Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (742)

Search Parameters:
Keywords = dilated convolutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4914 KB  
Article
Dual-Channel Parallel Multimodal Feature Fusion for Bearing Fault Diagnosis
by Wanrong Li, Haichao Cai, Xiaokang Yang, Yujun Xue, Jun Ye and Xiangyi Hu
Machines 2025, 13(10), 950; https://doi.org/10.3390/machines13100950 (registering DOI) - 15 Oct 2025
Abstract
In recent years, the powerful feature extraction capabilities of deep learning have attracted widespread attention in the field of bearing fault diagnosis. To address the limitations of single-modal and single-channel feature extraction methods, which often result in incomplete information representation and difficulty in [...] Read more.
In recent years, the powerful feature extraction capabilities of deep learning have attracted widespread attention in the field of bearing fault diagnosis. To address the limitations of single-modal and single-channel feature extraction methods, which often result in incomplete information representation and difficulty in obtaining high-quality fault features, this paper proposes a dual-channel parallel multimodal feature fusion model for bearing fault diagnosis. In this method, the one-dimensional vibration signals are first transformed into two-dimensional time-frequency representations using continuous wavelet transform (CWT). Subsequently, both the one-dimensional vibration signals and the two-dimensional time-frequency representations are fed simultaneously into the dual-branch parallel model. Within this architecture, the first branch employs a combination of a one-dimensional convolutional neural network (1DCNN) and a bidirectional gated recurrent unit (BiGRU) to extract temporal features from the one-dimensional vibration signals. The second branch utilizes a dilated convolutional to capture spatial time–frequency information from the CWT-derived two-dimensional time–frequency representations. The features extracted by both branches were are input into the feature fusion layer. Furthermore, to leverage fault features more comprehensively, a channel attention mechanism is embedded after the feature fusion layer. This enables the network to focus more effectively on salient features across channels while suppressing interference from redundant features, thereby enhancing the performance and accuracy of the dual-branch network. Finally, the fused fault features are passed to a softmax classifier for fault classification. Experimental results demonstrate that the proposed method achieved an average accuracy of 99.50% on the Case Western Reserve University (CWRU) bearing dataset and 97.33% on the Southeast University (SEU) bearing dataset. These results confirm that the suggested model effectively improves fault diagnosis accuracy and exhibits strong generalization capability. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

39 pages, 2436 KB  
Article
Dynamic Indoor Visible Light Positioning and Orientation Estimation Based on Spatiotemporal Feature Information Network
by Yijia Chen, Tailin Han, Jun Hu and Xuan Liu
Photonics 2025, 12(10), 990; https://doi.org/10.3390/photonics12100990 - 8 Oct 2025
Viewed by 322
Abstract
Visible Light Positioning (VLP) has emerged as a pivotal technology for industrial Internet of Things (IoT) and smart logistics, offering high accuracy, immunity to electromagnetic interference, and cost-effectiveness. However, fluctuations in signal gain caused by target motion significantly degrade the positioning accuracy of [...] Read more.
Visible Light Positioning (VLP) has emerged as a pivotal technology for industrial Internet of Things (IoT) and smart logistics, offering high accuracy, immunity to electromagnetic interference, and cost-effectiveness. However, fluctuations in signal gain caused by target motion significantly degrade the positioning accuracy of current VLP systems. Conventional approaches face intrinsic limitations: propagation-model-based techniques rely on static assumptions, fingerprint-based approaches are highly sensitive to dynamic parameter variations, and although CNN/LSTM-based models achieve high accuracy under static conditions, their inability to capture long-term temporal dependencies leads to unstable performance in dynamic scenarios. To overcome these challenges, we propose a novel dynamic VLP algorithm that incorporates a Spatio-Temporal Feature Information Network (STFI-Net) for joint localization and orientation estimation of moving targets. The proposed method integrates a two-layer convolutional block for spatial feature extraction and employs modern Temporal Convolutional Networks (TCNs) with dilated convolutions to capture multi-scale temporal dependencies in dynamic environments. Experimental results demonstrate that the STFI-Net-based system enhances positioning accuracy by over 26% compared to state-of-the-art methods while maintaining robustness in the face of complex motion patterns and environmental variations. This work introduces a novel framework for deep learning-enabled dynamic VLP systems, providing more efficient, accurate, and scalable solutions for indoor positioning. Full article
(This article belongs to the Special Issue Emerging Technologies in Visible Light Communication)
Show Figures

Figure 1

23 pages, 4303 KB  
Article
LMCSleepNet: A Lightweight Multi-Channel Sleep Staging Model Based on Wavelet Transform and Muli-Scale Convolutions
by Jiayi Yang, Yuanyuan Chen, Tingting Yu and Ying Zhang
Sensors 2025, 25(19), 6065; https://doi.org/10.3390/s25196065 - 2 Oct 2025
Viewed by 221
Abstract
Sleep staging is a crucial indicator for assessing sleep quality, which contributes to sleep monitoring and the diagnosis of sleep disorders. Although existing sleep staging methods achieve high classification performance, two major challenges remain: (1) the ability to effectively extract salient features from [...] Read more.
Sleep staging is a crucial indicator for assessing sleep quality, which contributes to sleep monitoring and the diagnosis of sleep disorders. Although existing sleep staging methods achieve high classification performance, two major challenges remain: (1) the ability to effectively extract salient features from multi-channel sleep data remains limited; (2) excessive model parameters hinder efficiency improvements. To address these challenges, this work proposes a lightweight multi-channel sleep staging network (LMCSleepNet). LMCSleepNet is composed of four modules. The first module enhances frequency domain features through continuous wavelet transform. The second module extracts time–frequency features using multi-scale convolutions. The third module optimizes ResNet18 with depthwise separable convolutions to reduce parameters. The fourth module improves spatial correlation using the Convolutional Block Attention Module (CBAM). On the public datasets SleepEDF-20, SleepEDF-78, and LMCSleepNet, respectively, LMCSleepNet achieved classification accuracies of 88.2% (κ = 0.84, MF1 = 82.4%) and 84.1% (κ = 0.77, MF1 = 77.7%), while reducing model parameters to 1.49 M. Furthermore, experiments validated the influence of temporal sampling points in wavelet time–frequency maps on sleep classification performance (accuracy, Cohen’s kappa, and macro-average F1-score) and the influence of multi-scale dilated convolution module fusion methods on classification performance. LMCSleepNet is an efficient lightweight model for extracting and integrating multimodal features from multichannel Polysomnography (PSG) data, which facilitates its application in resource-constrained scenarios. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

21 pages, 5777 KB  
Article
S2M-Net: A Novel Lightweight Network for Accurate Small Ship Recognition in SAR Images
by Guobing Wang, Rui Zhang, Junye He, Yuxin Tang, Yue Wang, Yonghuan He, Xunqiang Gong and Jiang Ye
Remote Sens. 2025, 17(19), 3347; https://doi.org/10.3390/rs17193347 - 1 Oct 2025
Viewed by 329
Abstract
Synthetic aperture radar (SAR) provides all-weather and all-day imaging capabilities and can penetrate clouds and fog, playing an important role in ship detection. However, small ships usually contain weak feature information in such images and are easily affected by noise, which makes detection [...] Read more.
Synthetic aperture radar (SAR) provides all-weather and all-day imaging capabilities and can penetrate clouds and fog, playing an important role in ship detection. However, small ships usually contain weak feature information in such images and are easily affected by noise, which makes detection challenging. In practical deployment, limited computing resources require lightweight models to improve real-time performance, yet achieving a lightweight design while maintaining high detection accuracy for small targets remains a key challenge in object detection. To address this issue, we propose a novel lightweight network for accurate small-ship recognition in SAR images, named S2M-Net. Specifically, the Space-to-Depth Convolution (SPD-Conv) module is introduced in the feature extraction stage to optimize convolutional structures, reducing computation and parameters while retaining rich feature information. The Mixed Local-Channel Attention (MLCA) module integrates local and channel attention mechanisms to enhance adaptation to complex backgrounds and improve small-target detection accuracy. The Multi-Scale Dilated Attention (MSDA) module employs multi-scale dilated convolutions to fuse features from different receptive fields, strengthening detection across ships of various sizes. The experimental results show that S2M-Net achieved mAP50 values of 0.989, 0.955, and 0.883 on the SSDD, HRSID, and SARDet-100k datasets, respectively. Compared with the baseline model, the F1 score increased by 1.13%, 2.71%, and 2.12%. Moreover, S2M-Net outperformed other state-of-the-art algorithms in FPS across all datasets, achieving a well-balanced trade-off between accuracy and efficiency. This work provides an effective solution for accurate ship detection in SAR images. Full article
Show Figures

Figure 1

23 pages, 3731 KB  
Article
ELS-YOLO: Efficient Lightweight YOLO for Steel Surface Defect Detection
by Zhiheng Zhang, Guoyun Zhong, Peng Ding, Jianfeng He, Jun Zhang and Chongyang Zhu
Electronics 2025, 14(19), 3877; https://doi.org/10.3390/electronics14193877 - 29 Sep 2025
Viewed by 367
Abstract
Detecting surface defects in steel products is essential for maintaining manufacturing quality. However, existing methods struggle with significant challenges, including substantial defect size variations, diverse defect types, and complex backgrounds, leading to suboptimal detection accuracy. This work introduces ELS-YOLO, an advanced YOLOv11n-based algorithm [...] Read more.
Detecting surface defects in steel products is essential for maintaining manufacturing quality. However, existing methods struggle with significant challenges, including substantial defect size variations, diverse defect types, and complex backgrounds, leading to suboptimal detection accuracy. This work introduces ELS-YOLO, an advanced YOLOv11n-based algorithm designed to tackle these limitations. A C3k2_THK module is first introduced that combines a partial convolution, heterogeneous kernel selection protocoland the SCSA attention mechanism to improve feature extraction while reducing computational overhead. Additionally, the Staged-Slim-Neck module is developed that employs dual and dilated convolutions at different stages while integrating GMLCA attention to enhance feature representation and reduce computational complexity. Furthermore, an MSDetect detection head is designed to boost multi-scale detection performance. Experimental validation shows that ELS-YOLO outperforms YOLOv11n in detection accuracy while achieving 8.5% and 11.1% reductions in the number of parameters and computational cost, respectively, demonstrating strong potential for real-world industrial applications. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

18 pages, 9355 KB  
Article
Two-Dimensional Image Lempel–Ziv Complexity Calculation Method and Its Application in Defect Detection
by Jiancheng Yin, Wentao Sui, Xuye Zhuang, Yunlong Sheng and Yongbo Li
Entropy 2025, 27(10), 1014; https://doi.org/10.3390/e27101014 - 27 Sep 2025
Viewed by 297
Abstract
Although Lempel–Ziv complexity (LZC) can reflect changes in object characteristics by measuring changes in independent patterns in the signal, it can only be applied to one-dimensional time series and cannot be directly applied to two-dimensional images. To address this issue, this paper proposed [...] Read more.
Although Lempel–Ziv complexity (LZC) can reflect changes in object characteristics by measuring changes in independent patterns in the signal, it can only be applied to one-dimensional time series and cannot be directly applied to two-dimensional images. To address this issue, this paper proposed a two-dimensional Lempel–Ziv complexity by combining the concept of local receptive field in convolutional neural networks. This extends the application scenario of LZC from one-dimensional time series to two-dimensional images, further broadening the scope of application of LZC. First, the pixels and size of the image were normalized. Then, the image was encoded according to the sorting of normalized values within the 4 × 4 region. Next, the encoding result of the image was rearranged into a vector by row. Finally, the Lempel–Ziv complexity of the image could be obtained based on the rearranged vector. The proposed method was further used for defect detection in conjunction with the dilation operator and Sobel operator, and validated by two practical cases. The results showed that the proposed method can effectively identify independent pattern changes in images and can be used for defect detection. The accuracy rate of defect detection can reach 100%. Full article
(This article belongs to the Special Issue Complexity and Synchronization in Time Series)
Show Figures

Figure 1

24 pages, 6747 KB  
Article
YOLOv11-MSE: A Multi-Scale Dilated Attention-Enhanced Lightweight Network for Efficient Real-Time Underwater Target Detection
by Zhenfeng Ye, Xing Peng, Dingkang Li and Feng Shi
J. Mar. Sci. Eng. 2025, 13(10), 1843; https://doi.org/10.3390/jmse13101843 - 23 Sep 2025
Viewed by 514
Abstract
Underwater target detection is a critical technology for marine resource management and ecological protection, but its performance is often limited by complex underwater environments, including optical attenuation, scattering, and dense distributions of small targets. Existing methods have significant limitations in feature extraction efficiency, [...] Read more.
Underwater target detection is a critical technology for marine resource management and ecological protection, but its performance is often limited by complex underwater environments, including optical attenuation, scattering, and dense distributions of small targets. Existing methods have significant limitations in feature extraction efficiency, robustness in class-imbalanced scenarios, and computational complexity. To address these challenges, this study proposes a lightweight adaptive detection model, YOLOv11-MSE, which optimizes underwater detection performance through three core innovations. First, a multi-scale dilated attention (MSDA) mechanism is embedded into the backbone network to dynamically capture multi-scale contextual features while suppressing background noise. Second, a Slim-Neck architecture based on GSConv and VoV-GSCSPC modules is designed to achieve efficient feature fusion via hybrid convolution strategies, significantly reducing model complexity. Finally, an efficient multi-scale attention (EMA) module is introduced in the detection head to reinforce key feature representations and suppress environmental noise through cross-dimensional interactions. Experiments on the underwater detection dataset (UDD) demonstrate that YOLOv11-MSE outperforms the baseline model YOLOv11, achieving a 9.67% improvement in detection precision and a 3.45% increase in mean average precision (mAP50) while reducing computational complexity by 6.57%. Ablation studies further validate the synergistic optimization effects of each module, particularly in class-imbalanced scenarios where detection precision for rare categories (e.g., scallops) is significantly enhanced, with precision and mAP50 improving by 60.62% and 10.16%, respectively. This model provides an efficient solution for edge computing scenarios, such as underwater robots and ecological monitoring, through its lightweight design and high underwater target detection capability. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 1250 KB  
Article
Entity Span Suffix Classification for Nested Chinese Named Entity Recognition
by Jianfeng Deng, Ruitong Zhao, Wei Ye and Suhong Zheng
Information 2025, 16(10), 822; https://doi.org/10.3390/info16100822 - 23 Sep 2025
Viewed by 309
Abstract
Named entity recognition (NER) is one of the fundamental tasks in building knowledge graphs. For some domain-specific corpora, the text descriptions exhibit limited standardization, and some entity structures have entity nesting. The existing entity recognition methods have problems such as word matching noise [...] Read more.
Named entity recognition (NER) is one of the fundamental tasks in building knowledge graphs. For some domain-specific corpora, the text descriptions exhibit limited standardization, and some entity structures have entity nesting. The existing entity recognition methods have problems such as word matching noise interference and difficulty in distinguishing different entity labels for the same character in sequence label prediction. This paper proposes a span-based feature reuse stacked bidirectional long short term memory network (BiLSTM) nested named entity recognition (SFRSN) model, which transforms the entity recognition of sequence prediction into the problem of entity span suffix category classification. Firstly, character feature embedding is generated through bidirectional encoder representation of transformers (BERT). Secondly, a feature reuse stacked BiLSTM is proposed to obtain deep context features while alleviating the problem of deep network degradation. Thirdly, the span feature is obtained through the dilated convolution neural network (DCNN), and at the same time, a single-tail selection function is introduced to obtain the classification feature of the entity span suffix, with the aim of reducing the training parameters. Fourthly, a global feature gated attention mechanism is proposed, integrating span features and span suffix classification features to achieve span suffix classification. The experimental results on four Chinese-specific domain datasets demonstrate the effectiveness of our approach: SFRSN achieves micro-F1 scores of 83.34% on ontonotes, 73.27% on weibo, 96.90% on resume, and 86.77% on the supply chain management dataset. This represents a maximum improvement of 1.55%, 4.94%, 2.48%, and 3.47% over state-of-the-art baselines, respectively. The experimental results demonstrate the effectiveness of the model in addressing nested entities and entity label ambiguity issues. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Graphical abstract

31 pages, 3788 KB  
Article
Multi-Scale Feature Convolutional Modeling for Industrial Weld Defects Detection in Battery Manufacturing
by Waqar Riaz, Xiaozhi Qi, Jiancheng (Charles) Ji and Asif Ullah
Fractal Fract. 2025, 9(9), 611; https://doi.org/10.3390/fractalfract9090611 - 21 Sep 2025
Viewed by 417
Abstract
Defect detection in lithium-ion battery (LIB) welding presents unique challenges, including scale heterogeneity, subtle texture variations, and severe class imbalance. We propose a multi-scale convolutional framework that integrates EfficientNet-B0 for lightweight representation learning, PANet for cross-scale feature aggregation, and a YOLOv8 detection head [...] Read more.
Defect detection in lithium-ion battery (LIB) welding presents unique challenges, including scale heterogeneity, subtle texture variations, and severe class imbalance. We propose a multi-scale convolutional framework that integrates EfficientNet-B0 for lightweight representation learning, PANet for cross-scale feature aggregation, and a YOLOv8 detection head augmented with multi-head attention. Parallel dilated convolutions are employed to approximate self-similar receptive fields, enabling simultaneous sensitivity to fine-grained microstructural anomalies and large-scale geometric irregularities. The approach is validated on three datasets including RIAWELC, GC10-DET, and an industrial LIB defects dataset, where it consistently outperforms competitive baselines, achieving 8–10% improvements in recall and F1-score while preserving real-time inference on GPU. Ablation experiments and statistical significance tests isolate the contributions of attention and multi-scale design, confirming their role in reducing false negatives. Attention-based visualizations further enhance interpretability by exposing spatial regions driving predictions. Limitations remain regarding fixed imaging conditions and partial reliance on synthetic augmentation, but the framework establishes a principled direction toward efficient, interpretable, and scalable defect inspection in industrial manufacturing. Full article
Show Figures

Figure 1

20 pages, 3989 KB  
Article
A2DSC-Net: A Network Based on Multi-Branch Dilated and Dynamic Snake Convolutions for Water Body Extraction
by Shuai Zhang, Chao Zhang, Qichao Zhao, Junjie Ma and Pengpeng Zhang
Water 2025, 17(18), 2760; https://doi.org/10.3390/w17182760 - 18 Sep 2025
Viewed by 354
Abstract
The accurate and efficient acquisition of the spatiotemporal distribution of surface water is of vital importance for water resource utilization, flood monitoring, and environmental protection. However, deep learning models often suffer from two major limitations when applied to high-resolution remote sensing imagery: the [...] Read more.
The accurate and efficient acquisition of the spatiotemporal distribution of surface water is of vital importance for water resource utilization, flood monitoring, and environmental protection. However, deep learning models often suffer from two major limitations when applied to high-resolution remote sensing imagery: the loss of small water body features due to encoder scale differences, and reduced boundary accuracy for narrow water bodies in complex backgrounds. To address these challenges, we introduce the A2DSC-Net, which offers two key innovations. First, a multi-branch dilated convolution (MBDC) module is designed to capture contextual information across multiple spatial scales, thereby enhancing the recognition of small water bodies. Second, a Dynamic Snake Convolution module is introduced to adaptively extract local features and integrate global spatial cues, significantly improving the delineation accuracy of narrow water bodies under complex background conditions. Ablation and comparative experiments were conducted under identical settings using the LandCover.ai and Gaofen Image Dataset (GID). The results show that A2DSC-Net achieves an average precision of 96.34%, average recall of 96.19%, average IoU of 92.8%, and average F1-score of 96.26%, outperforming classical segmentation models such as U-Net, DeepLabv3+, DANet, and PSPNet. These findings demonstrate that A2DSC-Net provides an effective and reliable solution for water body extraction from high-resolution remote sensing imagery. Full article
Show Figures

Figure 1

36 pages, 8122 KB  
Article
Human Activity Recognition via Attention-Augmented TCN-BiGRU Fusion
by Ji-Long He, Jian-Hong Wang, Chih-Min Lo and Zhaodi Jiang
Sensors 2025, 25(18), 5765; https://doi.org/10.3390/s25185765 - 16 Sep 2025
Viewed by 769
Abstract
With the widespread application of wearable sensors in health monitoring and human–computer interaction, deep learning-based human activity recognition (HAR) research faces challenges such as the effective extraction of multi-scale temporal features and the enhancement of robustness against noise in multi-source data. This study [...] Read more.
With the widespread application of wearable sensors in health monitoring and human–computer interaction, deep learning-based human activity recognition (HAR) research faces challenges such as the effective extraction of multi-scale temporal features and the enhancement of robustness against noise in multi-source data. This study proposes the TGA-HAR (TCN-GRU-Attention-HAR) model. The TGA-HAR model integrates Temporal Convolutional Neural Networks and Recurrent Neural Networks by constructing a hierarchical feature abstraction architecture through cascading Temporal Convolutional Network (TCN) and Bidirectional Gated Recurrent Unit (BiGRU) layers for complex activity recognition. This study utilizes TCN layers with dilated convolution kernels to extract multi-order temporal features. This study utilizes BiGRU layers to capture bidirectional temporal contextual correlation information. To further optimize feature representation, the TGA-HAR model introduces residual connections to enhance the stability of gradient propagation and employs an adaptive weighted attention mechanism to strengthen feature representation. The experimental results of this study demonstrate that the model achieved test accuracies of 99.37% on the WISDM dataset, 95.36% on the USC-HAD dataset, and 96.96% on the PAMAP2 dataset. Furthermore, we conducted tests on datasets collected in real-world scenarios. This method provides a highly robust solution for complex human activity recognition tasks. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

22 pages, 3632 KB  
Article
RFR-YOLO-Based Recognition Method for Dairy Cow Behavior in Farming Environments
by Congcong Li, Jialong Ma, Shifeng Cao and Leifeng Guo
Agriculture 2025, 15(18), 1952; https://doi.org/10.3390/agriculture15181952 - 15 Sep 2025
Viewed by 558
Abstract
Cow behavior recognition constitutes a fundamental element of effective cow health monitoring and intelligent farming systems. Within large-scale cow farming environments, several critical challenges persist, including the difficulty in accurately capturing behavioral feature information, substantial variations in multi-scale features, and high inter-class similarity [...] Read more.
Cow behavior recognition constitutes a fundamental element of effective cow health monitoring and intelligent farming systems. Within large-scale cow farming environments, several critical challenges persist, including the difficulty in accurately capturing behavioral feature information, substantial variations in multi-scale features, and high inter-class similarity among different cow behaviors. To address these limitations, this study introduces an enhanced target detection algorithm for cow behavior recognition, termed RFR-YOLO, which is developed upon the YOLOv11n framework. A well-structured dataset encompassing nine distinct cow behaviors—namely, lying, standing, walking, eating, drinking, licking, grooming, estrus, and limping—is constructed, comprising a total of 13,224 labeled samples. The proposed algorithm incorporates three major technical improvements: First, an Inverted Dilated Convolution module (Region Semantic Inverted Convolution, RsiConv) is designed and seamlessly integrated with the C3K2 module to form the C3K2_Rsi module, which effectively reduces computational overhead while enhancing feature representation. Second, a Four-branch Multi-scale Dilated Attention mechanism (Four Multi-Scale Dilated Attention, FMSDA) is incorporated into the network architecture, enabling the scale-specific features to align with the corresponding receptive fields, thereby improving the model’s capacity to capture multi-scale characteristics. Third, a Reparameterized Generalized Residual Feature Pyramid Network (Reparameterized Generalized Residual-FPN, RepGRFPN) is introduced as the Neck component, allowing for the features to propagate through differentiated pathways and enabling flexible control over multi-scale feature expression, thereby facilitating efficient feature fusion and mitigating the impact of behavioral similarity. The experimental results demonstrate that RFR-YOLO achieves precision, recall, mAP50, and mAP50:95 values of 95.9%, 91.2%, 94.9%, and 85.2%, respectively, representing performance gains of 5.5%, 5%, 5.6%, and 3.5% over the baseline model. Despite a marginal increase in computational complexity of 1.4G, the algorithm retains a high detection speed of 147.6 frames per second. The proposed RFR-YOLO algorithm significantly improves the accuracy and robustness of target detection in group cow farming scenarios. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

16 pages, 4653 KB  
Article
Automated Detection and Segmentation of Ascending Aorta Dilation on a Non-ECG-Gated Chest CT Using Deep Learning
by Fargana Aghayeva, Yusuf Abdi, Ahmad Uzair and Ayaz Aghayev
Diagnostics 2025, 15(18), 2336; https://doi.org/10.3390/diagnostics15182336 - 15 Sep 2025
Viewed by 454
Abstract
Background/Objectives: Ascending aortic (AA) dilation (diameter ≥ 4.0 cm) is a significant risk factor for aortic dissection, yet it often goes unnoticed in routine chest CT scans performed for other indications. This study aimed to develop and evaluate a deep learning pipeline for [...] Read more.
Background/Objectives: Ascending aortic (AA) dilation (diameter ≥ 4.0 cm) is a significant risk factor for aortic dissection, yet it often goes unnoticed in routine chest CT scans performed for other indications. This study aimed to develop and evaluate a deep learning pipeline for automated AA segmentation using non-ECG-gated chest CT scans. Methods: We designed a two-stage pipeline integrating a convolutional neural network (CNN) for focus-slice classification and a U-Net-based segmentation model to extract the aortic region. The model was trained and validated on a dataset of 500 non-ECG-gated chest CT scans, encompassing over 50,000 individual slices. Results: On the held-out test set (10%), the model achieved a Dice similarity coefficient (DSC) score of 99.21%, an Intersection over Union (IoU) of 98.45%, and a focus-slice classification accuracy of 98.18%. Compared with traditional rule-based and prior CNN-based methods, the proposed approach achieved markedly higher overlap metrics while maintaining low computational overhead. Conclusions: A lightweight CNN+U-Net deep learning model can enhance diagnostic accuracy, reduce radiologist workload, and enable opportunistic detection of AA dilation in routine chest CT imaging. Full article
(This article belongs to the Special Issue Artificial Intelligence Approaches for Medical Diagnostics in the USA)
Show Figures

Figure 1

24 pages, 12392 KB  
Article
A Robust and High-Accuracy Banana Plant Leaf Detection and Counting Method for Edge Devices in Complex Banana Orchard Environments
by Xing Xu, Guojie Liu, Zihao Luo, Shangcun Chen, Shiye Peng, Huazimo Liang, Jieli Duan and Zhou Yang
Agronomy 2025, 15(9), 2195; https://doi.org/10.3390/agronomy15092195 - 15 Sep 2025
Viewed by 460
Abstract
Leaves are the key organs in photosynthesis and nutrient production, and leaf counting is an important indicator of banana plant health and growth rate. However, in complex orchard environments, leaves often overlap, the background is cluttered, and illumination varies, making accurate segmentation and [...] Read more.
Leaves are the key organs in photosynthesis and nutrient production, and leaf counting is an important indicator of banana plant health and growth rate. However, in complex orchard environments, leaves often overlap, the background is cluttered, and illumination varies, making accurate segmentation and detection challenging. To address these issues, we propose a lightweight banana leaf detection and counting method deployable on embedded devices, which integrates a space–depth-collaborative reasoning strategy with multi-scale feature enhancement to achieve efficient and precise leaf identification and counting. For complex background interference and occlusion, we design a multi-scale attention guided feature enhancement mechanism that employs a Mixed Local Channel Attention (MLCA) module and a Self-Ensembling Attention Mechanism (SEAM) to strengthen local salient feature representation, suppress background noise, and improve discriminability under occlusion. To mitigate feature drift caused by environmental changes, we introduce a task-aware dynamic scale adaptive detection head (DyHead) combined with multi-rate depthwise separable dilated convolutions (DWR_Conv) to enhance multi-scale contextual awareness and adaptive feature recognition. Furthermore, to tackle instance differentiation and counting under occlusion and overlap, we develop a detection-guided space–depth position modeling method that, based on object detection, effectively models the distribution of occluded instances through space–depth feature description, outlier removal, and adaptive clustering analysis. Experimental results demonstrate that our YOLOv8n MDSD model outperforms the baseline by 2.08% in mAP50-95, and achieves a mean absolute error (MAE) of 0.67 and a root mean square error (RMSE) of 1.01 in leaf counting, exhibiting excellent accuracy and robustness for automated banana leaf statistics. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

16 pages, 1585 KB  
Proceeding Paper
Design of Pentagon-Shaped THz Photonic Crystal Fiber Biosensor for Early Detection of Crop Pathogens Using Decision Cascaded 3D Return Dilated Secretary-Bird Aligned Convolutional Transformer Network
by Sreemathy Jayaprakash, Prasath Nithiyanandam and Rajesh Kumar Dhanaraj
Eng. Proc. 2025, 106(1), 9; https://doi.org/10.3390/engproc2025106009 - 12 Sep 2025
Viewed by 203
Abstract
Crop pathogens threaten global agriculture by causing severe yield and economic losses. Conventional detection methods are often slow and inaccurate, limiting timely intervention. This study introduces a pentagon-shaped terahertz photonic crystal fiber (THz PCF) biosensor, optimized with the decision cascaded 3D return dilated [...] Read more.
Crop pathogens threaten global agriculture by causing severe yield and economic losses. Conventional detection methods are often slow and inaccurate, limiting timely intervention. This study introduces a pentagon-shaped terahertz photonic crystal fiber (THz PCF) biosensor, optimized with the decision cascaded 3D return dilated secretary-bird aligned convolutional transformer network (DC3D-SBA-CTN). The biosensor is designed to detect a broad spectrum of pathogens, including fungi (e.g., Fusarium spp.) and bacteria (e.g., Xanthomonas spp.), by identifying their unique refractive index signatures. Integrating advanced neural networks and optimization algorithms, the biosensor achieves a detection accuracy of 99.87%, precision of 99.65%, sensitivity of 99.77%, and specificity of 99.83%, as validated by a 5-fold cross-validation protocol. It offers high sensitivity (up to 7340 RIU−1), low signal loss, and robust performance against morphological variations, making it adaptable for diverse agricultural settings. This innovation enables rapid, precise monitoring of crop pathogens, revolutionizing plant disease management. Full article
Show Figures

Figure 1

Back to TopTop