure 1

28 pages, 5893 KB  
Article
A Study of the In-Vial Crystallization of Ice in Sucrose–Salt Solutions—An Application for Through-Vial Impedance Spectroscopy (TVIS)
by Geoff Smith and Yowwares Jeeraruangrattana
Appl. Sci. 2025, 15(17), 9728; https://doi.org/10.3390/app15179728 - 4 Sep 2025
Viewed by 522
Abstract
Ice nucleation temperatures and associated ice growth rates are critical parameters in defining the initial ice morphology template, which governs dry layer resistance during sublimation and therefore impacts primary drying kinetics and overall process time. In this study, we developed a through-vial impedance [...] Read more.
Ice nucleation temperatures and associated ice growth rates are critical parameters in defining the initial ice morphology template, which governs dry layer resistance during sublimation and therefore impacts primary drying kinetics and overall process time. In this study, we developed a through-vial impedance spectroscopy (TVIS) method to determine both ice nucleation temperature and average ice growth rate, from which future estimation of average ice crystal size may be possible. Whereas previous TVIS applications were limited to solutions containing simple, uncharged solutes such as sugars, our adapted approach enables the analysis of conductive solutions (5% sucrose with 0%, 0.26%, and 0.55% NaCl), covering osmolarities below and above isotonicity. We established that the real part capacitance at low and high frequencies—either side of the dielectric relaxation of ice—provides the following: (i) a temperature-sensitive parameter for detecting the onset of ice formation, and (ii) a temperature-insensitive parameter for determining the end of the ice growth phase (unaffected by temperature changes in the frozen solution). This expanded capability demonstrates the potential of TVIS as a process analytical technology (PAT) for non-invasive, in situ monitoring of freezing dynamics in pharmaceutical freeze-drying. Full article
Show Figures

Figure 1

16 pages, 5094 KB  
Article
Fabrication of 3D Porous and Flexible Thermoplastic Polyurethane/Carbon Nanotube Composites Towards High-Performance Microwave Absorption
by Yanfang Li, Yandong Xu, Guangming Wen and Junwei Wang
Molecules 2025, 30(17), 3610; https://doi.org/10.3390/molecules30173610 - 3 Sep 2025
Viewed by 975
Abstract
Materials with the characteristics of lightweight, thinness, flexibility, strong absorption, and broad bandwidth are of great concern in the microwave absorption field. Herein, a novel and facile technique, the vapor-induced phase separation (VIPS) method, was adopted to fabricate flexible thermoplastic polyurethane (TPU)/carbon nanotube [...] Read more.
Materials with the characteristics of lightweight, thinness, flexibility, strong absorption, and broad bandwidth are of great concern in the microwave absorption field. Herein, a novel and facile technique, the vapor-induced phase separation (VIPS) method, was adopted to fabricate flexible thermoplastic polyurethane (TPU)/carbon nanotube (CNT) composites with a three-dimensional (3D) porous structure. The microstructure and electromagnetic wave absorption properties of the composites were tuned by varying the CNT weight ratio. The results show that the CNT established strong interfacial bonding with the TPU matrix. Different CNT weight ratios had a significant effect on the microstructure and electromagnetic parameters of the composites. The TPU/CNT composites achieved the minimum reflection loss (RLmin) of −25.33 dB at 2.35 mm and an effective absorption bandwidth (EAB) of 4.89 GHz at 1.6 mm with a relatively low CNT weight ratio of 1 wt%. The conductive loss, dielectric loss, and multiple scattering synergistically contribute to favorable microwave absorption performances. This study showcases the use of a facile fabrication approach for the generation of flexible and porous TPU-based or other polymer counterparts-based functional composites via the VIPS method; it also paves the way for the large-scale application of high-performance microwave absorption materials. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

Back to TopTop