Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = dimethyl ether (DME)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10891 KB  
Article
DNS Study of Freely Propagating Turbulent Lean-Premixed Flames with Low-Temperature Chemistry in the Broken Reaction Zone Regime
by Yi Zhang, Yinhu Kang, Xiaomei Huang, Pengyuan Zhang and Xiaolin Tang
Energies 2025, 18(16), 4357; https://doi.org/10.3390/en18164357 - 15 Aug 2025
Viewed by 335
Abstract
The novel engines nowadays with high efficiency are operated under the superpressure, supercritical, and supersonic extreme conditions that are situated in the broken reaction zone regime. In this article, the propagation and heat/radical diffusion physics of a high-pressure dimethyl ether (DME)/air turbulent lean-premixed [...] Read more.
The novel engines nowadays with high efficiency are operated under the superpressure, supercritical, and supersonic extreme conditions that are situated in the broken reaction zone regime. In this article, the propagation and heat/radical diffusion physics of a high-pressure dimethyl ether (DME)/air turbulent lean-premixed flame are investigated numerically by direct numerical simulation (DNS). A wide range of statistical and diagnostic methods, including Lagrangian fluid tracking, Joint Probability Density Distribution (JPDF), and chemical explosive mode analysis (CEMA), are applied to reveal the local combustion modes and dynamics evolution, as well as the roles of heat/mass transport and cool/hot flame interaction in the turbulent combustion, which would be beneficial to the design of novel engines with high performances. It is found that the three-staged combustion, including cool-flame, warm-flame, and hot-flame fronts, is a unique behavior of DME flame under the elevated-pressure, lean-premixed condition. In the broken reaction zone regime, the reaction zone thickness increases remarkably, and the heat release rate (HRR) and fuel consumption rate in the cool-flame zone are increased by 16% and 19%, respectively. The diffusion effect not only enhances flame propagation, but also suppresses the local HRR or fuel consumption. The strong turbulence interplaying with diffusive transports is the underlying physics for the enhancements in cool- and hot-flame fronts. The dominating diffusive sub-processes are revealed by the aid of the diffusion index. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

22 pages, 3845 KB  
Review
Improving Biodiesel Atomization Performance in CI Engines: A Review of Spray Behavior, Droplet Impingement, and Advanced Techniques
by Zehao Feng, Junlong Zhang, Jiechong Gu, Xianyin Leng, Zhixia He and Keiya Nishida
Processes 2025, 13(8), 2527; https://doi.org/10.3390/pr13082527 - 11 Aug 2025
Viewed by 422
Abstract
The escalating challenges of greenhouse gas emissions, coupled with the severe depletion of oil reserves and the surging global energy demand, have emerged as critical concerns requiring urgent attention. Against this backdrop, biodiesel has been recognized as a viable alternative fuel for compression [...] Read more.
The escalating challenges of greenhouse gas emissions, coupled with the severe depletion of oil reserves and the surging global energy demand, have emerged as critical concerns requiring urgent attention. Against this backdrop, biodiesel has been recognized as a viable alternative fuel for compression ignition (CI) engines. The primary objective of this research is to review the application of biodiesel in CI engines, with a focus on enhancing fuel properties and improving atomization performance. This article examines the spray and atomization characteristics of biodiesel fuels and conducts a comparative analysis with diesel fuel. The results show that biodiesel has a longer spray tip penetration, smaller spray cone angle, larger Sauter mean diameter (SMD) and faster droplet velocity due to its higher viscosity and surface tension. Blending with other fuels, such as ethanol, butanol, dimethyl ether (DME) and di-n-butyl ether, results in reduced viscosity and surface tension in these mixed fuels, representing a simple and effective approach for improving biodiesel atomization performance. A comprehensive analysis of spray and droplet impingement is also conducted. The findings reveal that biodiesel exhibits a higher probability of fuel–wall impingement, suggesting that future research should focus on two key directions: first, developing combined strategies to enhance impact-induced secondary atomization while minimizing fuel deposition; and second, investigating single-droplet impingement, specifically that of microscale biodiesel droplets and blended fuel droplets under real engine operating conditions. This paper also presents several advanced techniques, including air-assisted atomization, dual-fuel impingement, nano-biodiesel, and water-emulsified biodiesel, aimed at mitigating the atomization limitations of biodiesel, thereby facilitating the broader adoption of biodiesel in compression ignition engines. Full article
Show Figures

Figure 1

20 pages, 4330 KB  
Article
Extraction of Terpenoids from Pine Needle Biomass Using Dimethyl Ether
by Gary S. Groenewold, Christopher Orme, Caleb Stetson, Rebecca M. Brown, Lynn M. Wendt and Aaron D. Wilson
Separations 2025, 12(7), 169; https://doi.org/10.3390/separations12070169 - 26 Jun 2025
Viewed by 711
Abstract
Pine needles are an industrial feedstock for extracts used in a variety of applications, but conventional extraction methods often result in a degradation of the terpenoid compounds that naturally occur in loblolly pine (Pinus taeda). Separation of these compounds from pine [...] Read more.
Pine needles are an industrial feedstock for extracts used in a variety of applications, but conventional extraction methods often result in a degradation of the terpenoid compounds that naturally occur in loblolly pine (Pinus taeda). Separation of these compounds from pine biomass is an energy-intensive operation, typically requiring a significant input of thermal energy. An alternative separation approach with potential energy savings is extraction with a condensable gas, namely, dimethyl ether. Biomass materials are exposed to liquid dimethyl ether under pressure, which mobilizes the organics. The extract is then separated from the insoluble pine matter, and dimethyl ether is volatilized away from the separated organic species. A variety of terpene derivatives were extracted from pine needle biomass using this approach, including monoterpenes, sesquiterpenes, and related oxygenates, which were identified using two-dimensional gas chromatography/mass spectrometry. Additionally, the dimethyl ether-treated needles resemble needles subjected to low-temperature drying, whereas needles treated with a high-temperature drying method appear to have shrunken structures. The results suggest that dimethyl ether extraction has significant potential for separating valuable organics from complex matrices without the application of thermal energy during treatment. Full article
Show Figures

Figure 1

13 pages, 1618 KB  
Article
Process Simulation and Optimization of Dimethyl Ether (DME) Synthesis Utilizing Highly Contaminated Natural Gas as Feedstock
by Aymn Abdulrahman
Processes 2025, 13(6), 1872; https://doi.org/10.3390/pr13061872 - 13 Jun 2025
Viewed by 511
Abstract
Natural gas with a high carbon dioxide (CO2) content presents significant operational and environmental challenges when used as a fuel. A high CO2 content lowers the calorific value of natural gas, reducing its fuel efficiency and increasing the risk of [...] Read more.
Natural gas with a high carbon dioxide (CO2) content presents significant operational and environmental challenges when used as a fuel. A high CO2 content lowers the calorific value of natural gas, reducing its fuel efficiency and increasing the risk of corrosion in pipelines and processing equipment. Consequently, such natural gas must be purified to reduce the CO2 content to acceptable levels before it can be effectively used as a fuel. Various technologies for natural gas purification are currently employed, primarily focusing on CO2 removal. This research explores an innovative approach where highly contaminated natural gas is utilized to synthesize hydrogen for subsequent methanol production. Methanol synthesis necessitates both hydrogen and CO2, integrating the use of by-products effectively in the production chain. Following the production of methanol, it is then converted into dimethyl ether (DME), a compound with considerable value as a clean fuel alternative due to its lower emissions when burnt. The open-source COCO simulator was used to model and simulate these processes, allowing for the creation of a detailed process flowsheet. The simulation covered four main stages: (1) purification of the natural gas to remove excess CO2, (2) production of hydrogen, (3) synthesis of methanol using the hydrogen and captured CO2, and (4) conversion of methanol to DME. This integrated approach mitigates the issues associated with high CO2 content in natural gas and leverages this component as a valuable feedstock, demonstrating a comprehensive use of all extracted compounds. The proposed process illustrates a promising route for utilizing highly contaminated natural gas, potentially transforming an environmental liability into valuable chemical commodities. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 3103 KB  
Article
Design and Simulation of an Integrated Process for the Co-Production of Power, Hydrogen, and DME by Using an Electrolyzer’s System
by Asmae Abousalmia and Seckin Karagoz
Energies 2025, 18(10), 2446; https://doi.org/10.3390/en18102446 - 10 May 2025
Cited by 1 | Viewed by 655
Abstract
The increasing global demand for clean energy and sustainable industrial processes necessitates innovative approaches to energy production and chemical synthesis. This study proposed and simulated an innovative integrated system for the co-production of power, hydrogen, and dimethyl ether (DME), combining the high-efficiency Allam–Fetvedt [...] Read more.
The increasing global demand for clean energy and sustainable industrial processes necessitates innovative approaches to energy production and chemical synthesis. This study proposed and simulated an innovative integrated system for the co-production of power, hydrogen, and dimethyl ether (DME), combining the high-efficiency Allam–Fetvedt cycle with co-electrolysis and indirect DME synthesis. The Allam–Fetvedt cycle generated electricity while capturing CO2, which, along with water, was used in solid oxide electrolyzers (SOEs) to produce syngas via co-electrolysis. The resulting syngas was converted to methanol and subsequently to DME. Aspen HYSYS was used to model and simulate the process, and heat/mass integration strategies were implemented to reduce energy demand and optimize resource utilization. The proposed integrated process enabled an annual production of 980,021 metric tons of DME, 189,435 metric tons of hydrogen, and 7698.27 metric tons of methanol. The energy efficiency of the Allam–Fetvedt cycle reached 55%, and heat integration reduced the system’s net energy demand by 14.22%. Despite the high energy needs of the electrolyzer system (81.28% of net energy), the overall energy requirement remained competitive with conventional methods. Carbon emissions per kilogram of DME were reduced from 1.16 to 0.77 kg CO2 through heat integration and can be further minimized to 0.0308 kg CO2/kg DME (near zero) with renewable electrification. Results demonstrated that 96% of CO2 was recycled within the Allam–Fetvedt cycle, and the rest (the 4% of CO2) was captured and converted to syngas, achieving net-zero carbon emissions. This work presents a scalable and sustainable pathway for integrated clean energy and chemical production, advancing toward industrial net-zero targets. Full article
(This article belongs to the Special Issue Renewable Fuels: A Key Step Towards Global Sustainability)
Show Figures

Figure 1

20 pages, 4274 KB  
Article
Xanthocillin X Dimethyl Ether Exhibits Anti-Proliferative Effect on Triple-Negative Breast Cancer by Depletion of Mitochondrial Heme
by Jingjing Du, Xuening Zhang, Kaiqiang Guo, Wanjun Lin, Wenjian Lan, Zi Wang, Meina Shi, Zifeng Huang, Houjin Li and Wenzhe Ma
Mar. Drugs 2025, 23(4), 146; https://doi.org/10.3390/md23040146 - 28 Mar 2025
Viewed by 785
Abstract
Triple-negative breast cancer (TNBC) presents a significant therapeutic challenge due to the absence of specific targeted treatments. In this study, we explored the therapeutic potential of xanthocillin X dimethyl ether (XanDME), a naturally occurring isocyanide isolated from the marine fungus Scedosporium apiospermum, [...] Read more.
Triple-negative breast cancer (TNBC) presents a significant therapeutic challenge due to the absence of specific targeted treatments. In this study, we explored the therapeutic potential of xanthocillin X dimethyl ether (XanDME), a naturally occurring isocyanide isolated from the marine fungus Scedosporium apiospermum, on TNBC. To elucidate the underlying mechanism, we initially demonstrated that XanDME directly binds to hemin, the oxidized form of heme, in vitro, corroborating previous reports. This interaction led to the depletion of intracellular regulatory heme. We further established that XanDME translocates into the mitochondria, where it interacts with crucial hemoproteins, namely cytochromes. The binding of XanDME with mitochondrial cytochromes disrupts the electron transport chain (ETC), inhibits the activity of mitochondrial complexes, and inactivates mitochondrial respiration. The inhibitory activity of XanDME on mitochondrial function significantly contributes to its anti-TNBC effects, as observed both in vitro and in vivo. Our study underscores the potential of XanDME against TNBC, warranting further investigations. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Graphical abstract

24 pages, 7652 KB  
Article
Economic Optimization of Enhanced Oil Recovery and Carbon Storage Using Mixed Dimethyl Ether-Impure CO2 Solvent in a Heterogeneous Reservoir
by Kwangduk Seo, Bomi Kim, Qingquan Liu and Kun Sang Lee
Energies 2025, 18(3), 718; https://doi.org/10.3390/en18030718 - 4 Feb 2025
Viewed by 921
Abstract
CO2 is the main solvent used in enhanced oil recovery (EOR). However, its low density and viscosity compared to oil cause a decrease in sweep efficiency. Recently, dimethyl ether (DME), which is more efficient than CO2, has been introduced into [...] Read more.
CO2 is the main solvent used in enhanced oil recovery (EOR). However, its low density and viscosity compared to oil cause a decrease in sweep efficiency. Recently, dimethyl ether (DME), which is more efficient than CO2, has been introduced into the process. DME improves oil recovery by reducing minimum miscible pressure (MMP), interfacial tension (IFT), and oil viscosity. Since DME is an expensive solvent, price reduction and appropriate injection scenarios are needed for economic feasibility. In this study, a compositional model was developed to inject DME with impure CO2 streams, where the CO2 was derived from one of these three purification methods: dehydration, double flash, and distillation. It was assumed that such a mixed solvent was injected into a heterogeneous reservoir where gravity override was maximized. As a result, lower oil recovery is achieved for the higher impurity content of the CO2 stream, lower DME content, and more heterogeneous reservoir. When a high-purity CO2 stream is used, the change in oil recovery according to DME content and heterogeneity of the reservoir is increased. When the lowest-purity CO2 stream is used, the net present value (NPV) is the highest. For a homogeneous reservoir, the NPV is highest for all impure CO2 streams. This optimization indicates a greater impact on revenue from reduced CO2 purchase cost than on profit loss due to reduced oil recovery by impurities. Additional benefits can be expected when considering solvent reuse and carbon capture and storage (CCS) credits. Full article
(This article belongs to the Special Issue Oil Recovery and Simulation in Reservoir Engineering)
Show Figures

Figure 1

14 pages, 1821 KB  
Article
Synthesis of n-Butene via Dimethyl Ether-to-Olefin Reaction over P-Loaded Ferrierite Zeolites
by Toshiaki Hanaoka, Masaru Aoyagi and Yusuke Edashige
Catalysts 2024, 14(12), 902; https://doi.org/10.3390/catal14120902 - 9 Dec 2024
Viewed by 960
Abstract
In the dimethyl ether (DME)-to-olefin (DTO) reaction over 20 types of P-loaded ferrierite zeolites with different P loading amounts, the synthesis of n-butenes such as 1-butene, trans-2-butene, and cis-2-butene was investigated to maximize the n-butene yield by optimizing the [...] Read more.
In the dimethyl ether (DME)-to-olefin (DTO) reaction over 20 types of P-loaded ferrierite zeolites with different P loading amounts, the synthesis of n-butenes such as 1-butene, trans-2-butene, and cis-2-butene was investigated to maximize the n-butene yield by optimizing the P loading amount. The zeolites were characterized using X-ray diffractometry (XRD), N2 adsorption-desorption isotherms, and NH3 temperature-programmed desorption (NH3-TPD). Micropore and external surface areas, total pore and micropore volumes, and weak and strong acids affected the DTO reaction’s characteristics. The P-loaded ferrierite zeolite with a P loading of 0.3 wt.% calcined at 500 °C exhibited an n-butene yield of 35.7 C-mol%, which exceeds the highest yield reported to date (31.2 C-mol%). Multiple regression analysis using the obtained data showed that the strong acid/weak acid ratio and total pore volume had a high correlation with the n-butene yield, with a contribution rate of 64.3%. Based on the multiple regression analysis results, the DTO reaction mechanism was discussed based on the proposed reaction model involving the dual-cycle mechanism. Full article
(This article belongs to the Special Issue Catalysis on Zeolites and Zeolite-Like Materials, 3rd Edition)
Show Figures

Figure 1

14 pages, 4229 KB  
Article
Hierarchical Ag3VO4 Nanorods as an Excellent Visible Light Photocatalyst for CO2 Conversion to Solar Fuels
by Abdullah Bafaqeer, Aniz Chennampilly Ummer and Duraisami Dhamodharan
Catalysts 2024, 14(10), 672; https://doi.org/10.3390/catal14100672 - 28 Sep 2024
Cited by 5 | Viewed by 1105
Abstract
The potential of photocatalytic CO2 conversion is significant for the production of fuels and chemicals, while simultaneously mitigating CO2 emissions and addressing environmental concerns. Despite the current drawbacks of single metal-based photocatalysts, such as lower performance, uncontrollable selectivity, and instability, this [...] Read more.
The potential of photocatalytic CO2 conversion is significant for the production of fuels and chemicals, while simultaneously mitigating CO2 emissions and addressing environmental concerns. Despite the current drawbacks of single metal-based photocatalysts, such as lower performance, uncontrollable selectivity, and instability, this study focuses on the synthesis of Ag3VO4 nanorods using the sol–gel method. The goal is to create a highly effective catalyst for visible light-responsive CO2 conversion. The successful synthesis of Ag3VO4 nanorods with a nanorod structure, functional under visible light, resulted in the highest yields of CH4 and dimethyl ether (DME) at 271 and 69 µmole/g-cat, respectively. The optimized Ag3VO4 nanorods demonstrated performance improvements, with CH4 and DME production 6.4 times and 4.5 times higher than when using V2O5 samples. This suggests that Ag3VO4 nanorods facilitate electron transfer to CO2, offer short pathways for electron transfer, and create empty spaces within the nanorods as electron reservoirs, enhancing the photoactivity. The prolonged stability of Ag3VO4 in the CO2 conversion system confirms that the nanorod structure provides controllable selectivity and stability. Therefore, the fabrication of nanorod structures holds promise in advancing high-performance photocatalysts in the field of photocatalytic CO2 conversion to solar fuels. Full article
(This article belongs to the Special Issue Enhancement of the Performance of Photocatalytic CO2 Reduction)
Show Figures

Figure 1

18 pages, 4668 KB  
Article
Direct Extraction of Lipids, β-Carotene, and Polyphenolic Compounds from Wet Microalga Dunaliella salina by Liquefied Dimethyl Ether
by Hideki Kanda, Kaito Kusumi, Li Zhu and Tao Wang
Mar. Drugs 2024, 22(10), 438; https://doi.org/10.3390/md22100438 - 26 Sep 2024
Cited by 2 | Viewed by 2461
Abstract
Extraction of lipids and high-value products from highly wet microalgae requires significant energy for the drying pretreatment. In this study, we examined the direct extraction of lipids, β-carotene, and polyphenolic compounds from wet Dunaliella salina using liquefied dimethyl ether (DME), which is effective [...] Read more.
Extraction of lipids and high-value products from highly wet microalgae requires significant energy for the drying pretreatment. In this study, we examined the direct extraction of lipids, β-carotene, and polyphenolic compounds from wet Dunaliella salina using liquefied dimethyl ether (DME), which is effective in lipid extraction for biofuel production. The amount of DME-extracted β-carotene was 7.0 mg/g, which was higher than that obtained from the chloroform–methanol extraction. Moreover, the total phenolic content extracted with DME and its antioxidant capacity were slightly higher than those extracted with chloroform–methanol. DME removed almost all the water and extracted 29.2 wt% of total lipids and 9.7 wt% of fatty acids. More lipids were extracted from wet samples by liquefied DME than by chloroform–methanol extraction. The C/N ratio of lipids extracted with DME was 112.0, higher than that of chloroform–methanol. The high C/N ratio suggests that nitrogen-containing phosphatidylcholines may be less easily extracted by liquefied DME and may be highly selective. However, the ratio of saturated fatty acids was 34.8%, lower than that of chloroform–methanol. Na+ and Mg2+ in the culture medium were not extracted using DME. Thus, using the extract with DME has both advantages and disadvantages compared to using the extract with chloroform–methanol; however, it has satisfactory extraction properties. DME is expected to be an environment-friendly alternative solvent because it does not require drying, which is necessary for conventional extraction solvents. Full article
(This article belongs to the Special Issue Applications of Lipids from Marine Sources)
Show Figures

Figure 1

50 pages, 10220 KB  
Review
Direct CO2 Hydrogenation over Bifunctional Catalysts to Produce Dimethyl Ether—A Review
by Samira Ebrahimian and Sankar Bhattacharya
Energies 2024, 17(15), 3701; https://doi.org/10.3390/en17153701 - 26 Jul 2024
Cited by 3 | Viewed by 3084
Abstract
Hydrogenation of CO2 represents a promising pathway for converting it into valuable hydrocarbons and clean fuels like dimethyl ether (DME). Despite significant research, several challenges persist, including a limited understanding of reaction mechanisms, thermodynamics, the necessity for catalyst design to enhance DME [...] Read more.
Hydrogenation of CO2 represents a promising pathway for converting it into valuable hydrocarbons and clean fuels like dimethyl ether (DME). Despite significant research, several challenges persist, including a limited understanding of reaction mechanisms, thermodynamics, the necessity for catalyst design to enhance DME selectivity, and issues related to catalyst deactivation. The paper provides a comprehensive overview of recent studies from 2012 to 2023, covering various aspects of CO2 hydrogenation to methanol and DME. This review primarily focuses on advancing the development of efficient, selective, and stable innovative catalysts for this purpose. Recent investigations that have extensively explored heterogeneous catalysts for CO2 hydrogenation were summarized. A notable focus is on Cu-based catalysts modified with promoters such as Zn, Zr, Fe, etc. Additionally, this context delves into thermodynamic considerations, the impact of reaction variables, reaction mechanisms, reactor configurations, and recent technological advancements, such as 3D-printed catalysts. Furthermore, the paper examines the influence of different parameters on catalyst deactivation. The review offers insights into direct CO2 hydrogenation to DME and proposes paths for future investigation, aiming to address current challenges and advance the field. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

27 pages, 3430 KB  
Article
Effect of TiO2 on Acidity and Dispersion of H3PW12O40 in Bifunctional Cu-ZnO(Al)-H3PW12O40/TiO2 Catalysts for Direct Dimethyl Ether Synthesis
by Elena Millán Ordóñez, Noelia Mota Toledo, Bertrand Revel, Olivier Lafon and Rufino M. Navarro Yerga
Catalysts 2024, 14(7), 435; https://doi.org/10.3390/catal14070435 - 8 Jul 2024
Cited by 1 | Viewed by 1350
Abstract
The performance of bifunctional hybrid catalysts based on phosphotungstic acid (H3PW12O40, HPW) supported on TiO2 combined with a Cu-ZnO(Al) catalyst in the direct synthesis of dimethyl ether (DME) from syngas has been investigated. In this work, [...] Read more.
The performance of bifunctional hybrid catalysts based on phosphotungstic acid (H3PW12O40, HPW) supported on TiO2 combined with a Cu-ZnO(Al) catalyst in the direct synthesis of dimethyl ether (DME) from syngas has been investigated. In this work, different types of TiO2 were used as a support to study the effect of changes in the structure of the TiO2 support on the acidity and dispersion of HPW. Various TiO2 supports with different structural and surface characteristics have been studied and the results indicate that: (i) the crystallinity and crystallite size of the primary particles of the HPW units depend on the TiO2 support; (ii) the pore size distribution of the TiO2 support affects the surface segregation of the heteropolyacids; and (iii) changes in the supported HPW acid catalysts do not significantly alter the crystal structure of the CuO and ZnO phases after contact with CZA in bifunctional catalysts. The activity results indicate that the variation in the intrinsic activity of the Cu-ZnOx centers in the bifunctional catalysts for direct DME synthesis is minimal due to the limited alteration of the crystal structure of the centers. Full article
(This article belongs to the Special Issue Polyoxometalates (POMs) as Catalysts for Biomass Conversion)
Show Figures

Graphical abstract

14 pages, 1561 KB  
Article
Effects of Partial Premixing and Coflow Temperature on Flame Stabilization of Lifted Jet Flames of Dimethyl Ether in a Vitiated Coflow Based on Stochastic Multiple Mapping Conditioning Approach
by Sanjeev Kumar Ghai, Rajat Gupta and Santanu De
Fluids 2024, 9(6), 125; https://doi.org/10.3390/fluids9060125 - 26 May 2024
Viewed by 1211
Abstract
The Reynolds-averaged Navier–Stokes (RANS)-based stochastic multiple mapping conditioning (MMC) approach has been used to study partially premixed jet flames of dimethyl ether (DME) introduced into a vitiated coflowing oxidizer stream. This study investigates DME flames with varying degrees of partial premixing within a [...] Read more.
The Reynolds-averaged Navier–Stokes (RANS)-based stochastic multiple mapping conditioning (MMC) approach has been used to study partially premixed jet flames of dimethyl ether (DME) introduced into a vitiated coflowing oxidizer stream. This study investigates DME flames with varying degrees of partial premixing within a fuel jet across different coflow temperatures, delving into the underlying flame structure and stabilization mechanisms. Employing a turbulence k-ε model with a customized set of constants, the MMC technique utilizes a mixture fraction as the primary scalar, mapped to the reference variable. Solving a set of ordinary differential equations for the evolution of Lagrangian stochastic particles’ position and composition, the molecular mixing of these particles is executed using the modified Curl’s model. The lift-off height (LOH) derived from RANS-MMC simulations are juxtaposed with experimental data for different degrees of partial premixing of fuel jets and various coflow temperatures. The RANS-MMC methodology adeptly captures LOH for pure DME jets but exhibits an underestimation of flame LOH for partially premixed jet scenarios. Notably, as the degree of premixing escalates, a conspicuous underprediction in LOH becomes apparent. Conditional scatter and contour plots of OH and CH2O unveil that the propagation of partially premixed flames emerges as the dominant mechanism at high coflow temperatures, while autoignition governs flame stabilization at lower coflow temperatures in partially premixed flames. Additionally, for pure DME flames, autoignition remains the primary flame stabilization mechanism across all coflow temperature conditions. The study underscores the importance of considering the degree of premixing in partially premixed jet flames, as it significantly impacts flame stabilization mechanisms and LOH, thereby providing crucial insights into combustion dynamics for various practical applications. Full article
Show Figures

Figure 1

18 pages, 4991 KB  
Article
Preparation of Fe-HMOR with a Preferential Iron Location in the 12-MR Channels for Dimethyl Ether Carbonylation
by Wenrong Liu, Yaquan Wang, Lingzhen Bu, Kailiang Chu, Yitong Huang, Niandong Guo, Liping Qu, Juncai Sang, Xuemei Su, Xian Zhang and Yaoning Li
Materials 2024, 17(10), 2417; https://doi.org/10.3390/ma17102417 - 17 May 2024
Viewed by 1309
Abstract
As the Brønsted acid sites in the 8-membered ring (8-MR) of mordenite (MOR) are reported to be the active center for dimethyl ether (DME) carbonylation reaction, it is of great importance to selectively increase the Brønsted acid amount in the 8-MR. Herein, a [...] Read more.
As the Brønsted acid sites in the 8-membered ring (8-MR) of mordenite (MOR) are reported to be the active center for dimethyl ether (DME) carbonylation reaction, it is of great importance to selectively increase the Brønsted acid amount in the 8-MR. Herein, a series of Fe-HMOR was prepared through one-pot hydrothermal synthesis by adding the EDTA–Fe complex into the gel. By combining XRD, FTIR, UV–Vis, Raman and XPS, it was found that the Fe atoms selectively substituted for the Al atoms in the 12-MR channels because of the large size of the EDTA–Fe complex. The NH3-TPD and Py-IR results showed that with the increase in Fe addition from Fe/Si = 0 to 0.02, the Brønsted acid sites derived from Si-OH-Al in the 8-MR first increased and then decreased, with the maximum at Fe/Si = 0.01. The Fe-modified MOR with Fe/Si = 0.01 showed the highest activity in DME carbonylation, which was three times that of HMOR. The TG/DTG results indicated that the carbon deposition and heavy coke formation in the spent Fe-HMOR catalysts were inhibited due to Fe addition. This work provides a practical way to design a catalyst with enhanced catalytic performance. Full article
(This article belongs to the Topic Porous Materials for Energy and Environment Applications)
Show Figures

Graphical abstract

34 pages, 5117 KB  
Article
Optimizing Renewable Energy Integration for Sustainable Fuel Production: A Techno-Economic Assessment of Dimethyl Ether Synthesis via a Hybrid Microgrid-Hydrogen System
by Mohammed M. Alotaibi and Abdulaziz A. Alturki
Fuels 2024, 5(2), 176-209; https://doi.org/10.3390/fuels5020011 - 16 May 2024
Cited by 5 | Viewed by 3253
Abstract
This study offers an in-depth analysis and optimization of a microgrid system powered by renewable sources, designed for the efficient production of hydrogen and dimethyl ether—key elements in the transition toward sustainable fuel alternatives. The system architecture incorporates solar photovoltaic modules, advanced battery [...] Read more.
This study offers an in-depth analysis and optimization of a microgrid system powered by renewable sources, designed for the efficient production of hydrogen and dimethyl ether—key elements in the transition toward sustainable fuel alternatives. The system architecture incorporates solar photovoltaic modules, advanced battery storage solutions, and electrolytic hydrogen production units, with a targeted reduction in greenhouse gas emissions and the enhancement of overall energy efficiency. A rigorous economic analysis was conducted utilizing the HYSYS V12 software platform and encompassing capital and operational expenditures alongside profit projections to evaluate the system’s economic viability. Furthermore, thermal optimization was achieved through heat integration strategies, employing a cascade analysis methodology and optimization via the General Algebraic Modeling System (GAMS), yielding an 83% decrease in annual utility expenditures. Comparative analysis revealed that the energy requirement of the optimized system was over 50% lower than that of traditional fossil fuel-based reforming processes. A comprehensive assessment of CO2 emissions demonstrated a significant reduction, with the integration of thermal management solutions facilitating a 99.24% decrease in emissions. The outcomes of this study provide critical insights into the engineering of sustainable, low-carbon energy systems, emphasizing the role of renewable energy technologies in advancing fuel science. Full article
Show Figures

Figure 1

Back to TopTop