Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,323)

Search Parameters:
Keywords = diffusion stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3238 KB  
Article
Vacuum Diffusion Bonding Process Optimization for the Lap Shear Strength of 7B04 Aluminum Alloy Joints with a 7075 Aluminum Alloy Powder Interlayer Using the Response Surface Method
by Ning Wang, Lansheng Xie and Minghe Chen
Metals 2025, 15(10), 1109; https://doi.org/10.3390/met15101109 - 6 Oct 2025
Abstract
The high-strength aluminum alloy 7B04 used in aircraft structures poses challenges in welding. In this study, 7075 aluminum alloy powder is used as an interlayer to strengthen the vacuum diffusion bonding (DB) joint of 7B04 aluminum alloy. Surface treatments with plasma activation before [...] Read more.
The high-strength aluminum alloy 7B04 used in aircraft structures poses challenges in welding. In this study, 7075 aluminum alloy powder is used as an interlayer to strengthen the vacuum diffusion bonding (DB) joint of 7B04 aluminum alloy. Surface treatments with plasma activation before DB can effectively increase the bonding rate and lap shear strength (LSS) of the joint. The effects of DB temperature, pressure, and holding time on the joint LSS were analyzed by developing a quadratic regression model based on the response surface method (RSM). The model’s determination coefficient reached 99.52%, with a relative error of about 5%, making it suitable for 7B04 aluminum alloy DB process parameters optimization and joint performance prediction. Two sets of process parameters (505 °C-5.7 h-4.5 MPa and 515 °C-7.5 h-4.4 MPa) were acquired using the satisfaction function optimization method. Experimental results confirmed that the error between measured and predicted LSS is approximately 5%, and a higher LSS of 174 MPa was achieved at 515 °C-7.5 h-4.4 MPa. Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

23 pages, 2767 KB  
Article
Study on Chloride Diffusion Performance and Structural Durability Design of UHPC Under Chloride Salt Erosion
by Wenbo Kang, Kuihua Mei, Wei Liu and Shengjiang Sun
Buildings 2025, 15(19), 3569; https://doi.org/10.3390/buildings15193569 - 3 Oct 2025
Abstract
Normal concrete exhibits poor resistance to chloride penetration, often leading to reinforcement corrosion and premature structural failure. In contrast, ultra-high-performance concrete (UHPC) demonstrates superior resistance to corrosion caused by chloride salts. The chloride diffusion behaviour of UHPC was investigated via long-term immersion (LTI) [...] Read more.
Normal concrete exhibits poor resistance to chloride penetration, often leading to reinforcement corrosion and premature structural failure. In contrast, ultra-high-performance concrete (UHPC) demonstrates superior resistance to corrosion caused by chloride salts. The chloride diffusion behaviour of UHPC was investigated via long-term immersion (LTI) and rapid chloride migration (RCM) tests. Additionally, this study presents the first development of a time-dependent diffusion model for UHPC under chloride corrosion, as well as the proposal of a performance-based design method for calculating the protective layer thickness. Results show that the incorporation of steel fibers reduced the chloride diffusion coefficient (D) by 37.9%. The free chloride content (FCC) in UHPC increased by 92.0% at 2 mm after 300 d of the action of LTI. D decreased by up to 91.0%, whereas the surface chloride concentration (Cs) increased by up to 92.5% under the action of LTI. The time-dependent models of D and Cs followed power and logarithmic functions, respectively. An increase in UHPC surface temperature, relative humidity, and tensile stress ratio significantly diminishes the chloride resistance of UHPC. The minimum UHPC protective layer thicknesses required for UHPC-HPC composite beams with design service lives of 100 years, 150 years, and 200 years are 30 mm, 37 mm, and 43 mm, respectively. Full article
(This article belongs to the Section Building Structures)
24 pages, 19724 KB  
Article
Endothelial Cell Transition: Preliminary Data on Cross-Organ Shift from Brain to Liver
by Alexey Larionov, Luis Filgueira and Christian M. Hammer
Cells 2025, 14(19), 1538; https://doi.org/10.3390/cells14191538 - 1 Oct 2025
Abstract
Background: Endothelial cells (EC), crucial components of the vascular system, are adaptable cells that maintain homeostasis and respond to pathological events through structural and functional plasticity. Hepatocyte growth factor (HGF) is a multifunctional cytokine that has been demonstrated to have protective and [...] Read more.
Background: Endothelial cells (EC), crucial components of the vascular system, are adaptable cells that maintain homeostasis and respond to pathological events through structural and functional plasticity. Hepatocyte growth factor (HGF) is a multifunctional cytokine that has been demonstrated to have protective and disruptive influence on the blood barrier function. In endothelial biology, its role is also poorly characterized. The present study explores the impact of supraphysiological concentrations of HGF on mouse brain endothelial cells (MBECs), scrutinizing how it alters their integrity and morphology. Methods: Two groups of MBECs—control (CTR) and experimental (EXP)—were analyzed at two time points: early passage (p5) and late passage (p41). The EXP-groups (p5 and p41) were treated with HGF at a concentration of 4 µL/mL. Cellular morphology was assessed with brightfield microscopy; protein expression and localization of the tight junction marker (ZO-1) and the endothelial marker (Factor VII related antigen/von Willebrand factor, vWf) were analyzed using Western blotting, immunocytochemistry, and confocal microscopy. Intercellular barrier function was estimated via Transendothelial Electric Resistance (TEER) and Transendothelial Dextran Permeability (TEDP) assays. Results: Microscopical analysis demonstrated a change in the morphology of the MBECs from a longitudinal, spindle-like shape to a rounded, more spheroid, cobblestone-like morphology under high-dose HGF treatment. Western blotting revealed a progressive decrease of ZO-1 expression in the EXP-groups. The expression of vWf did not show significant differences. Qualitative immunocytochemical staining: vWf showed consistent expression across all groups. ZO-1 displayed a punctate, well-defined membrane and cytoplasmic localization pattern in the CTR-groups at p5 and p41. In contrast, the p5 EXP-group demonstrated a shift to a more diffuse cytoplasmic pattern. At p41, the EXP-group displayed a markedly reduced ZO-1 signal with no clear-cut membrane localization. Confocal analysis: ZO-1: punctate membrane-associated localization in CTR-groups at p5 and 41. The EXP-groups at p5 and p41 confirmed the diffuse cytoplasmic ZO-1 distribution. Phalloidin: well-organized actin cytoskeleton in CTR-groups, but rearrangement and stress fiber disorganization in the EXP-groups, especially at p41. The merged images confirmed reduced co-localization of ZO-1 with actin structures. Barrier function: TEER values dropped significantly in HGF-treated cells. TEDP to small and medium molecular weight dextran increased markedly under HGF treatment. Conclusions: Our data demonstrate that supraphysiological doses of HGF in an in vitro MBEC-barrier-like model disrupt TJ organization, leading to morphological changes and functional weakening of the MBEC-barrier-like structure, as shown by uncoupling between ZO-1/F-actin cytoskeleton, reduced TEER, and increased size-selective paracellular permeability (TEDP). Full article
Show Figures

Figure 1

22 pages, 6372 KB  
Article
Numerical Study on Hydraulic Fracture Propagation in Sand–Coal Interbed Formations
by Xuanyu Liu, Liangwei Xu, Xianglei Guo, Meijia Zhu and Yujie Bai
Processes 2025, 13(10), 3128; https://doi.org/10.3390/pr13103128 - 29 Sep 2025
Abstract
To investigate hydraulic fracture propagation in multi-layered porous media such as sand–coal interbedded formations, we present a new phase-field-based model. In this formulation, a diffuse fracture is activated only when the local element strain exceeds the rock’s critical strain, and the fracture width [...] Read more.
To investigate hydraulic fracture propagation in multi-layered porous media such as sand–coal interbedded formations, we present a new phase-field-based model. In this formulation, a diffuse fracture is activated only when the local element strain exceeds the rock’s critical strain, and the fracture width is represented by orthogonal components in the x and y directions. Unlike common PFM approaches that map the permeability directly from the damage field, our scheme triggers fractures only beyond a critical strain. It then builds anisotropy via a width-to-element-size weighting with parallel mixing along and series mixing across the fracture. At the element scale, the permeability is constructed as a weighted sum of the initial rock permeability and the fracture permeability, with the weighting coefficients defined as functions of the local width and the element size. Using this model, we examined how the in situ stress contrast, interface strength, Young’s modulus, Poisson’s ratio, and injection rate influence the hydraulic fracture growth in sand–coal interbedded formations. The results indicate that a larger stress contrast, stronger interfaces, a greater stiffness, and higher injection rates increase the likelihood that a hydraulic fracture will cross the interface and penetrate the barrier layer. When propagation is constrained to the interface, the width within the interface segment is markedly smaller than that within the coal-seam segment, and interface-guided growth elevates the fluid pressure inside the fracture. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 2249 KB  
Article
Evaluation of Listeria monocytogenes Dissemination in a Beef Steak Tartare Production Chain
by Simone Stella, Carlo Angelo Sgoifo Rossi, Francesco Pomilio, Gabriella Centorotola, Marina Torresi, Alexandra Chiaverini, Maria Filippa Addis, Cristian Bernardi, Martina Penati, Clara Locatelli, Paolo Moroni, Silvia Grossi, Viviana Fusi, Paolo Urgesi and Erica Tirloni
Foods 2025, 14(19), 3372; https://doi.org/10.3390/foods14193372 - 29 Sep 2025
Abstract
This study evaluated the diffusion of Listeria monocytogenes (LM) in a beef steak tartare production chain, aiming to (1) evaluate Listeria spp. diffusion in finishing farms supplying beef cattle, (2) evaluate LM prevalence in carcasses, and (3) map LM diffusion in the production [...] Read more.
This study evaluated the diffusion of Listeria monocytogenes (LM) in a beef steak tartare production chain, aiming to (1) evaluate Listeria spp. diffusion in finishing farms supplying beef cattle, (2) evaluate LM prevalence in carcasses, and (3) map LM diffusion in the production plant. A detection rate of 6/76 was observed in the farm, while carcasses after skinning and before refrigeration tested positive in 19/30 and 11/30, respectively. During tartare production, 57/154 meat and 35/191 environmental samples tested positive. A total of 114 LM isolates were characterized via a whole-genome sequencing approach. Five clonal complexes (CCs) and seven sequence types (STs) were identified, with CC9-ST580 being the most prevalent. Four clusters were identified from both the slaughtering and production phases. Genes related to resistance to fosfomycin, quinolones, sulfonamides, lincosamide, and tetracycline were detected. Two hypervirulent strains (CC6-ST6 and CC2-ST145), harboring a full-length inlA, several virulence genes, and stress islands, were detected. Stress Survival Islet 1 was found in almost all the isolates. The wide diffusion of LM in steak tartare requires the management of some critical phases of the production chain (mainly slaughtering); genomic methodologies could be useful in describing the circulation and virulence of LM strains. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

17 pages, 4446 KB  
Article
Study on Production System Optimization and Productivity Prediction of Deep Coalbed Methane Wells Considering Thermal–Hydraulic–Mechanical Coupling Effects
by Sukai Wang, Yonglong Li, Wei Liu, Siyu Zhang, Lipeng Zhang, Yan Liang, Xionghui Liu, Quan Gan, Shiqi Liu and Wenkai Wang
Processes 2025, 13(10), 3090; https://doi.org/10.3390/pr13103090 - 26 Sep 2025
Abstract
Deep coalbed methane (CBM) resources possess significant potential. However, their development is challenged by geological characteristics such as high in situ stress and low permeability. Furthermore, existing production strategies often prove inadequate. In order to achieve long-term stable production of deep coalbed methane [...] Read more.
Deep coalbed methane (CBM) resources possess significant potential. However, their development is challenged by geological characteristics such as high in situ stress and low permeability. Furthermore, existing production strategies often prove inadequate. In order to achieve long-term stable production of deep coalbed methane reservoirs and increase their final recoverable reserves, it is urgent to construct a scientific and reasonable drainage system. This study focuses on the deep CBM reservoir in the Daning-Jixian Block of the Ordos Basin. First, a thermal–hydraulic–mechanical (THM) multi-physics coupling mathematical model was constructed and validated against historical well production data. Then, the model was used to forecast production. Finally, key control measures for enhancing well productivity were identified through production strategy adjustment. The results indicate that controlling the bottom-hole flowing pressure drop rate at 1.5 times the current pressure drop rate accelerates the early-stage pressure drop, enabling gas wells to reach the peak gas production earlier. The optimized pressure drop rates for each stage are as follows: 0.15 MPa/d during the dewatering stage, 0.057 MPa/d during the gas production rise stage, 0.035 MPa/d during the stable production stage, and 0.01 MPa/d during the production decline stage. This strategy increases peak daily gas production by 15.90% and cumulative production by 3.68%. It also avoids excessive pressure drop, which can cause premature production decline during the stable phase. Consequently, the approach maximizes production over the entire life cycle of the well. Mechanistically, the 1.5× flowing pressure drop offers multiple advantages. Firstly, it significantly shortens the dewatering and production ramp-up periods. This acceleration promotes efficient gas desorption, increasing the desorbed gas volume by 1.9%, and enhances diffusion, yielding a 39.2% higher peak diffusion rate, all while preserving reservoir properties. Additionally, this strategy synergistically optimizes the water saturation and temperature fields, which mitigates the water-blocking effect. Furthermore, by enhancing coal matrix shrinkage, it rebounds permeability to 88.9%, thus avoiding stress-induced damage from aggressive extraction. Full article
Show Figures

Figure 1

16 pages, 6331 KB  
Article
Microstructural Analysis of Hot-Compressed Mg-Nd-Zr-Ca Alloy with Low Rare-Earth Content
by Yiquan Li, Bingchun Jiang, Rui Yang, Lei Jing and Liwei Lu
Materials 2025, 18(19), 4490; https://doi.org/10.3390/ma18194490 - 26 Sep 2025
Abstract
Microstructural analysis of hot-compressed magnesium alloys is crucial for understanding the plastic formability of magnesium alloys during thermo-mechanical processing. Thermal compression tests and finite element simulations were conducted on a low rare-earth (RE) Mg-1.8Nd-0.4Zr-0.3Ca alloy. Multiple microstructural characterization techniques were employed to analyze [...] Read more.
Microstructural analysis of hot-compressed magnesium alloys is crucial for understanding the plastic formability of magnesium alloys during thermo-mechanical processing. Thermal compression tests and finite element simulations were conducted on a low rare-earth (RE) Mg-1.8Nd-0.4Zr-0.3Ca alloy. Multiple microstructural characterization techniques were employed to analyze slip systems, twinning mechanisms, dynamic recrystallization (DRX), and precipitate phases in the hot-compressed alloy. The results demonstrated that the equivalent strain distribution within compressed specimens exhibits heterogeneity, with a larger equivalent strain in the core. After thermal compression, the original microscopic structure formed a necklace-like structure. The primary DRX mechanisms comprise continuous dynamic recrystallization (CDRX), twin-induced dynamic recrystallization (TDRX), and particle-stimulated nucleation (PSN). Pyramidal slip and recrystallization constitute primary contributors to peak texture weakening and tilting. Mg41Nd5 and α-Zr phases enhanced dislocation density by impeding dislocation motion and promoting cross-slip activation. Hot compression provided the necessary thermal activation energy and stress conditions for solute atom diffusion and clustering, triggering dynamic precipitation of Mg41Nd5 phases. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 4179 KB  
Article
The Respiratory Burst of Human Granulocytes Is Mostly Independent of Potassium
by Iryna Mahorivska, Martin Geltinger, Gustavo Chaves, Sebastian Lobmann, Martin Jakab, Katharina Helm and Boris Musset
Biomolecules 2025, 15(10), 1362; https://doi.org/10.3390/biom15101362 - 25 Sep 2025
Abstract
Reactive oxygen species (ROS) are among the most effective tools of the innate immune response against pathogenic microbes. The respiratory burst (RB) of polymorphonuclear leukocytes (PMNs) generates an electron current that reduces molecular oxygen to superoxide. Superoxide reacts to form hydrogen peroxide as [...] Read more.
Reactive oxygen species (ROS) are among the most effective tools of the innate immune response against pathogenic microbes. The respiratory burst (RB) of polymorphonuclear leukocytes (PMNs) generates an electron current that reduces molecular oxygen to superoxide. Superoxide reacts to form hydrogen peroxide as a precursor to the highly bactericidal hypochlorous acid. Here, we investigated whether alterations in extracellular potassium concentration impact H2O2 production. Such changes may occur, for example, during massive cell death due to necrosis or due to trauma injuries when potassium diffuses out of the cells. We recorded H2O2 release over a 2 h period of RB under varying potassium concentrations. Except for 100 mM potassium chloride, which increased the time delay before detectable H2O2 production, none of the potassium concentrations had a substantial effect on RB. We further examined whether this effect depended on the specific monovalent ion species. When sodium or methanesulfonate was used instead of potassium or chloride, respectively, no changes in H2O2 production were observed. Cell volume measurements under different potassium concentrations showed that only 100 mM potassium chloride significantly shrank the cells. We propose that hypertonic stress is crucial for delaying RB in human granulocytes, whereas the RB itself is independent of the tested ionic species. Additionally, the conducted hypertonic stress experiments revealed an unexpected time-dependence during the course of the RB, showing that the first 6 min were almost inert to hyperosmotic stress. Full article
(This article belongs to the Special Issue Advances in Cellular Biophysics: Transport and Mechanics)
Show Figures

Figure 1

21 pages, 6275 KB  
Article
Influence of Bedding Angle on Mechanical Behavior and Grouting Reinforcement in Argillaceous Slate: Insights from Laboratory Tests and Field Experiments
by Xinfa Zeng, Chao Deng, Quan Yin, Yi Chen, Junying Rao, Yi Zhou and Wenqin Yan
Appl. Sci. 2025, 15(19), 10415; https://doi.org/10.3390/app151910415 - 25 Sep 2025
Abstract
Argillaceous slate (AS) is a typical metamorphic rock with well-developed bedding, widely distributed globally. Its bedding structure significantly impacts slope stability assessment, and the challenges associated with slope anchoring and support arising from bedding characteristics have become a focal point in the engineering [...] Read more.
Argillaceous slate (AS) is a typical metamorphic rock with well-developed bedding, widely distributed globally. Its bedding structure significantly impacts slope stability assessment, and the challenges associated with slope anchoring and support arising from bedding characteristics have become a focal point in the engineering field. In this study, with bedding dip angle as the key variable, mechanical tests such as uniaxial compression, triaxial compression, direct shear, and Brazilian splitting tests were conducted on AS. Additionally, field anchoring grouting diffusion tests on AS slopes were carried out. The aim is to investigate the basic mechanical properties of AS and the grout diffusion law under different bedding dip angles. The research results indicate that the bedding dip angle has a remarkable influence on the failure mode, stress–strain curve, and mechanical indices such as compressive strength and elastic modulus of AS specimens. The stress–strain curves in uniaxial and triaxial tests, as well as the stress-displacement curve in the Brazilian splitting test, all undergo four stages: crack closure, elastic deformation, crack propagation, and post-peak failure. As the bedding dip angle increases, the uniaxial and triaxial compressive strengths and elastic modulus first decrease and then increase, while the splitting tensile strength continuously decreases. The consistency of the bedding in AS causes the grout to diffuse in a near-circular pattern on the bedding plane centered around the borehole. Among the factors affecting the diffusion range of the grout, the bedding dip angle and grouting angle have a relatively minor impact, while the grouting pressure has a significant impact. A correct understanding and grasp of the anisotropic characteristics of AS and the anchoring grouting diffusion law are of great significance for slope stability assessment and anchoring design in AS areas. Full article
(This article belongs to the Special Issue Advances in Slope Stability and Rock Fracture Mechanisms)
Show Figures

Figure 1

16 pages, 7413 KB  
Article
The Potential Role of Humic Substances in the Amelioration of Saline Soils and Its Affecting Factors
by Daniel Moro, Elisa Pellegrini, Marco Contin, Daniele Zuccaccia, Ali Khakbaz and Maria De Nobili
Sustainability 2025, 17(19), 8621; https://doi.org/10.3390/su17198621 - 25 Sep 2025
Abstract
The application of organic amendments and humic acids (HA) often ameliorates saline soils, but the mechanisms responsible for their positive action have never been fully clarified. HA from four different origins (Elliott soil—EHA, peat—PHA, leonardite—LHA and compost—CHA) and polyacrylic acid (PAA) were characterized [...] Read more.
The application of organic amendments and humic acids (HA) often ameliorates saline soils, but the mechanisms responsible for their positive action have never been fully clarified. HA from four different origins (Elliott soil—EHA, peat—PHA, leonardite—LHA and compost—CHA) and polyacrylic acid (PAA) were characterized by acid–base titrations and 1H-NMR spectroscopy and tested in laboratory experiments by measuring changes in electric conductivity (EC) and pH following micro-additions of Na2CO3 or NaCl. The effective salinity amelioration potential (SAPeff) of HA, which expresses the amount of Na2CO3 neutralized per unit weight of HA at a given pH, was calculated. PAA had the highest capacity of mitigation, corresponding to 49.9 mg Na2CO3 g−1, followed by LHA, EHA and PHA, whose SAPeff values were similar and only slightly lower, and with CHA having the lowest value (25.1 mg Na2CO3 g−1 HA). All substances failed to display any effect at constant pH when NaCl was the only salt present. The dissociation of acid groups, when HA become exposed to a more alkaline pH, produces an excess of negative charges that attracts more cations within the diffuse double layer. Because of the slower diffusion of HA and their tendency to aggregate at high ionic strengths, this action reduces the osmolarity of the soil solution and therefore mitigates salinity stress. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

23 pages, 10763 KB  
Article
Enhanced Efinaconazole Permeation and Activity Against Trichophyton rubrum and Trichophyton mentagrophytes with a Self-Nanoemulsifying Drug Delivery System
by Seo Wan Yun, Jeong Gyun Lee, Chul Ho Kim and Kyeong Soo Kim
Pharmaceutics 2025, 17(9), 1230; https://doi.org/10.3390/pharmaceutics17091230 - 22 Sep 2025
Viewed by 243
Abstract
Background: Onychomycosis responds poorly to topical therapy, and efinaconazole (EFN) has low aqueous solubility. Methods: This study aimed to develop a 10% w/w EFN self-nanoemulsifying system (SNEDDS) with improved solubility, permeation, antifungal activity, and stability. Excipients were screened by [...] Read more.
Background: Onychomycosis responds poorly to topical therapy, and efinaconazole (EFN) has low aqueous solubility. Methods: This study aimed to develop a 10% w/w EFN self-nanoemulsifying system (SNEDDS) with improved solubility, permeation, antifungal activity, and stability. Excipients were screened by EFN saturation solubility. An MCT oil/Solutol HS 15/Labrafil M2125 CS SNEDDS (5/75/20, w/w) was optimized via a pseudo-ternary diagram. Characterization included droplet size, PDI, and zeta potential, morphology, and drug–excipient compatibility. Solubility was measured across pH. Permeation of EFN SNEDDS vs. EFN suspension was tested by Franz diffusion cells. Antifungal activity against Trichophyton rubrum and Trichophyton mentagrophytes was assessed by paper-disc diffusion, and hyphal damage on human nails was examined by SEM. Stability was studied for six months under room, accelerated, and stress conditions. Results: The optimized SNEDDS formed sub-50 nm droplets with low polydispersity and favourable zeta potential. Solubility was maintained across pH, and cumulative permeation increased 13.6-fold versus suspension. Paper-disc assays showed larger inhibition zones at lower EFN doses. SEM on human nails revealed marked hyphal destruction. TEM confirmed spherical nanoemulsion droplets. FT-IR showed no new peaks, supporting compatibility. Particle size, PDI, zeta potential, and drug content remained stable over six months under all storage conditions. Conclusions: A 10% w/w EFN SNEDDS enhanced solubility, transungual permeation, and antifungal efficacy while maintaining robust stability, supporting its potential as an ethanol-free therapy for onychomycosis. Full article
Show Figures

Figure 1

14 pages, 1161 KB  
Article
Antioxidant and Photoprotective Capacity of Secondary Metabolites Isolated from Pseudocyphellaria berberina
by Cecilia Rubio, Javiera Ramírez, José L. Rojas, Norma A. Valencia-Islas, Carolina Campos and Natalia Quiñones
Molecules 2025, 30(18), 3833; https://doi.org/10.3390/molecules30183833 - 22 Sep 2025
Viewed by 190
Abstract
Exposure to sunlight, whose main component is UV radiation (UVR), leads to various skin damage such as sunburns, premature aging, or more severe issues such as increased symptoms of autoimmune disease and skin cancer. Therefore, there is a growing interest in developing improved [...] Read more.
Exposure to sunlight, whose main component is UV radiation (UVR), leads to various skin damage such as sunburns, premature aging, or more severe issues such as increased symptoms of autoimmune disease and skin cancer. Therefore, there is a growing interest in developing improved photoprotective agents that can protect skin from sunlight incidence and antioxidants that counteract the oxidative stress caused by it. Lichens are a source of such agents since they adapt to extreme environments including those with high UVR by biosynthesizing metabolites with those properties. In this study, brialmontin 2 (1), physciosporin (2), and pseudocyphellarin A (3) were isolated for the first time from the lichen Pseudocyphellaria berberina (G. Forst.) D. J. Galloway & P. James, along with calycin (4) and 22-hydroxystictan-3-one (5). Their structural characterization was carried out by spectroscopy (1H and 13C NMR). Sun protection factor (SPF) along with critical wavelength (λcrit), a UVA/UVB ratio (UVA/UVB-r) of one to five, and acetone extract (AE) were evaluated spectrophotometrically as a measure of their UVB and UVA photoprotective capacities, respectively. Additionally, their antioxidant activity was measured by scavenging DPPH free radicals (RSA). Compounds 2, 4, and AE showed “medium” UVB photoprotective capacities (with SPFs between 15 and 30). Additionally, 4 and AE presented “maximum” UVA photoprotective capacities (λcrit > 370 nm and UVA/UVB-r > 0.8), whereas this activity was “good” for 2 and 3crit 350 to 370 nm and UVA/UVB-r 0.4 to 0.6), and “moderate” for 1crit 335 to 350 nm and UVA/UVB-r 0.2 to 0.4). All compounds and AE showed antioxidant activity, standing out were AE and 4 with activity comparable to the controls (ca. 95 and 81 RSA %, respectively, at 1000 ppm). AE and 4 are dual agents with photoprotective (UVB-UVA) and antioxidant capacities that could help prevent skin damage associated with sunlight. In silico assays suggest that 4 spontaneously diffuses into the stratum corneum with limited absorption through the skin. Additionally, 4 lacks potential toxicity to Normal Human Epidermal Keratinocytes (showing viability ca. 70% at 100 ppm); therefore, it is a candidate for the development of sunscreen formulations. Full article
(This article belongs to the Special Issue Exploring the Therapeutic Potential of Natural Antioxidants)
Show Figures

Figure 1

19 pages, 14535 KB  
Article
Corrosion Behaviors of ZrSi Coating by Laser Cladding on Zr-4 Alloy in High-Temperature Steam
by Dongliang Jin, Changda Zhu, Xiqiang Ma, Zhengxian Di and Shizhong Wei
Materials 2025, 18(18), 4402; https://doi.org/10.3390/ma18184402 - 21 Sep 2025
Viewed by 217
Abstract
Si powder was deposited onto the surface of Zr-4 alloy via laser cladding to enhance its high-temperature oxidation resistance. The high-power laser radiation and rapid solidification lead to a reaction between Si and Zr, resulting in the formation of a microstructure consisting of [...] Read more.
Si powder was deposited onto the surface of Zr-4 alloy via laser cladding to enhance its high-temperature oxidation resistance. The high-power laser radiation and rapid solidification lead to a reaction between Si and Zr, resulting in the formation of a microstructure consisting of lath-like ZrSi2 and Si-rich phases. The oxidation behavior of the laser-cladding ZrSi coating was evaluated at 1100–1300 °C in water steam. The weight gain follows a parabolic law, and the oxidation activation energy of the ZrSi coating is 182.7 kJ mol−1. The oxides produced by ZrSi2 oxidation are mainly ZrSiO4, ZrO2, and SiO2, and, under high-temperature conditions, the relative content of ZrSiO4 in the oxide decreases with increasing temperature. The oxidation of the ZrSi2 phase induces significant growth stresses, which are susceptible to causing cracks in the oxide, facilitating accelerated oxygen diffusion into the coating. However, the amorphous SiO2 formed at 1300 °C, which may be softened and fluidized to enable a self-healing effect, can heal the cracks to diminish oxygen permeation into the coating, improving its oxidation resistance. The oxidation resistance of the laser cladding ZrSi coating is better than that of the Zr-4 alloy. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

12 pages, 4143 KB  
Article
Chloride Ion Transport in Concrete Subjected to Sustained Compressive Stress Under Different Dry-Wet Ratios
by Wenqi Ma, Renchi Zhang, Xiang Li, Xiaokang Cheng and Yongming Xiong
Materials 2025, 18(18), 4388; https://doi.org/10.3390/ma18184388 - 19 Sep 2025
Viewed by 224
Abstract
Existing studies on chloride ion transport in concrete under compressive load had rarely incorporated the influence of the dry–wet time ratio, even though this ratio was a key factor affecting chloride penetration in coastal concrete structures subjected to periodic drying–wetting cycles. This study [...] Read more.
Existing studies on chloride ion transport in concrete under compressive load had rarely incorporated the influence of the dry–wet time ratio, even though this ratio was a key factor affecting chloride penetration in coastal concrete structures subjected to periodic drying–wetting cycles. This study was therefore motivated to fill this gap and to provide more reliable theoretical support for the durability assessment of such engineering structures. A series of accelerated chloride ion penetration experiments was conducted on concrete under compressive load with different dry–wet time ratios. The effects of the dry–wet time ratio, compressive stress level, and exposure environment on chloride ion transport in concrete were analyzed. A chloride ion diffusion coefficient model that accounted for both the dry–wet time ratio and the compressive stress level was then established and validated. The results showed that the enhancing effect of the dry–wet time ratio on chloride ion transport became significant under relatively high compressive stress. When the dry–wet time ratio was 7:1, the convection zone depths of concrete specimens under no stress and compressive stress were both 5 mm. Moreover, when the compressive stress level was 0.5 times the compressive strength and the dry–wet time ratio was 7:1, the chloride concentration of the specimens increased by an average of 756.4% compared with that under natural immersion. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 1119 KB  
Article
Administration of Natural Fish and Algal Oils in Nanoparticle Form to Pregnant Gilts and Newborn Piglets: Biochemical Effects and Spatial–Socio-Economic Implications for Regional Food Systems
by Paweł Kowalczyk, Monika Sobol, Joanna Makulska, Andrzej Węglarz, Apoloniusz Kurylczyk and Grzegorz Skiba
Int. J. Mol. Sci. 2025, 26(18), 9158; https://doi.org/10.3390/ijms26189158 - 19 Sep 2025
Viewed by 178
Abstract
This study investigated the influence of long-chain n-3 polyunsaturated fatty acids (PUFAs) on the activity of antioxidant defence systems and DNA repair enzymes in the liver of newborn piglets born to gilts that were supplemented with fish oil or algal oil during pregnancy. [...] Read more.
This study investigated the influence of long-chain n-3 polyunsaturated fatty acids (PUFAs) on the activity of antioxidant defence systems and DNA repair enzymes in the liver of newborn piglets born to gilts that were supplemented with fish oil or algal oil during pregnancy. The oils were offered in their natural form or as nanoparticles. Daily doses of both natural and nano-encapsulated oils were calculated to provide each gilt with 3100 mg of docosahexaenoic acid (DHA; 600 mg for the gilt and 250 mg for each foetus). Liver samples were collected from six piglets per gilt within 24 h after birth. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were measured spectrophotometrically, while DNA repair enzyme activities—formamidopyrimidine-DNA glycosylase (FPG), thymine-DNA glycosylase (TDG), and N-methylpurine DNA glycosylase (MPG)—were assessed by Fpg protein digestion. SOD activity was lowest in piglets from gilts supplemented with algal oil, fish oil, and nano-encapsulated fish oil. Piglets born to the gilts that received algal oil nanoparticles showed higher activity (1.57 U/mg), while the highest activity was recorded in control piglets. CAT activity followed a similar trend; it was lowest in algal oil-supplemented mothers and highest in controls. GPx activity was lowest in piglets born to gilts that received algal oil (both forms) and highest in controls. The FPG activity in piglets birthed by PUFA-supplemented gilts was approximately half that of MPG and TDG, indicating reduced oxidative DNA damage. Both fish oil and algal oil, regardless of the form administered, effectively reduce oxidative stress in pregnant gilts and the associated DNA damage in the livers of their offspring. These findings suggest that maternal supplementation with long-chain n-3 PUFAs can protect newborn piglets from oxidative damage. Furthermore, regional disparities in access to functional foods underline the importance of targeted strategies that integrate local food systems and health planning to promote nutritional equity. Full article
(This article belongs to the Special Issue Recent Research on Novel Lipid-Based Nano Drug Delivery Systems)
Show Figures

Graphical abstract

Back to TopTop