Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,110)

Search Parameters:
Keywords = discontinuous control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 437 KB  
Article
Real-World Long-Term Management of Chronic Urticaria Patients with Omalizumab: Safety, Effectiveness, and Predictive Factors for Successful Outcome
by Ciro Romano, Domenico Cozzolino, Giuseppina Rosaria Umano and Ernesto Aitella
Biologics 2025, 5(4), 33; https://doi.org/10.3390/biologics5040033 (registering DOI) - 22 Oct 2025
Abstract
Background/Objectives: Omalizumab is a monoclonal anti-IgE antibody approved for the treatment of chronic urticaria. There are no established or validated prognostic markers currently available to identify likely responders. The aim of this study was to retrospectively analyze a cohort of chronic urticaria patients [...] Read more.
Background/Objectives: Omalizumab is a monoclonal anti-IgE antibody approved for the treatment of chronic urticaria. There are no established or validated prognostic markers currently available to identify likely responders. The aim of this study was to retrospectively analyze a cohort of chronic urticaria patients treated with omalizumab, in order to determine the clinical and laboratory characteristics associated with complete response to therapy. Methods: Medical records of chronic urticaria patients receiving omalizumab were reviewed. The following parameters were collected: age, sex, disease duration, Urticaria Activity Score over 7 days (UAS7), time to response, total serum IgE levels, presence or absence of atopy, neutrophil-to-lymphocyte ratio, eosinophil and basophil counts, presence or absence of autoimmune conditions, and treatment duration. Complete response was classified as dependent on continued drug administration or drug-free (sustained remission after discontinuation). Adverse events were also recorded. Results: Omalizumab was well tolerated by all patients, with no serious adverse events reported. Complete response was achieved in 81.3% of patients; partial and no responses were observed in 8.3% and 10.1%, respectively. The majority of responders (~79.5%) maintained complete control of hives with low-dose omalizumab; subsequently, most of these patients eventually achieved sustained, drug-free remission. Total serum IgE levels appeared to predict complete response, with 164.7 IU/mL identified as the cut-off value potentially distinguishing responders from nonresponders. Conclusions: Omalizumab is a safe and effective treatment for chronic urticaria. Total serum IgE levels may help identify complete responders. Long-term low-dose regimens could be considered to reduce the economic burden on healthcare systems, although this is currently an off-label approach. Full article
(This article belongs to the Section Monoclonal Antibodies)
25 pages, 7246 KB  
Article
Research on the Distribution Characteristics and Health Effects of O3 in the Fenwei Plain
by Qianqian Wang, Chunhui Yang, Man Liu and Ruifeng Yan
Atmosphere 2025, 16(10), 1219; https://doi.org/10.3390/atmos16101219 - 21 Oct 2025
Abstract
In recent years, coal-combustion-related air pollution has declined markedly, whereas tropospheric ozone (O3) pollution has emerged as a growing environmental concern. Long-term exposure to O3 can severely impact human health and ecosystems, constraining socioeconomic development. The Fenwei Plain has complex [...] Read more.
In recent years, coal-combustion-related air pollution has declined markedly, whereas tropospheric ozone (O3) pollution has emerged as a growing environmental concern. Long-term exposure to O3 can severely impact human health and ecosystems, constraining socioeconomic development. The Fenwei Plain has complex topographical conditions and a relatively simple industrial structure, and at present, O3 is one of the main pollutants affecting air quality in this region. Therefore, studying the distribution of O3 pollution in the Fenwei Plain can provide a reference for developing plans to control O3 pollution in the area, which is important for safeguarding local public health and economic development. Currently, the number of pollutant monitoring stations in China is limited, spatially discontinuous, and significantly affected by environmental factors, making it difficult to obtain high-precision, large-scale observational data. Satellite-based remote sensing provides broad spatial coverage and is free from topographic constraints, thereby serving as an effective complement to ground-based monitoring networks. This provides important technical support for studying the distribution characteristics of O3 pollution and its associated health risks. This study focuses on the Fenwei Plain, utilizing machine learning models to estimate continuous O3 concentrations from 2015 to 2022 and analyze the spatiotemporal distribution of O3. Based on this, an assessment and analysis of the health risks associated with near-surface O3 exposure in the study area will be conducted, incorporating the population exposed in the Fenwei Plain and individuals with chronic obstructive pulmonary disease (COPD). Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

29 pages, 1671 KB  
Article
Towards Secure Legacy Manufacturing: A Policy-Driven Zero Trust Architecture Aligned with NIST CSF 2.0
by Cheon-Ho Min, Deuk-Hun Kim, Haomiao Yang and Jin Kwak
Electronics 2025, 14(20), 4109; https://doi.org/10.3390/electronics14204109 - 20 Oct 2025
Abstract
As smart manufacturing environments continue to evolve, operational technology systems are increasingly integrated with external networks and cloud-based platforms. However, many manufacturing facilities still use legacy systems running on end-of-support/life operating systems with discontinued security updates. It is difficult to mitigate the cyber [...] Read more.
As smart manufacturing environments continue to evolve, operational technology systems are increasingly integrated with external networks and cloud-based platforms. However, many manufacturing facilities still use legacy systems running on end-of-support/life operating systems with discontinued security updates. It is difficult to mitigate the cyber threats and risks for these systems using perimeter-based security models that isolate them from other networks. To address these constraints, a Zero Trust-based security architecture tailored for legacy manufacturing environments with practical field applicability is proposed. Our architecture builds upon the six core functions outlined in National Institute of Standards and Technology Cybersecurity Framework 2.0—identify, protect, detect, respond, recover, and govern—adapting them specifically to manufacturing environment security challenges. To achieve this, the architecture combines asset identification, policy-driven access control, secure SMB gateway transfers, automated anomaly detection and response, clean image recovery, and organizational governance procedures. This study validates the effectiveness and scalability of the proposed architecture through scenario-based simulations. When combining the EoSL defense hardening and gateway-based perimeter control, the architecture achieves approximately 99% overall threat suppression and a 98% reduction in critical-asset infection rates, demonstrating its strong resilience and scalability in large-scale legacy OT environments. Full article
(This article belongs to the Special Issue Industrial Process Control and Flexible Manufacturing Systems)
Show Figures

Figure 1

30 pages, 21308 KB  
Article
Angle-Controllable SAR Image Generation and Target Recognition via StyleGAN2
by Ran Yang, Bo Wang, Tao Lai and Haifeng Huang
Remote Sens. 2025, 17(20), 3478; https://doi.org/10.3390/rs17203478 - 18 Oct 2025
Viewed by 148
Abstract
Due to the inherent characteristics of synthetic aperture radar (SAR) imaging, variations in target orientation, and the challenges posed by non-cooperative targets (i.e., targets without cooperative transponders or external markers), limited viewpoint coverage results in a small-sample problem that severely constrains the application [...] Read more.
Due to the inherent characteristics of synthetic aperture radar (SAR) imaging, variations in target orientation, and the challenges posed by non-cooperative targets (i.e., targets without cooperative transponders or external markers), limited viewpoint coverage results in a small-sample problem that severely constrains the application of deep learning to SAR image interpretation and target recognition. To address this issue, this paper proposes a multi-target, multi-view SAR image generation method based on conditional information and StyleGAN2, designed to generate high-quality, angle-controllable SAR images of typical targets from limited samples. The proposed framework consists of an angle encoder, a generator, and a discriminator. The angle encoder employs a sinusoidal encoding scheme that combines sine and cosine functions to address the discontinuity inherent in one-hot angle encoding, thereby enabling precise angle control. Moreover, the integration of SimAM and IAAM attention mechanisms enhances image quality, facilitates accurate angle control, and improves the network’s generalization to untrained angles. Experiments conducted on a self-constructed dataset of typical civilian targets and the SAMPLE subset of the MSTAR dataset demonstrate that the proposed method outperforms existing baselines in terms of structural fidelity and feature distribution consistency. The generated images achieve a minimum FID of 6.541 and a maximum MS-SSIM of 0.907, while target recognition accuracy improves by 6.03% and 7.14%, respectively. These results validate the feasibility and effectiveness of the proposed approach for SAR image generation and target recognition tasks. Full article
Show Figures

Graphical abstract

17 pages, 1147 KB  
Article
Fully Decentralized Sliding Mode Control for Frequency Regulation and Power Sharing in Islanded Microgrids
by Carlos Xavier Rosero, Fredy Rosero and Fausto Tapia
Energies 2025, 18(20), 5495; https://doi.org/10.3390/en18205495 - 18 Oct 2025
Viewed by 173
Abstract
This paper proposes a local sliding mode control (SMC) strategy for frequency regulation and active power sharing in islanded microgrids (MGs). Unlike advanced strategies, either droop-based or droop-free, that rely on inter-inverter communication, the proposed method operates in a fully decentralized manner, using [...] Read more.
This paper proposes a local sliding mode control (SMC) strategy for frequency regulation and active power sharing in islanded microgrids (MGs). Unlike advanced strategies, either droop-based or droop-free, that rely on inter-inverter communication, the proposed method operates in a fully decentralized manner, using only measurements available at each inverter. In addition, it adopts a minimalist structure that avoids adaptive laws and consensus mechanisms, which simplifies implementation. A discontinuous control law is derived to enforce sliding dynamics on a frequency-based surface, ensuring robust behavior in the face of disturbances, such as clock drifts, sudden load variations, and topological reconfigurations. A formal Lyapunov-based analysis is conducted to establish the stability of the closed-loop system under the proposed control law. The method guarantees that steady-state frequency deviations remain bounded and predictable as a function of the controller parameters. Simulation results demonstrate that the proposed controller achieves rapid frequency convergence, equitable active power sharing, and sustained stability. Owing to its communication-free design, the proposed strategy is particularly well-suited for MGs operating in rural, isolated, or resource-constrained environments. A comparative evaluation against both conventional droop and communication-based droop-free SMC approaches further highlights the method’s strengths in terms of resilience, implementation simplicity, and practical deployability. Full article
Show Figures

Figure 1

7 pages, 656 KB  
Brief Report
Immunohistochemical Comparison of Dopamine-2 Receptor Expression in Resistant and Non-Resistant Prolactinomas
by Ilana Ramer Bass, Julia Ferreira de Carvalho, Melissa Umphlett, William Shuman, Alexander Kirschenbaum, Emily Milgrim, Lucas Milgrim, Joshua Bederson, Kalmon Post, Raj Shrivastava and Alice C. Levine
J. Clin. Med. 2025, 14(20), 7344; https://doi.org/10.3390/jcm14207344 - 17 Oct 2025
Viewed by 162
Abstract
Background: Dopamine agonists (DAs) are first-line therapy for prolactin-secreting pituitary adenomas; however, a small proportion of tumors are resistant. Previous reports suggested that reduced D2R mRNA expression might cause resistance. This study aimed to determine if resistant prolactinomas express D2R protein. We also [...] Read more.
Background: Dopamine agonists (DAs) are first-line therapy for prolactin-secreting pituitary adenomas; however, a small proportion of tumors are resistant. Previous reports suggested that reduced D2R mRNA expression might cause resistance. This study aimed to determine if resistant prolactinomas express D2R protein. We also explored a role of estrogen receptor alpha (ERα) expression in DA resistance. Methods: We retrospectively selected 15 tumor specimens from 13 total patients (8 controls from 8 patients, 7 from 5 resistant patients) with resected lactotroph cell-type tumors. We reviewed age at diagnosis, tumor size, initial prolactin level, medical treatment, and reason for surgery. Immunohistochemistry was performed for D2R, prolactin, and ERα protein expression. Results: D2R expression was positive in seven of eight controls vs. two of seven in resistant tumors (p = 0.02). ERα expression did not significantly correlate with DA resistance. The two D2R expressing resistant tumors were ERα negative and both derived from a pre-pubertal female, supporting prior reports suggesting ERα may modulate DA therapy response. Conclusions: Our study introduces a reproducible method for assessing D2R protein expression in prolactinomas using commercially available D2R antibodies. Our findings align with current evidence indicating that lack of D2R expression, previously indicated by decreased mRNA levels, is common in DA-resistant prolactinomas and provide a basis for discontinuation of DA therapy to avoid potential harm to these patients. Full article
Show Figures

Figure 1

18 pages, 5006 KB  
Article
Hazardous Gas Emission Laws in Tunnels Based on Gas–Solid Coupling
by Yansong Li, Peidong Su, Li Luo, Yougui Li, Weihua Liu and Junjie Yang
Processes 2025, 13(10), 3308; https://doi.org/10.3390/pr13103308 - 16 Oct 2025
Viewed by 233
Abstract
This study investigates the mechanisms of hazardous gas outbursts in geologically complex non-coal tunnels. This is a critical safety concern during excavation, particularly at specific locations and during time-sensitive periods. To address this, a gas–solid coupled numerical model is established to simulate gas [...] Read more.
This study investigates the mechanisms of hazardous gas outbursts in geologically complex non-coal tunnels. This is a critical safety concern during excavation, particularly at specific locations and during time-sensitive periods. To address this, a gas–solid coupled numerical model is established to simulate gas seepage processes under such conditions. The simulations systematically reveal the spatiotemporal evolutionary patterns of the velocity and direction of the gas seepage and elucidate the migration mechanism driven by excavation-induced pressure gradients. The model specifically analyzes how geological structures, such as rock joints and fractures, control the seepage pathways. The model also demonstrates the dynamic variations in and enrichment behavior of the gas escape velocities near these discontinuities. Field measurements obtained from the Hongdoushan Tunnel validated the simulated emission patterns along jointed fissures. The findings clarify the intrinsic relationships between the outburst dynamics and key factors that include pressure differentials, geological structures, and temporal effects. This work provides a crucial theoretical foundation and practical strategy for the prediction and prevention of hazardous gas disasters in analogous tunnel engineering projects, thereby enhancing overall construction safety. Full article
Show Figures

Figure 1

20 pages, 7185 KB  
Article
Pyrazole-Imidazoline Derivative Prevents Cardiac Damage and Mortality in Acute Trypanosoma cruzi Infection
by Lorraine Martins Rocha Orlando, Leonardo da Silva Lara, Thamyris Pérez de Souza, Vitoria Barbosa Paes, Claudia Magalhães Calvet, Liliane Batista de Mesquita, Guilherme Cury Lechuga, Cynthia Nathália Pereira, Maurício Silva dos Santos and Mirian Claudia de Souza Pereira
Pharmaceuticals 2025, 18(10), 1552; https://doi.org/10.3390/ph18101552 - 15 Oct 2025
Viewed by 195
Abstract
Background: Chagas disease poses a significant public health challenge, particularly impacting socioeconomically vulnerable populations. Current treatment strategies still rely on two nitro heterocyclic compounds: benznidazole and nifurtimox. Both agents exhibit limited therapeutic efficacy during the chronic phase of the disease and are often [...] Read more.
Background: Chagas disease poses a significant public health challenge, particularly impacting socioeconomically vulnerable populations. Current treatment strategies still rely on two nitro heterocyclic compounds: benznidazole and nifurtimox. Both agents exhibit limited therapeutic efficacy during the chronic phase of the disease and are often linked to severe adverse effects that frequently lead to treatment discontinuation. This urgent need for safer, more effective oral treatments drives the development of novel chemotypes. Objective: In this study, we advanced the preclinical evaluation of 4-imidazoline-1H-pyrazole derivatives, which have been identified as promising candidates against Trypanosoma cruzi. Methods: The candidate compound identified from the reversibility assay underwent further evaluation for its efficacy using a three-dimensional (3D) culture model and a Transwell co-culture system, in addition to the in vivo assessment. Results: Our findings revealed that compound 3m (3-Cl, 4-CH3) exhibited low cytotoxicity while substantially decreasing the parasite burden in 3Dcardiac spheroid models. The compound effectively permeated Caco-2 cell monolayers and demonstrated the ability to inhibit T. cruzi infection in Vero cell cultures within a co-culture system. Furthermore, the 3m derivative not only controlled parasite resurgence but also showed significant therapeutic benefits in a murine model of acute T. cruzi infection, resulting in marked reductions in parasitemia and tissue parasitism, associated with diminished inflammatory infiltrate and cardiac fibrosis. Treatment with 3m increased the survival rate of infected mice to 40%, comparable to the reference drug benznidazole in several key pathological endpoints. Conclusion: These findings highlight the potential of 4-imidazoline-1H-pyrazole derivatives, particularly compound 3m, in mitigating the pathological effects associated with T. cruzi infection. Full article
(This article belongs to the Special Issue Advances in Antiparasitic Drug Research)
Show Figures

Graphical abstract

18 pages, 3010 KB  
Article
Enhancing Sustainable Fisheries Trade and Food Security Through CPEC in Pakistan
by Ali Mumtaz Dahri and Mu Yongtong
Sustainability 2025, 17(20), 9121; https://doi.org/10.3390/su17209121 - 15 Oct 2025
Viewed by 214
Abstract
Pakistan’s fisheries sector is vital for livelihoods, exports, and food security, yet growth has been constrained by weak infrastructure, limited compliance with sanitary standards, and underinvestment. The China–Pakistan Economic Corridor (CPEC) has been promoted as a driver of trade facilitation, but its actual [...] Read more.
Pakistan’s fisheries sector is vital for livelihoods, exports, and food security, yet growth has been constrained by weak infrastructure, limited compliance with sanitary standards, and underinvestment. The China–Pakistan Economic Corridor (CPEC) has been promoted as a driver of trade facilitation, but its actual effect on fisheries exports remains unclear. This study analyzes export performance to five leading Asian markets—China, Thailand, Vietnam, Saudi Arabia, and Japan—over 2005–2024 using Interrupted Time Series (ITS) and Difference-in-Differences (DiD) models. Results show that overall fisheries exports averaged 1.25 million metric tons (USD 728.7 million) annually, with Asia absorbing 59% of trade. ITS results show that after 2015, there are considerable structural discontinuities in export paths, mainly for China (coefficient = −1.42, p < 0.001) and Thailand (0.95, p = 0.071). DiD analysis confirmed that CPEC had a statistically significant positive impact: the treatment × post-2015 effect was 0.55 (p = 0.050), showing that exports to China and Thailand grew disproportionately compared with control markets (Malaysia, Indonesia). Importantly, value growth outpaced volume growth, suggesting early evidence of value-chain upgrading. By contrast, Vietnam and Saudi Arabia showed contraction, and Japan remained stable with weak significance (−1.16, p = 0.088). These results provide the first causal evidence that CPEC’s operational phase altered Pakistan’s fisheries export dynamics, though benefits remain uneven. The conclusions indicate the necessity to invest specifically in cold chains, certification, and aquaculture to generate corridor-led benefits in sustainable trade, food security, and long-term sectoral resiliency. Full article
Show Figures

Figure 1

14 pages, 4396 KB  
Article
Experimental Study on AE Response and Mechanical Behavior of Red Sandstone with Double Prefabricated Circular Holes Under Uniaxial Compression
by Ansen Gao, Jie Fu, Kuan Jiang, Chengzhi Qi, Sunhao Zheng, Yanjie Feng, Xiaoyu Ma and Zhen Wei
Processes 2025, 13(10), 3270; https://doi.org/10.3390/pr13103270 - 14 Oct 2025
Viewed by 162
Abstract
Natural rock materials, containing micro-cracks and pore defects, significantly alter their mechanical behavior. This study investigated fracture interactions of red sandstone containing double close-round holes (diameter: 10 mm; bridge angle: 30°, 45°, 60°, 90°) using acoustic emission (AE) monitoring and the discrete element [...] Read more.
Natural rock materials, containing micro-cracks and pore defects, significantly alter their mechanical behavior. This study investigated fracture interactions of red sandstone containing double close-round holes (diameter: 10 mm; bridge angle: 30°, 45°, 60°, 90°) using acoustic emission (AE) monitoring and the discrete element simulations method (DEM), which was a novel methodology for revealing dynamic failure mechanisms. The uniaxial compression tests showed that hole geometry critically controlled failure modes: specimens with 0° bridge exhibited elastic–brittle failure with intense AE energy releases and large fractures, while 45° arrangements displayed elastic–plastic behaviors with stable AE signal responses until collapse. The quantitative AE analysis revealed that the fracture-type coefficient k had a distinct temporal clustering characteristic, demonstrating the spatiotemporal synchronization of tensile and shear crack initiation and propagation. Furthermore, numerical simulations identified a critical stress redistribution phenomenon, that axial compressive force chains concentrated along the loading axis, forming continuous longitudinal compression zones, while radial tensile dispersion dominated hole peripheries. Crucially, specimens with 45° and 90° bridges induced prominently symmetric tensile fractures (85° to horizontal direction) and shear-dominated failure near junctions. These findings can advance damage prediction in discontinuous geological media and offer direct insights for optimizing excavation sequences and support design in cavern engineering. Full article
Show Figures

Figure 1

22 pages, 367 KB  
Article
Optimal Hölder Regularity for Discontinuous Sub-Elliptic Systems Structured on Hörmander’s Vector Fields
by Dongni Liao and Jialin Wang
Axioms 2025, 14(10), 761; https://doi.org/10.3390/axioms14100761 - 12 Oct 2025
Viewed by 169
Abstract
This paper studies discontinuous quasilinear sub-elliptic systems associated with Hörmander’s vector fields under controllable and natural growth conditions. By a new A-harmonic approximation reformulation for bilinear forms ABil(RkN,RkN), we obtain [...] Read more.
This paper studies discontinuous quasilinear sub-elliptic systems associated with Hörmander’s vector fields under controllable and natural growth conditions. By a new A-harmonic approximation reformulation for bilinear forms ABil(RkN,RkN), we obtain optimal partial Hölder continuity with exact exponents for weak solutions with vanishing mean oscillation coefficients. Full article
20 pages, 17566 KB  
Article
An Isolated AC-DC LED Electronic Lighting Driver Circuit with Power Factor Correction
by Chun-An Cheng, Hung-Liang Cheng, En-Chih Chang and Man-Tang Chang
Electronics 2025, 14(19), 3953; https://doi.org/10.3390/electronics14193953 - 7 Oct 2025
Viewed by 336
Abstract
Light-emitting diodes (LEDs) have gained widespread adoption as solid-state lighting sources due to their compact size, long operational lifetime, high brightness, and mechanical robustness. This paper presents the development and implementation of an isolated AC-DC LED electronic lighting driver circuit that integrates a [...] Read more.
Light-emitting diodes (LEDs) have gained widespread adoption as solid-state lighting sources due to their compact size, long operational lifetime, high brightness, and mechanical robustness. This paper presents the development and implementation of an isolated AC-DC LED electronic lighting driver circuit that integrates a modified flyback converter with a lossless snubber circuit, along with inherent power factor correction (PFC). The proposed design operates the transformer’s magnetizing inductor in the discontinuous conduction mode (DCM), thereby naturally achieving PFC without the need for complex control circuitry. Furthermore, the circuit is capable of recycling the energy stored in the transformer’s leakage inductance, improving overall efficiency. The input current harmonics are shown to comply with the IEC 61000-3-2 Class C standard. A 72 W (36 V/2 A) prototype has been constructed and tested under a 110 V AC input. Experimental results confirm the effectiveness of the proposed design, achieving a power factor of 0.9816, a total harmonic distortion (THD) of 12.094%, an output voltage ripple factor of 9.7%, and an output current ripple factor of 11.22%. These results validate the performance and practical viability of the proposed LED driver architecture. Full article
Show Figures

Figure 1

17 pages, 5352 KB  
Article
Efficacy of Nanofiber Sheets Incorporating Oxaliplatin in Gastrointestinal Cancer Xenograft Models
by Fusao Sumiyama, Hoang Hai Duong, Hideyuki Matsushima, Kosuke Matsui, Terufumi Yoshida, Hidekazu Yamamoto, Hisashi Kosaka, Mitsugu Sekimoto, Van Khanh Nguyen, Thanh Tung Lai, Takuya Ohigashi, Tomoya O. Akama, Kengo Yoshii, Emiho Oe, Nanami Fujisawa, Mitsuhiro Ebara and Masaki Kaibori
Nanomaterials 2025, 15(19), 1524; https://doi.org/10.3390/nano15191524 - 5 Oct 2025
Viewed by 366
Abstract
Oxaliplatin is an anticancer drug used to treat colorectal and gastric cancers. In many cases, chemotherapy is discontinued due to adverse events caused by anticancer drugs. To address this challenge, we developed a sustained-release drug delivery system using polycaprolactone sheets embedded with oxaliplatin [...] Read more.
Oxaliplatin is an anticancer drug used to treat colorectal and gastric cancers. In many cases, chemotherapy is discontinued due to adverse events caused by anticancer drugs. To address this challenge, we developed a sustained-release drug delivery system using polycaprolactone sheets embedded with oxaliplatin (oxaliplatin sheets) and evaluated their therapeutic potential in murine models of colon and gastric cancers. Antitumor efficacy was compared with conventional intraperitoneal administration by monitoring tumor volume, body weight, and systemic oxaliplatin concentrations over 21 days, along with histopathological assessment of tumors and hepatic tissue. Oxaliplatin sheets demonstrated superior tumor suppression, significantly reduced Ki-67 positivity, and mitotic indices. Additionally, antitumor effects and blood oxaliplatin levels were consistent regardless of implantation site. Notably, oxaliplatin sheets significantly decreased weight loss compared with intraperitoneal administration. In our analysis of liver pathology, we found that hepatic sinusoidal obstruction and hepatocellular degeneration were significantly increased after intraperitoneal administration compared with untreated mice and mice treated with oxaliplatin sheets. Furthermore, treatment with oxaliplatin sheets improved survival. Thus, our oxaliplatin sheets exhibited effective tumor control and reduced side effects, indicating their potential as a promising treatment for advanced gastric and colorectal cancers. Full article
Show Figures

Figure 1

17 pages, 5074 KB  
Article
Dynamic Recrystallization and Microstructural Evolution During Hot Deformation of Al-Cu-Mg Alloy
by Fangyan He, Xiaolan Wu, Zhizheng Rong, Xueqin Zhang, Xiangyuan Xiong, Shengping Wen, Kunyuan Gao, Wu Wei, Li Rong, Hui Huang and Zuoren Nie
Metals 2025, 15(10), 1100; https://doi.org/10.3390/met15101100 - 1 Oct 2025
Viewed by 369
Abstract
Isothermal hot compression tests were performed on an Al-4.8Cu-0.25Mg-0.32Mn-0.17Si alloy using a Gleeble-3500 thermomechanical simulator within the temperature range of 350–510 °C and strain rate range of 0.001–10 s−1, achieving a true strain of 0.9. The constitutive equation and hot processing [...] Read more.
Isothermal hot compression tests were performed on an Al-4.8Cu-0.25Mg-0.32Mn-0.17Si alloy using a Gleeble-3500 thermomechanical simulator within the temperature range of 350–510 °C and strain rate range of 0.001–10 s−1, achieving a true strain of 0.9. The constitutive equation and hot processing maps were established to predict the flow behavior of the alloy. The hot deformation mechanisms were investigated through microstructural characterization using inverse pole figure (IPF), grain boundary (GB), and grain orientation spread (GOS) analysis. The results demonstrate that both dynamic recovery (DRV) and dynamic recrystallization (DRX) occur during hot deformation. At high lnZ values (high strain rates and low deformation temperatures), discontinuous dynamic recrystallization (DDRX) dominates. Under middle lnZ conditions (low strain rate or high deformation temperature), both continuous dynamic recrystallization (CDRX) and DDRX are the primary mechanisms. Conversely, at low lnZ values (low strain rates and high temperatures), CDRX and geometric dynamic recrystallization (GDRX) become predominant. The DRX process in the Al-Cu-Mg alloy is controlled by the deformation temperature and strain rate. Full article
Show Figures

Figure 1

24 pages, 6138 KB  
Article
Research on Liquid Flow Pulsation Reduction in Microchannel of Pneumatic Microfluidic Chip Based on Membrane Microvalve
by Xuling Liu, Le Bo, Yusong Zhang, Chaofeng Peng, Kaiyi Zhang, Shaobo Jin, Guoyong Ye and Jinggan Shao
Fluids 2025, 10(10), 256; https://doi.org/10.3390/fluids10100256 - 28 Sep 2025
Viewed by 355
Abstract
The unsteady and discontinuous liquid flow in the microchannel affects the efficiency of sample mixing, molecular detection, target acquisition, and biochemical reaction. In this work, an active method of reducing the flow pulsation in the microchannel of a pneumatic microfluidic chip is proposed [...] Read more.
The unsteady and discontinuous liquid flow in the microchannel affects the efficiency of sample mixing, molecular detection, target acquisition, and biochemical reaction. In this work, an active method of reducing the flow pulsation in the microchannel of a pneumatic microfluidic chip is proposed by using an on-chip membrane microvalve as a valve chamber damping hole or a valve chamber accumulator. The structure, working principle, and multi-physical model of the reducing element of reducing the flow pulsation in a microchannel are presented. When the flow pulsation in the microchannel is sinusoidal, square wave, or pulse, the simulation effect of flow pulsation reduction is given when the membrane valve has different permutations and combinations. The experimental results show that the inlet flow of the reducing element is a square wave pulsation with an amplitude of 0.1 mL/s and a period of 2 s, the outlet flow of the reducing element is assisted by 0.017 and the fluctuation frequency is accompanied by a decrease. The test data and simulation results verify the rationality of the flow reduction element in the membrane valve microchannel, the correctness of the theoretical model, and the practicability of the specific application, which provides a higher precision automatic control technology for the microfluidic chip with high integration and complex reaction function. Full article
Show Figures

Figure 1

Back to TopTop