Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (620)

Search Parameters:
Keywords = differential cell count

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3847 KB  
Article
Individual and Combined Effects of Medium- and Long-Chain Triacylglycerol and 2′-Fucosyllactose on Small Intestinal Morphology, Barrier Function, and Gut Microbiota in Growing C57BL/6 Mice
by Xinyuan Jin, Mengfan Shen, Mengdi Zhang, Haoqi Chen, Yufeng Jin, Yupeng Zeng, Zhijun Pan, Ziling Wang, Pan Wang, Yuting Yang, Zhiyuan Yan, Huilian Zhu and Dan Li
Nutrients 2025, 17(17), 2837; https://doi.org/10.3390/nu17172837 (registering DOI) - 31 Aug 2025
Abstract
Background/Objectives: Medium- and long-chain triacylglycerol (MLCT) and 2′-fucosyllactose (2′-FL) are functional ingredients abundant in human milk; however, their effects on small intestinal development and health remain largely unknown, and no research has explored their potential combined effects. Methods: In this study, growing C57BL/6 [...] Read more.
Background/Objectives: Medium- and long-chain triacylglycerol (MLCT) and 2′-fucosyllactose (2′-FL) are functional ingredients abundant in human milk; however, their effects on small intestinal development and health remain largely unknown, and no research has explored their potential combined effects. Methods: In this study, growing C57BL/6 mice (3 weeks old) were fed diets without or with 2.5 g/100 g of MLCT, 2′-FL, or the combination (MLCT + 2′-FL; 5:1) for 21 days. Body weight, major organ indices, small intestinal morphology-related indicators (small intestinal length, villus height, crypt depth, villus height/crypt depth (V/C) ratio, and epithelial cell proliferation), and intestinal barrier function markers (goblet cell and Paneth cell count, protein expression of ZO-1 and occludin, and levels of sIgA and LPS) were measured. Results: In addition to the shared promotion of epithelial cell proliferation, MLCT intervention raised villus height and crypt depth, while 2′-FL intervention elevated Paneth cell count and sIgA levels. Notably, MLCT + 2′-FL intervention offered additional advantages (increasing the V/C ratio, goblet cell count, and expression of ZO-1 and occludin) without affecting crypt depth. 16S rRNA sequencing analysis of cecal contents revealed that all three interventions mainly affected beta diversity rather than alpha diversity, and enriched differentially abundant bacterial taxa: Erysipelotrichaceae, Faecalibaculum, UBA1819, and Faecalitalea in the MLCT group; Enterobacteriaceae, Escherichia, and Allobaculum in the 2′-FL group; Bifidobacterium, Romboutsia, Clostridia, and several other bacterial taxa in the MLCT + 2′-FL group. Conclusions: These results indicate that MLCT and 2′-FL interventions alone appear to provide different benefits for small intestinal development, and their combination may confer more comprehensive advantages. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

19 pages, 11239 KB  
Article
Glioblastoma Cells Induce Neuron Loss In Vivo and In Vitro
by Komal N. Rawal, Charlotte Degorre and Philip J. Tofilon
Cancers 2025, 17(17), 2817; https://doi.org/10.3390/cancers17172817 - 28 Aug 2025
Viewed by 144
Abstract
Background: The vast majority of GBMs recur within 2 years following standard treatment, including radiotherapy. Seizures and epilepsy are common in GBM patients, suggesting tumor-cell-induced neuron toxicity. Additionally, the tumor cells and neurons interact during tumor development; however, the effects of tumor [...] Read more.
Background: The vast majority of GBMs recur within 2 years following standard treatment, including radiotherapy. Seizures and epilepsy are common in GBM patients, suggesting tumor-cell-induced neuron toxicity. Additionally, the tumor cells and neurons interact during tumor development; however, the effects of tumor cells on the neurons remain unclear. Methods: Orthotopic xenografts initiated from GSCs expressing GFP implanted into the right striatum of nude mice were irradiated (10 Gy) 35 days after implantation, followed by immunohistochemistry (IHC) to investigate the tumor cell–neuron interactions. Moreover, we established a direct coculture of human GSCs and neurons differentiated from human iPSC-derived neural progenitor cells (NPCs) to investigate the impact of the tumor cells on the neurons. Neuronal cell counts were monitored to assess neurotoxicity. Culture CM were analyzed through cytokine profiling. Results: In untreated mice, tumors invaded across the right hemisphere (RH), with increased cell contact with the mouse neurons. In irradiated mice, the tumor regrowth was less invasive and had fewer neurons. In vitro, the GSCs induced neuronal death in the direct coculture. Similarly, the CM from the direct cocultures caused significant neuronal death. The cytokine analysis revealed that the cocultures uniquely secreted IL-8 into the CM. Furthermore, treatment with recombinant (r) human IL-8 caused significant neuron death, while IL-8 blocking antibodies prevented this neurotoxicity in the coculture. Conclusions: This study demonstrates that GBM tumors regrown after radiation lack neurons, and direct interaction between GSCs and the neurons is necessary for GSC-mediated neurotoxicity, likely involving IL-8 in neuronal death. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

19 pages, 2846 KB  
Article
Synovial Fluid Biomarker Profile After Intra-Articular Administration of Neosaxitoxin in Horses: A Feasibility Study
by Cristóbal Dörner, Néstor Lagos, Lissette Oyaneder, Bruno C. Menarim and Galia Ramírez-Toloza
Animals 2025, 15(16), 2453; https://doi.org/10.3390/ani15162453 - 21 Aug 2025
Viewed by 341
Abstract
Osteoarthritis (OA) is an inflammatory joint disease and the leading cause of musculoskeletal disability affecting human and veterinary patients. New therapeutics halting inflammation while preserving joint homeostasis remain a critical need. Voltage-gated sodium (NaV) channels regulate the pro-inflammatory response of macrophages in the [...] Read more.
Osteoarthritis (OA) is an inflammatory joint disease and the leading cause of musculoskeletal disability affecting human and veterinary patients. New therapeutics halting inflammation while preserving joint homeostasis remain a critical need. Voltage-gated sodium (NaV) channels regulate the pro-inflammatory response of macrophages in the synovium, the central driver of joint homeostasis. Neosaxitoxin (NeoSTX) is a phycotoxin that blocks NaV channels, conferring a unique potential to regulate joint inflammation. This study evaluated the safety of intra-articular administration of NeoSTX in horses. Sixteen horses were allocated into two groups (n = 8/each). One group received one intraarticular dose (20 µg/2 mL of saline) of NeoSTX into one tarsocrural joint, while the control group received 2 mL of saline (0.9% NaCl). No differences were observed between groups for systemic or local signs of inflammation, including objective measures of surface temperature and joint effusion. Concentrations of synovial fluid total nucleated and differential cell counts, total protein, glucose, calcium, and 23 cytokines/chemokines measured throughout this study did not differ between treatment groups. In this short-term study, intra-articular NeoSTX injection was shown to be well tolerated and likely safe. Ongoing studies should elucidate the role of NeoSTX in modulating synovial mechanisms of inflammation and its endogenous resolution. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

16 pages, 441 KB  
Article
Correlations Between Immuno-Inflammatory Biomarkers and Hematologic Indices Stratified by Immunologic SNP Genotypes
by Simona-Alina Abu-Awwad, Ahmed Abu-Awwad, Simona Sorina Farcas, Cristina Annemari Popa, Paul Tutac, Iuliana Maria Zaharia, Claudia Alexandrina Goina, Alexandra Mihailescu and Nicoleta Andreescu
J. Clin. Med. 2025, 14(16), 5792; https://doi.org/10.3390/jcm14165792 - 15 Aug 2025
Viewed by 408
Abstract
Background/Objectives: Chronic low-grade inflammation drives cardiometabolic risk; functional SNPs may influence individual cytokine and hematologic phenotypes. We investigated genotype-specific relationships between circulating immuno-inflammatory biomarkers and routine blood indices in apparently healthy adults. Methods: In this cross-sectional study, 155 fasting volunteers (26–72 [...] Read more.
Background/Objectives: Chronic low-grade inflammation drives cardiometabolic risk; functional SNPs may influence individual cytokine and hematologic phenotypes. We investigated genotype-specific relationships between circulating immuno-inflammatory biomarkers and routine blood indices in apparently healthy adults. Methods: In this cross-sectional study, 155 fasting volunteers (26–72 years) were genotyped for IL1RN rs1149222 and TNF-proximal rs2071645. Serum IL-1β, TNF-α, oxidized LDL (oxLDL) and C-reactive protein (CRP) were quantified by ELISA, and complete blood counts were recorded simultaneously. Genotype effects were tested with ANOVA/Kruskal–Wallis; Spearman correlations and age-, sex-, BMI-adjusted linear models explored genotype-stratified associations. Results: Among 155 adults, IL1RN rs1149222 significantly affected IL-1β (TT > TG ≈ GG; ANOVA p = 0.042) and oxLDL (overall p = 0.036), with the clearest difference between heterozygotes and major-allele homozygotes. The same variant produced a modest fall in erythrocyte count and hemoglobin restricted to heterozygotes (RBC p = 0.036; Hb p = 0.041). TNF-proximal rs2071645 strongly raised TNF-α (GG > GA > AA; p < 0.0001) and led to a moderate oxLDL increase, driven by GA versus AA carriers (pairwise p = 0.013), while leaving red-cell indices and CRP unchanged. Baseline leukocyte counts, differentials and derived ratios showed no genotype dependence, and multivariable models revealed no epistatic interaction between the two loci. Conclusions: IL1RN rs1149222 and TNF-related rs2071645 generate two independent inflammatory signatures—an IL-1β-oxidative axis linked to mild erythropoietic suppression and a TNF-lipid axis without hematologic shift. Integrating targeted genotyping with inexpensive hematologic ratios may refine early risk stratification and guide tailored preventive strategies in ostensibly healthy populations. Full article
(This article belongs to the Section Hematology)
Show Figures

Figure 1

20 pages, 4576 KB  
Article
Enhanced HoVerNet Optimization for Precise Nuclei Segmentation in Diffuse Large B-Cell Lymphoma
by Gei Ki Tang, Chee Chin Lim, Faezahtul Arbaeyah Hussain, Qi Wei Oung, Aidy Irman Yajid, Sumayyah Mohammad Azmi and Yen Fook Chong
Diagnostics 2025, 15(15), 1958; https://doi.org/10.3390/diagnostics15151958 - 4 Aug 2025
Viewed by 481
Abstract
Background/Objectives: Diffuse Large B-Cell Lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and demands precise segmentation and classification of nuclei for effective diagnosis and disease severity assessment. This study aims to evaluate the performance of HoVerNet, a deep learning model, [...] Read more.
Background/Objectives: Diffuse Large B-Cell Lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma and demands precise segmentation and classification of nuclei for effective diagnosis and disease severity assessment. This study aims to evaluate the performance of HoVerNet, a deep learning model, for nuclei segmentation and classification in CMYC-stained whole slide images and to assess its integration into a user-friendly diagnostic tool. Methods: A dataset of 122 CMYC-stained whole slide images (WSIs) was used. Pre-processing steps, including stain normalization and patch extraction, were applied to improve input consistency. HoVerNet, a multi-branch neural network, was used for both nuclei segmentation and classification, particularly focusing on its ability to manage overlapping nuclei and complex morphological variations. Model performance was validated using metrics such as accuracy, precision, recall, and F1 score. Additionally, a graphic user interface (GUI) was developed to incorporate automated segmentation, cell counting, and severity assessment functionalities. Results: HoVerNet achieved a validation accuracy of 82.5%, with a precision of 85.3%, recall of 82.6%, and an F1 score of 83.9%. The model showed powerful performance in differentiating overlapping and morphologically complex nuclei. The developed GUI enabled real-time visualization and diagnostic support, enhancing the efficiency and usability of DLBCL histopathological analysis. Conclusions: HoVerNet, combined with an integrated GUI, presents a promising approach for streamlining DLBCL diagnostics through accurate segmentation and real-time visualization. Future work will focus on incorporating Vision Transformers and additional staining protocols to improve generalizability and clinical utility. Full article
(This article belongs to the Special Issue Artificial Intelligence-Driven Radiomics in Medical Diagnosis)
Show Figures

Figure 1

15 pages, 4431 KB  
Article
Application of Hybrid Platelet Technology for Platelet Count Improves Accuracy of PLT Measurement in Samples from Patients with Different Types of Anemia
by Małgorzata Wituska and Olga Ciepiela
J. Clin. Med. 2025, 14(15), 5401; https://doi.org/10.3390/jcm14155401 - 31 Jul 2025
Viewed by 345
Abstract
Background: Reliable platelet (PLT) measurement is crucial for the accurate diagnosis of thrombocytopenia. Several methods exist for automated PLT counting, including the impedance method (PLT-I), as well as optical and fluorescence methods (PLT-F). The impedance method is cost-effective but susceptible to interference from [...] Read more.
Background: Reliable platelet (PLT) measurement is crucial for the accurate diagnosis of thrombocytopenia. Several methods exist for automated PLT counting, including the impedance method (PLT-I), as well as optical and fluorescence methods (PLT-F). The impedance method is cost-effective but susceptible to interference from small red blood cells and schistocytes. In contrast, fluorescent assessment offers higher specificity but is more expensive, as it requires additional dyes and detectors. Hybrid platelet counting (PLT-H) combines impedance with measurements from the leukocyte differentiation channel and is available without additional cost. Aim: The aim of this study was to evaluate the accuracy of hybrid PLT counting in anemic samples. Methods: In this retrospective study, PLT counts from 583 unselected anemic samples were analyzed using two different analyzers: the Sysmex XN3500, equipped with fluorescent PLT-F technology, and the Mindray BC6200, which uses both impedance (PLT-I) and hybrid (PLT-H) technologies. Agreement between PLT-I and PLT-F, as well as between PLT-H and PLT-F, was assessed using Bland–Altman plots. Correlation between the methods was evaluated using the Pearson correlation coefficient. Results: The hybrid method demonstrated better accuracy in PLT counting compared to the impedance method. Correlation between PLT-H and PLT-F was excellent, ranging from 0.991 to 0.999. In thrombocytopenic samples (PLT < 50 G/L), the hybrid method also provided more reliable PLT counts than the impedance method, reducing the number of falsely elevated PLT results by nearly fivefold. Conclusions: Hybrid platelet counting yields more accurate results than the impedance method in anemic samples and shows excellent correlation with the fluorescence method. Full article
(This article belongs to the Special Issue Clinical Trends and Prospects in Laboratory Hematology)
Show Figures

Figure 1

14 pages, 1316 KB  
Article
Development of Mid-Infrared Spectroscopy (MIR) Diagnostic Model for Udder Health Status of Dairy Cattle
by Xiaoli Ren, Chu Chu, Xiangnan Bao, Lei Yan, Xueli Bai, Haibo Lu, Changlei Liu, Zhen Zhang and Shujun Zhang
Animals 2025, 15(15), 2242; https://doi.org/10.3390/ani15152242 - 30 Jul 2025
Viewed by 330
Abstract
The somatic cell count (SCC) and differential somatic cell count (DSCC) are proxies for the udder health of dairy cattle, regarded as the criterion of mastitis identification with healthy, suspicious mastitis, mastitis, and chronic/persistent mastitis. However, SCC and DSCC are tested using flow [...] Read more.
The somatic cell count (SCC) and differential somatic cell count (DSCC) are proxies for the udder health of dairy cattle, regarded as the criterion of mastitis identification with healthy, suspicious mastitis, mastitis, and chronic/persistent mastitis. However, SCC and DSCC are tested using flow cytometry, which is expensive and time-consuming, particularly for DSCC analysis. Mid-infrared spectroscopy (MIR) enables qualitative and quantitative analysis of milk constituents with great advantages, being cheap, non-destructive, fast, and high-throughput. The objective of this study is to develop a dairy cattle udder health status diagnostic model of MIR. Data on milk composition, SCC, DSCC, and MIR from 2288 milk samples collected in dairy farms were analyzed using the CombiFoss 7 DC instrument (FOSS, Hilleroed, Denmark). Three MIR spectral preprocessing methods, six modeling algorithms, and three different sets of MIR spectral data were employed in various combinations to develop several diagnostic models for mastitis of dairy cattle. The MIR diagnostic model of effectively identifying the healthy and mastitis cattle was developed using a spectral preprocessing method of difference (DIFF), a modeling algorithm of Random Forest (RF), and 1060 wavenumbers, abbreviated as “DIFF-RF-1060 wavenumbers”, and the AUC reached 1.00 in the training set and 0.80 in the test set. The other MIR diagnostic model of effectively distinguishing mastitis and chronic/persistent mastitis cows was “DIFF-SVM-274 wavenumbers”, with an AUC of 0.87 in the training set and 0.85 in the test set. For more effective use of the model on dairy farms, it is necessary and worthwhile to gather more representative and diverse samples to improve the diagnostic precision and versatility of these models. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

15 pages, 2095 KB  
Article
T-Lymphocyte Phenotypic and Mitochondrial Parameters as Markers of Incomplete Immune Restoration in People Living with HIV+ on Long-Term cART
by Damian Vangelov, Radoslava Emilova, Yana Todorova, Nina Yancheva, Reneta Dimitrova, Lyubomira Grigorova, Ivailo Alexiev and Maria Nikolova
Biomedicines 2025, 13(8), 1839; https://doi.org/10.3390/biomedicines13081839 - 28 Jul 2025
Viewed by 529
Abstract
Background/Objectives: Restored CD4 absolute counts (CD4AC) and CD4/CD8 ratio in the setting of continuous antiretroviral treatment (ART) do not exclude a low-level immune activation associated with HIV reservoirs, microbial translocation, or the side effects of ART itself, which accelerates the aging of [...] Read more.
Background/Objectives: Restored CD4 absolute counts (CD4AC) and CD4/CD8 ratio in the setting of continuous antiretroviral treatment (ART) do not exclude a low-level immune activation associated with HIV reservoirs, microbial translocation, or the side effects of ART itself, which accelerates the aging of people living with HIV (PLHIV). To delineate biomarkers of incomplete immune restoration in PLHIV on successful ART, we evaluated T-lymphocyte mitochondrial parameters in relation to phenotypic markers of immune exhaustion and senescence. Methods: PLHIV with sustained viral suppression, CD4AC > 500 and CD4/CD8 ratio >0.9 on ART (n = 39) were compared to age-matched ART-naïve donors (n = 27) and HIV(–) healthy controls (HC, n = 35). CD4 and CD8 differentiation and effector subsets (CCR7/CD45RA and CD27/CD28), activation, exhaustion, and senescence markers (CD38, CD39 Treg, CD57, TIGIT, and PD-1) were determined by flow cytometry. Mitochondrial mass (MM) and membrane potential (MMP) of CD8 and CD4 T cells were evaluated with MitoTracker Green and Red flow cytometry dyes. Results: ART+PLHIV differed from HC by increased CD4 TEMRA (5.3 (2.1–8.8) vs. 3.2 (1.6–4.4), p < 0.05), persistent TIGIT+CD57–CD27+CD28– CD8+ subset (53.9 (45.5–68.9) vs. 40.1 (26.7–58.5), p < 0.05), and expanding preapoptotic TIGIT–CD57+CD8+ effectors (9.2 (4.3–21.8) vs. 3.0 (1.5–7.3), p < 0.01) in correlation with increased CD8+ MMP (2527 (1675–4080) vs.1477 (1280–1691), p < 0.01). These aberrations were independent of age, time to ART, or ART duration, and were combined with increasing CD4 T cell MMP and MM. Conclusions: In spite of recovered CD4AC and CD4/CD8 ratio, the increased CD8+ MMP, combined with elevated markers of exhaustion and senescence in ART+PLHIV, signals a malfunction of the CD8 effector pool that may compromise viral reservoir latency. Full article
(This article belongs to the Special Issue Emerging Insights into HIV)
Show Figures

Figure 1

22 pages, 3902 KB  
Article
Comparative Immunomodulatory Efficacy of Secukinumab and Honokiol in Experimental Asthma and Acute Lung Injury
by Andrei Gheorghe Vicovan, Diana Cezarina Petrescu, Lacramioara Ochiuz, Petru Cianga, Daniela Constantinescu, Elena Iftimi, Mariana Pavel-Tanasa, Codrina Mihaela Ancuta, Cezar-Cătălin Caratașu, Mihai Glod, Carmen Solcan and Cristina Mihaela Ghiciuc
Pharmaceuticals 2025, 18(8), 1108; https://doi.org/10.3390/ph18081108 - 25 Jul 2025
Viewed by 275
Abstract
Background: The study evaluates the immunomodulatory potential of secukinumab (SECU) and honokiol (HONK) in a murine model of allergic asthma complicated by acute lung injury (ALI), with an emphasis on modulating key inflammatory pathways. The rationale is driven by the necessity to attenuate [...] Read more.
Background: The study evaluates the immunomodulatory potential of secukinumab (SECU) and honokiol (HONK) in a murine model of allergic asthma complicated by acute lung injury (ALI), with an emphasis on modulating key inflammatory pathways. The rationale is driven by the necessity to attenuate Th17-mediated cytokine cascades, wherein IL-17 plays a critical role, as well as to explore the adjunctive anti-inflammatory effects of HONK on Th1 cytokine production, including IL-6, TNF-α, and Th2 cytokines. Methods: Mice were sensitized and challenged with ovalbumin (OVA) and lipopolysaccharide (LPS) was administrated to exacerbate pulmonary pathology, followed by administration of SECU, HONK (98% purity, C18H18O2), or their combination. Quantitative analyses incorporated OVA-specific IgE measurements, differential cell counts in bronchoalveolar lavage fluid (BALF), and extensive cytokine profiling in both BALF and lung tissue homogenates, utilizing precise immunoassays and histopathological scoring systems. Results: Both SECU and HONK, when used alone or in combination, display significant immunomodulatory effects in a murine model of allergic asthma concomitant with ALI. The combined therapy synergistically reduced pro-inflammatory mediators, notably Th1 cytokines, such as TNF-α and IL-6, as measured in both BALF and lung tissue homogenates. Conclusions: The combined therapy showed a synergistic attenuation of pro-inflammatory mediators, a reduction in goblet cell hyperplasia, and an overall improvement in lung histoarchitecture. While the data robustly support the merit of a combinatorial approach targeting multiple inflammatory mediators, the study acknowledges limitations in cytokine diffusion and the murine model’s translational fidelity, thereby underscoring the need for further research to optimize clinical protocols for severe respiratory inflammatory disorders. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

7 pages, 941 KB  
Case Report
Diagnosis and Nonoperative Management of Uncomplicated Jejunal Diverticulitis: A Case-Based Review
by Sariah Watchalotone, Nicholas J. Smith, Mehar A. Singh and Imtiaz Ahmed
BioMed 2025, 5(3), 17; https://doi.org/10.3390/biomed5030017 - 23 Jul 2025
Viewed by 561
Abstract
Diverticulosis is characterized by sac-like bulges of the mucosa through weakened portions of the intestinal wall, and is a common pathology observed in adult patient populations. The majority of diverticular disease and associated complications, such as inflammation of diverticula, form within the colon, [...] Read more.
Diverticulosis is characterized by sac-like bulges of the mucosa through weakened portions of the intestinal wall, and is a common pathology observed in adult patient populations. The majority of diverticular disease and associated complications, such as inflammation of diverticula, form within the colon, with less frequent cases of diverticular disease observed in the small bowel. We present the case of a 48-year-old female who presented to the emergency department with a two-day history of abdominal pain, fever, and nausea. Upon admission, vital signs indicated fever and laboratory analysis demonstrated elevated white blood cell count. The patient’s workup included a computed tomography (CT) scan of the abdomen which revealed diffuse small bowel diverticulitis with surrounding inflammation, lymph node enlargement, and bowel wall thickening. CT scan of the abdomen with evidence of diverticula in the bowel wall is diagnostic of diverticulosis. Treatment could include bowel rest, clear liquid diet, broad-spectrum antibiotics, or surgical intervention. This case emphasizes the importance of CT imaging and consideration of broad differential diagnosis in patients presenting with abdominal pain due to the rare presentation of small bowel diverticulitis and aims to contribute to the current understanding and treatment of clinically significant diverticular pathologies. Full article
Show Figures

Figure 1

17 pages, 2234 KB  
Article
Impact of Live Ligilactobacillus salivarius CCFM1332 and Its Postbiotics on Porphyromonas gingivalis Colonization, Alveolar Bone Resorption and Inflammation in a Rat Model of Periodontitis
by Qing Hong, Yu Ren, Xin Tang, Bingyong Mao, Qiuxiang Zhang, Jianxin Zhao, Shumao Cui and Zhenmin Liu
Microorganisms 2025, 13(7), 1701; https://doi.org/10.3390/microorganisms13071701 - 20 Jul 2025
Viewed by 609
Abstract
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and [...] Read more.
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and mechanisms of different forms of probiotics, including live bacteria and postbiotics, on periodontitis, we first screened and identified Ligilactobacillus salivarius CCFM1332 (L. salivarius CCFM1332) through in vitro antibacterial and anti-biofilm activity assays. Subsequently, we investigated its therapeutic potential in a rat model of experimental periodontitis. The results demonstrated that both live L. salivarius CCFM1332 (PL) and its postbiotics (PP) significantly reduced the gingival index (GI) and probing depth (PD) in rats, while suppressing oral colonization of P. gingivalis. Serum pro-inflammatory cytokine levels were differentially modulated: the PL group exhibited reductions in interleukin-17A (IL-17A), interleukin-6 (IL-6), and interleukin-1β (IL-1β) by 39.31% (p < 0.01), 17.26% (p < 0.05), and 14.74% (p < 0.05), respectively, whereas the PP group showed decreases of 34.79% (p < 0.05), 29.85% (p < 0.01), and 19.74% (p < 0.05). Micro-computed tomography (Micro-CT) analysis demonstrated that compared to the periodontitis model group (PM), the PL group significantly reduced alveolar bone loss (ABL) by 30.1% (p < 0.05) and increased bone volume fraction (BV/TV) by 49.5% (p < 0.01). In contrast, while the PP group similarly decreased ABL by 32.7% (p < 0.05), it resulted in a 40.4% improvement in BV/TV (p > 0.05). Histological assessments via hematoxylin and eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining confirmed that both the PL group and the PP group alleviated structural damage to alveolar bone-supporting tissues and reduced osteoclast-positive cell counts. This study suggests that live L. salivarius CCFM1332 and its postbiotics reduce alveolar bone resorption and attachment loss in rats through antibacterial and anti-inflammatory pathways, thereby alleviating periodontal inflammation in rats. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

16 pages, 8218 KB  
Article
Lead Induces Mitochondrial Dysregulation in SH-SY5Y Neuroblastoma Cells via a lncRNA/circRNA–miRNA–mRNA Interdependent Networks
by Yu Wang, Xuefeng Shen, Ruili Guan, Zaihua Zhao, Tao Wang, Yang Zhou, Xiaoming Chen, Jianbin Zhang, Wenjing Luo and Kejun Du
Int. J. Mol. Sci. 2025, 26(14), 6851; https://doi.org/10.3390/ijms26146851 - 17 Jul 2025
Viewed by 534
Abstract
Lead (Pb) exposure poses a significant public health concern due to its neurotoxic effects. While mitochondrial dysfunction is implicated in lead neurotoxicity, the precise molecular mechanisms, particularly the role of non-coding RNA-mediated competing endogenous RNA networks, remain underexplored. SH-SY5Y neuroblastoma cells were treated [...] Read more.
Lead (Pb) exposure poses a significant public health concern due to its neurotoxic effects. While mitochondrial dysfunction is implicated in lead neurotoxicity, the precise molecular mechanisms, particularly the role of non-coding RNA-mediated competing endogenous RNA networks, remain underexplored. SH-SY5Y neuroblastoma cells were treated with 10 μM lead acetate. Cell viability was assessed by Cell Counting Kit-8 (CCK-8). Mitochondrial ultrastructure and quantity were analyzed via transmission electron microscopy (TEM). Key mitochondrial dynamics proteins were examined by Western blot. Comprehensive transcriptome sequencing, including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs) and mRNAs, was performed followed by functional enrichment and ceRNA network construction. Selected RNAs and hub genes were validated using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Lead exposure significantly reduced SH-SY5Y cell viability and induced mitochondrial damage (decreased quantity, swelling, fragmentation). Western blot confirmed an imbalance in mitochondrial dynamics, as indicated by decreased mitofusin 2 (MFN2), increased total and phosphorylated dynamin-related protein 1 (DRP1). Transcriptomic analysis revealed widespread differential expression of lncRNAs, circRNAs, miRNAs, and mRNAs. Enrichment analysis highlighted mitochondrial function and oxidative stress pathways. A ceRNA network identified five key hub genes: SLC7A11, FOS, HMOX1, HGF, and NR4A1. All validated RNA and hub gene expression patterns were consistent with sequencing results. Our study demonstrates that lead exposure significantly impairs mitochondrial quantity and morphology in SH-SY5Y cells, likely via disrupted mitochondrial dynamics. We reveal the potential regulatory mechanisms of lead-induced neurotoxicity involving ceRNA networks, identifying hub genes crucial for cellular stress response. This research provides a foundational framework for developing therapeutic strategies against lead-induced neurotoxicity. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

25 pages, 3040 KB  
Article
Transcriptomic Alterations of Canine Histiocytic Sarcoma Cells in Response to Different Stressors
by Thanaporn Asawapattanakul, Klaus Schughart, Maren von Köckritz-Blickwede, Federico Armando, Peter Claus, Wolfgang Baumgärtner and Christina Puff
Int. J. Mol. Sci. 2025, 26(14), 6629; https://doi.org/10.3390/ijms26146629 - 10 Jul 2025
Viewed by 574
Abstract
Canine histiocytic sarcoma (HS) is a rare tumor with a poor prognosis. Rapid tumor growth often causes central hypoxia and starvation, impacting tumor progression. In the present study, HS cells were cultured under hypoxia and starvation for 1 and 3 days, simulating intermediate [...] Read more.
Canine histiocytic sarcoma (HS) is a rare tumor with a poor prognosis. Rapid tumor growth often causes central hypoxia and starvation, impacting tumor progression. In the present study, HS cells were cultured under hypoxia and starvation for 1 and 3 days, simulating intermediate and central tumor zones, respectively. Cells were counted at each time point, followed by RNAseq analysis. Only hypoxia significantly reduced the cell number (p < 0.05). Short-term hypoxia altered 1645 differentially expressed genes (DEGs). Upregulated genes belonged to vasculature development, and downregulated genes to cell cycle processes. Short-term starvation affected 157 genes, mainly involving responses to stimuli. Prolonged hypoxia and starvation induced 1301 and 836 DEGs, respectively. Prolonged hypoxia upregulated genes mainly involved in immune responses, response to stimulus, adhesion, and angiogenesis. Prolonged starvation upregulated genes associated with signaling, adhesion, circulatory system development, and response to stimulus. Lipid metabolism and cell cycle pathways were downregulated under prolonged hypoxia and starvation, respectively. KEGG “pathways in cancer” were enriched under all conditions (adjusted p-values < 0.05). These findings indicate that hypoxia and starvation significantly alter the expression of genes involved in tumor progression. Further studies, namely post-translational analyses, are needed to elucidate the functional impact of these changes and identify potential therapeutic targets. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

24 pages, 6634 KB  
Article
Integrated Management of Tomato Fusarium Wilt: Ultrastructure Insights into Zn Nanoparticles and Phytohormone Applications
by Yasmin M. Heikal, Amal M. Albahi, Amal A. Alyamani, Hala M. Abdelmigid, Samia A. Haroun and Hoda M. Soliman
Cells 2025, 14(14), 1055; https://doi.org/10.3390/cells14141055 - 10 Jul 2025
Viewed by 615
Abstract
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy [...] Read more.
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy of salicylic acid (SA), humic acid (HA), and zinc oxide nanoparticles (ZnO-NPs) as control and inducer agents. FW infection resulted in notable structural alterations, including decreased leaf blade and mesophyll thickness and increased Adaxial epidermal cell wall thickness, thereby disrupting the leaf structure. Also, it caused severe chloroplast damage, such as membrane detachment and a reduced count of starch granules, which could impair photosynthetic efficiency. The different treatments exhibited significant effectiveness in reversing these adverse effects, leading to increased thickness of the leaf blade, mesophyll, palisade, and spongy tissues and enhanced structural integrity. Furthermore, ultrastructural improvements included activated mitochondria, compact chloroplasts with increased numbers, and proliferation of plastoglobuli, indicating adaptive metabolic changes. Principal component analysis (PCA-biplot) highlighted the significant parameters distinguishing treatment groups, providing insights into trait-based differentiation. This study concluded the potential of SA, HA, and ZnO-NPs as sustainable solutions for managing Fusarium wilt and enhancing tomato plant resilience, thereby contributing to improved agricultural practices and food security. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Graphical abstract

20 pages, 7063 KB  
Article
Toxicity Responses from Tributyltin Chloride on Haarder (Planiliza haematocheila) Livers: Oxidative Stress, Energy Metabolism Dysfunction, and Apoptosis
by Changsheng Zhao, Anning Suo, Dewen Ding and Wencheng Song
Curr. Issues Mol. Biol. 2025, 47(7), 526; https://doi.org/10.3390/cimb47070526 - 8 Jul 2025
Viewed by 398
Abstract
In coastal waters, tributyltin chloride (TBTC), a persistent organic pollutant, is extensively present. It is uncertain, therefore, if exposure to TBTC can harm haarders and how. This study exposed the fish for 60 days in order to investigate the molecular mechanism of haarder [...] Read more.
In coastal waters, tributyltin chloride (TBTC), a persistent organic pollutant, is extensively present. It is uncertain, therefore, if exposure to TBTC can harm haarders and how. This study exposed the fish for 60 days in order to investigate the molecular mechanism of haarder following TBTC poisoning. Our findings demonstrated that growth indices dropped, liver tissue was damaged, and the liver’s total tin concentration rose following TBTC exposure. Furthermore, we discovered that blood reactive oxygen species rose while total blood cell count decreased. As malondialdehyde levels rose, total antioxidant capacity and antioxidant enzyme activity (superoxide dismutase, catalase, and glutathione peroxidase) were markedly reduced. After being exposed to TBTC, liver cells displayed clear signs of apoptosis. Differentially expressed genes were primarily linked to oxidative stress, energy metabolism, and apoptosis, according to the transcriptome study of livers. Overall, the long-term stress of TBTC resulted in the antioxidant system being harmed, as well as serious malfunction of the energy metabolism and apoptotic response. Full article
(This article belongs to the Special Issue Advances in Molecular Biology Methods in Hepatology Research)
Show Figures

Graphical abstract

Back to TopTop