Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (811)

Search Parameters:
Keywords = discrete wavelet transform

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2440 KB  
Article
Multi-Resolution LSTNet Framework with Wavelet Decomposition and Residual Correction for Long-Term Hourly Load Forecasting on Distribution Feeders
by Wook-Won Kim and Jun-Hyeok Kim
Energies 2025, 18(20), 5385; https://doi.org/10.3390/en18205385 - 13 Oct 2025
Viewed by 170
Abstract
Distribution-level long-term load forecasting with hourly resolution is essential for modern power systems operation, yet it remains challenging due to complex temporal patterns and error accumulation over extended horizons. This study proposes a Multi-Resolution Residual LSTNet framework integrating Discrete Wavelet Transform (DWT), Long [...] Read more.
Distribution-level long-term load forecasting with hourly resolution is essential for modern power systems operation, yet it remains challenging due to complex temporal patterns and error accumulation over extended horizons. This study proposes a Multi-Resolution Residual LSTNet framework integrating Discrete Wavelet Transform (DWT), Long Short-Term Memory Networks (LSTNet), and Normalized Linear (NLinear) models for accurate one-year ahead hourly load forecasting. The methodology decomposes load time series into daily, weekly, and monthly components using multi-resolution DWT, applies direct forecasting with LSTNet to capture short-term and long-term dependencies, performs residual correction using NLinear models, and integrates predictions through dynamic weighting mechanisms. Validation using five years of Korean distribution feeder data (2015–2019) demonstrates significant performance improvements over benchmark methods including Autoformer, LSTM, and NLinear, achieving Mean Absolute Error of 0.5771, Mean Absolute Percentage Error of 17.29%, and Huber Loss of 0.2567. The approach effectively mitigates error accumulation common in long-term forecasting while maintaining hourly resolution, providing practical value for demand response, distributed resource control, and infrastructure planning without requiring external variables. Full article
(This article belongs to the Special Issue New Progress in Electricity Demand Forecasting)
Show Figures

Figure 1

34 pages, 14710 KB  
Article
Optimal Sizing of an Off-Grid Hybrid Energy System with Metaheuristics and Meteorological Forecasting Based on Wavelet Transform and Long Short-Term Memory Networks
by Yamilet González Cusa, José Hidalgo Suárez, Jorge Laureano Moya Rodríguez, Tulio Hernández Ramírez, Silvio A. B. Vieira de Melo and Ednildo Andrade Torres
Energies 2025, 18(20), 5371; https://doi.org/10.3390/en18205371 - 12 Oct 2025
Viewed by 126
Abstract
This study proposes an integrated framework for the optimal sizing of off-grid hybrid energy systems, combining photovoltaic panels, wind turbines, battery storage, a diesel generator, and an inverter. The methodology uniquely integrates long-term meteorological forecasting through a hybrid approach based on the Discrete [...] Read more.
This study proposes an integrated framework for the optimal sizing of off-grid hybrid energy systems, combining photovoltaic panels, wind turbines, battery storage, a diesel generator, and an inverter. The methodology uniquely integrates long-term meteorological forecasting through a hybrid approach based on the Discrete Wavelet Transform and Long Short-Term Memory networks, together with metaheuristic optimization techniques (Particle Swarm Optimization and Genetic Algorithm), to minimize the system’s total annual cost. A case study was conducted in Guanambi, Brazil, using ten years (2012–2021) of hourly data on wind speed, solar irradiance, and ambient temperature. Forecasting results show that the hybrid Discrete Wavelet Transform–Long Short-Term Memory model outperforms the conventional Long Short-Term Memory approach, reducing error metrics and improving predictive accuracy. In the optimization stage, Particle Swarm Optimization consistently achieved lower costs and more stable convergence compared to the Genetic Algorithm. The optimal configuration comprised 450 photovoltaic panels, 10 wind turbines, 66 lithium iron phosphate battery, and 1 diesel generator, yielding a total annual cost of $105,381.17, a cost of energy of $0.1243/kWh, and minimal diesel dependence ($8825.89 annually). The proposed framework demonstrates robustness, economic viability, and applicability for providing sustainable and reliable electricity in isolated regions with high renewable energy potential. Full article
Show Figures

Figure 1

29 pages, 8202 KB  
Article
Continuous Lower-Limb Joint Angle Prediction Under Body Weight-Supported Training Using AWDF Model
by Li Jin, Liuyi Ling, Zhipeng Yu, Liyu Wei and Yiming Liu
Fractal Fract. 2025, 9(10), 655; https://doi.org/10.3390/fractalfract9100655 - 11 Oct 2025
Viewed by 207
Abstract
Exoskeleton-assisted bodyweight support training (BWST) has demonstrated enhanced neurorehabilitation outcomes in which joint motion prediction serves as the critical foundation for adaptive human–machine interactive control. However, joint angle prediction under dynamic unloading conditions remains unexplored. This study introduces an adaptive wavelet-denoising fusion (AWDF) [...] Read more.
Exoskeleton-assisted bodyweight support training (BWST) has demonstrated enhanced neurorehabilitation outcomes in which joint motion prediction serves as the critical foundation for adaptive human–machine interactive control. However, joint angle prediction under dynamic unloading conditions remains unexplored. This study introduces an adaptive wavelet-denoising fusion (AWDF) model to predict lower-limb joint angles during BWST. Utilizing a custom human-tracking bodyweight support system, time series data of surface electromyography (sEMG), and inertial measurement unit (IMU) from ten adults were collected across graded bodyweight support levels (BWSLs) ranging from 0% to 40%. Systematic comparative experiments evaluated joint angle prediction performance among five models: the sEMG-based model, kinematic fusion model, wavelet-enhanced fusion model, late fusion model, and the proposed AWDF model, tested across prediction time horizons of 30–150 ms and BWSL gradients. Experimental results demonstrate that increasing BWSLs prolonged gait cycle duration and modified muscle activation patterns, with a concomitant decrease in the fractal dimension of sEMG signals. Extended prediction time degraded joint angle estimation accuracy, with 90 ms identified as the optimal tradeoff between system latency and prediction advancement. Crucially, this study reveals an enhancement in prediction performance with increased BWSLs. The proposed AWDF model demonstrated robust cross-condition adaptability for hip and knee angle prediction, achieving average root mean square errors (RMSE) of 1.468° and 2.626°, Pearson correlation coefficients (CC) of 0.983 and 0.973, and adjusted R2 values of 0.992 and 0.986, respectively. This work establishes the first computational framework for BWSL-adaptive joint prediction, advancing human–machine interaction in exoskeleton-assisted neurorehabilitation. Full article
Show Figures

Figure 1

19 pages, 1661 KB  
Article
Joint Wavelet and Sine Transforms for Performance Enhancement of OFDM Communication Systems
by Khaled Ramadan, Ibrahim Aqeel and Emad S. Hassan
Mathematics 2025, 13(20), 3258; https://doi.org/10.3390/math13203258 - 11 Oct 2025
Viewed by 113
Abstract
This paper presents a modified Orthogonal Frequency Division Multiplexing (OFDM) system that combines Discrete Wavelet Transform (DWT) with Discrete Sine Transform (DST) to enhance data rate capacity over traditional Discrete Fourier Transform (DFT)-based OFDM systems. By applying Inverse Discrete Wavelet Transform (IDWT) to [...] Read more.
This paper presents a modified Orthogonal Frequency Division Multiplexing (OFDM) system that combines Discrete Wavelet Transform (DWT) with Discrete Sine Transform (DST) to enhance data rate capacity over traditional Discrete Fourier Transform (DFT)-based OFDM systems. By applying Inverse Discrete Wavelet Transform (IDWT) to the modulated Binary Phase Shift Keying (BPSK) bits, the constellation diagram reveals that half of the time-domain samples after single-level Haar IDWT are zeros, while the other half are real. The proposed system utilizes these 0.5N zero values, modulating them with the DST (IDST) and assigning them as the imaginary part of the signal. Performance comparisons demonstrate that the Bit-Error-Rate (BER) of this hybrid DWT-DST configuration lies between that of BPSK and Quadrature Phase Shift Keying (QPSK) in a DWT-based system, while also achieving data rate improvement of 0.5N. Additionally, simulation results indicate that the proposed approach demonstrates stable performance even in the presence of estimation errors, with less than 3.4% BER degradation for moderate errors, and consistently better robustness than QPSK-based systems while offering improved data rate efficiency over BPSK. This novel configuration highlights the potential for more efficient and reliable data transmission in OFDM systems, making it a promising alternative to conventional DWT or DFT-based methods. Full article
(This article belongs to the Special Issue Computational Intelligence in Communication Networks)
Show Figures

Figure 1

23 pages, 2076 KB  
Article
A Comparative Study of Electricity Sales Forecasting Models Based on Different Feature Decomposition Methods
by Shichong Chen, Yushu Zhang, Xiaoteng Ma, Xu Yang, Junyi Shi and Haoyang Ji
Energies 2025, 18(20), 5352; https://doi.org/10.3390/en18205352 - 11 Oct 2025
Viewed by 105
Abstract
Accurate forecasting of electricity sales holds significant practical importance. On the one hand, it helps to implement and achieve the annual goals of power companies, and on the other hand, it helps to control the balance of enterprise profits. This study was conducted [...] Read more.
Accurate forecasting of electricity sales holds significant practical importance. On the one hand, it helps to implement and achieve the annual goals of power companies, and on the other hand, it helps to control the balance of enterprise profits. This study was conducted in China using data from the State Grid Corporation (Henan, Fujian, and national data) from the Wind database. Based on collected data such as electricity sales, this study addresses the limitations of the existing literature, which mostly employs a single feature decomposition method for forecasting. We simultaneously apply three decomposition techniques—seasonal adjustment decomposition (X13), empirical mode decomposition (EMD), and discrete wavelet transform (DWT)—to decompose electricity sales into multiple components. Subsequently, we model each component using the ADL, SARIMAX, and LSTM models, synthesize the component-level forecasts, and realize the comparison of electricity sales forecasting models based on different feature decomposition methods. The findings reveal (1) forecasting performance based on feature decomposition generally outperforms direct forecasting without decomposition; (2) different regions may benefit from different decomposition methods—EMD is more suitable for regions with high sales volatility, while DWT is preferable for more stable regions; and (3) among the forecasting models, ADL performs better than SARIMAX, while LSTM yields the least accurate results when combined with decomposition methods. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

35 pages, 454 KB  
Article
Two Versions of Dunkl Linear Canonical Wavelet Transforms and Applications
by Saifallah Ghobber and Hatem Mejjaoli
Mathematics 2025, 13(19), 3225; https://doi.org/10.3390/math13193225 - 8 Oct 2025
Viewed by 158
Abstract
Among the class of generalized Fourier transformations, the linear canonical transform is of crucial importance, mainly due to its higher degrees of freedom compared to the conventional Fourier and fractional Fourier transforms. In this paper, we will introduce and study two versions of [...] Read more.
Among the class of generalized Fourier transformations, the linear canonical transform is of crucial importance, mainly due to its higher degrees of freedom compared to the conventional Fourier and fractional Fourier transforms. In this paper, we will introduce and study two versions of wavelet transforms associated with the linear canonical Dunkl transform. More precisely, we investigate some applications for Dunkl linear canonical wavelet transforms. Next we will introduce and develop the harmonic analysis associated with the Dunkl linear canonical wavelet packets transform. We introduce and study three types of wavelet packets along with their associated wavelet transforms. For each of these transforms, we establish a Plancherel and a reconstruction formula, and we analyze the associated scale-discrete scaling functions. Full article
(This article belongs to the Section E: Applied Mathematics)
17 pages, 2215 KB  
Article
Fault Location of Generator Stator with Single-Phase High-Resistance Grounding Fault Based on Signal Injection
by Binghui Lei, Yifei Wang, Zongzhen Yang, Lijiang Ma, Xinzhi Yang, Yanxun Guo, Shuai Xu and Zhiping Cheng
Sensors 2025, 25(19), 6132; https://doi.org/10.3390/s25196132 - 3 Oct 2025
Viewed by 306
Abstract
This paper proposes a novel method for locating single-phase grounding faults in generator stator windings with high resistance, which are typically challenging to locate due to weak fault characteristics. The method utilizes an active voltage injection technique combined with traveling wave reflection analysis, [...] Read more.
This paper proposes a novel method for locating single-phase grounding faults in generator stator windings with high resistance, which are typically challenging to locate due to weak fault characteristics. The method utilizes an active voltage injection technique combined with traveling wave reflection analysis, singular value decomposition (SVD) denoising, and discrete wavelet transform (DWT). A DC voltage signal is then injected into the stator winding, and the voltage and current signals at both terminals are collected. These signals undergo denoising using SVD, followed by DWT, to identify the arrival time of the traveling waves. Fault location is determined based on the reflection and refraction of these waves within the winding. Simulation results demonstrate that this method achieves high accuracy in fault location, even with fault resistances up to 5000 Ω. The method offers a reliable and effective solution for locating high-resistance faults in generator stator windings without requiring winding parameters, demonstrating strong potential for practical applications. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

17 pages, 930 KB  
Article
Investigation of the MobileNetV2 Optimal Feature Extraction Layer for EEG-Based Dementia Severity Classification: A Comparative Study
by Noor Kamal Al-Qazzaz, Sawal Hamid Bin Mohd Ali and Siti Anom Ahmad
Algorithms 2025, 18(10), 620; https://doi.org/10.3390/a18100620 - 1 Oct 2025
Viewed by 186
Abstract
Diagnosing dementia and recognizing substantial cognitive decline are challenging tasks. Thus, the objective of this study was to classify electroencephalograms (EEGs) recorded during a working memory task in 15 patients with mild cognitive impairment (MCogImp), 5 patients with vascular dementia (VasD), and 15 [...] Read more.
Diagnosing dementia and recognizing substantial cognitive decline are challenging tasks. Thus, the objective of this study was to classify electroencephalograms (EEGs) recorded during a working memory task in 15 patients with mild cognitive impairment (MCogImp), 5 patients with vascular dementia (VasD), and 15 healthy controls (NC). Before creating spectrogram pictures from the EEG dataset, the data were subjected to preprocessing, which included preprocessing using conventional filters and the discrete wavelet transformation. The convolutional neural network (CNN) MobileNetV2 was employed in our investigation to identify features and assess the severity of dementia. The features were extracted from five layers of the MobileNetV2 CNN architecture—convolutional layers (‘Conv-1’), batch normalization (‘Conv-1-bn’), clipped ReLU (‘out-relu’), 2D Global Average Pooling (‘global-average-pooling2d1’), and fully connected (‘Logits’) layers. This was carried out to find the efficient features layer for dementia severity from EEGs. Feature extraction from MobileNetV2’s five layers was carried out using a decision tree (DT) and k-nearest neighbor (KNN) machine learning (ML) classifier, in conjunction with a MobileNetV2 deep learning (DL) network. The study’s findings show that the DT classifier performed best using features derived from MobileNetV2 with the 2D Global Average Pooling (global-average-pooling2d-1) layer, achieving an accuracy score of 95.9%. Second place went to the characteristics of the fully connected (Logits) layer, which achieved a score of 95.3%. The findings of this study endorse the utilization of deep processing algorithms, offering a viable approach for improving early dementia identification with high precision, hence facilitating the differentiation among NC individuals, VasD patients, and MCogImp patients. Full article
(This article belongs to the Special Issue Machine Learning in Medical Signal and Image Processing (3rd Edition))
Show Figures

Figure 1

20 pages, 2198 KB  
Article
High-Frequency Refined Mamba with Snake Perception Attention for More Accurate Crack Segmentation
by Haibo Li, Lingkun Chen and Tao Wang
Buildings 2025, 15(19), 3503; https://doi.org/10.3390/buildings15193503 - 28 Sep 2025
Viewed by 271
Abstract
Cracks are vital warning signs to reflect the structural deterioration in concrete constructions and buildings. However, their diverse and complex morphologies make accurate segmentation challenging. Deep learning-based methods effectively alleviate the low accuracy of traditional methods, while they are limited by the receptive [...] Read more.
Cracks are vital warning signs to reflect the structural deterioration in concrete constructions and buildings. However, their diverse and complex morphologies make accurate segmentation challenging. Deep learning-based methods effectively alleviate the low accuracy of traditional methods, while they are limited by the receptive field and computational efficiency, resulting in suboptimal performance. To address this challenging problem, we propose a novel framework termed High-frequency Refined Mamba with Snake Perception Attention module (HFR-Mamba) for more accurate crack segmentation. HFR-Mamba effectively refines Mamba’s global dependency modeling by extracting frequency domain features and the attention mechanism. Specifically, HFR-Mamba consists of the High-frequency Refined Mamba encoder, the Snake Perception Attention (SPA) module, and the Multi-scale Feature Fusion decoder. The encoder uses Discrete Wavelet Transform (DWT) to extract high-frequency texture features and utilizes the Refined Visual State Space (RVSS) module to fuse spatial features and high-frequency components, which effectively refines the global modeling process of Mamba. The SPA module integrates snake convolutions with different directions to filter background noise from the encoder and highlight cracks for the decoder. For the decoder, it adopts a multi-scale feature fusion strategy and a strongly supervised approach to enhance decoding performance. Extensive experiments show HFR-Mamba achieves state-of-the-art performance in IoU, DSC, Recall, Accuracy, and Precision indicators with fewer parameters, validating its effectiveness in crack segmentation. Full article
(This article belongs to the Special Issue Intelligence and Automation in Construction Industry)
Show Figures

Figure 1

20 pages, 4896 KB  
Article
GPU-Driven Acceleration of Wavelet-Based Autofocus for Practical Applications in Digital Imaging
by HyungTae Kim, Duk-Yeon Lee, Dongwoon Choi and Dong-Wook Lee
Appl. Sci. 2025, 15(19), 10455; https://doi.org/10.3390/app151910455 - 26 Sep 2025
Viewed by 208
Abstract
A parallel implementation of wavelet-based autofocus (WBA) was presented to accelerate recursive operations and reduce computational costs. WBA evaluates digital focus indices (DFIs) using first- or second-order moments of the wavelet coefficients in high-frequency subbands. WBA is generally accurate and reliable; however, its [...] Read more.
A parallel implementation of wavelet-based autofocus (WBA) was presented to accelerate recursive operations and reduce computational costs. WBA evaluates digital focus indices (DFIs) using first- or second-order moments of the wavelet coefficients in high-frequency subbands. WBA is generally accurate and reliable; however, its computational cost is high owing to biorthogonal decomposition. Thus, this study parallelized the Daubechies-6 wavelet and norms of the high-frequency subbands for the DFI. The kernels of the DFI computation were constructed using open sources for driving multicore processors (MCPs) and general processing units (GPUs). The standard C++, OpenCV, OpenMP, OpenCL, and CUDA open-source platforms were selected to construct the DFI kernels, considering hardware compatibility. The experiment was conducted using the MCP, peripheral GPUs, and CPU-resident GPUs on desktops for advanced users and compact devices for industrial applications. The results demonstrated that the GPUs provided sufficient performance to achieve WBA even when using budget GPUs, indicating that the GPUs are advantageous for practical applications of WBA. This study also implies that although budget GPUs are left unused, they can potentially be great resources for wavelet-based processing. Full article
(This article belongs to the Special Issue Data Structures for Graphics Processing Units (GPUs))
Show Figures

Figure 1

28 pages, 6039 KB  
Article
Detection and Classification of Unhealthy Heartbeats Using Deep Learning Techniques
by Abdullah M. Albarrak, Raneem Alharbi and Ibrahim A. Ibrahim
Sensors 2025, 25(19), 5976; https://doi.org/10.3390/s25195976 - 26 Sep 2025
Viewed by 485
Abstract
Arrhythmias are a common and potentially life-threatening category of cardiac disorders, making accurate and early detection crucial for improving clinical outcomes. Electrocardiograms are widely used to monitor heart rhythms, yet their manual interpretation remains prone to inconsistencies due to the complexity of the [...] Read more.
Arrhythmias are a common and potentially life-threatening category of cardiac disorders, making accurate and early detection crucial for improving clinical outcomes. Electrocardiograms are widely used to monitor heart rhythms, yet their manual interpretation remains prone to inconsistencies due to the complexity of the signals. This research investigates the effectiveness of machine learning and deep learning techniques for automated arrhythmia classification using ECG signals from the MIT-BIH dataset. We compared Gradient Boosting Machine (GBM) and Multilayer Perceptron (MLP) as traditional machine learning models with a hybrid deep learning model combining one-dimensional convolutional neural networks (1D-CNNs) and long short-term memory (LSTM) networks. Furthermore, the Grey Wolf Optimizer (GWO) was utilized to automatically optimize the hyperparameters of the 1D-CNN-LSTM model, enhancing its performance. Experimental results show that the proposed 1D-CNN-LSTM model achieved the highest accuracy of 97%, outperforming both classical machine learning and other deep learning baselines. The classification report and confusion matrix confirm the model’s robustness in identifying various arrhythmia types. These findings emphasize the possible benefits of integrating metaheuristic optimization with hybrid deep learning. Full article
(This article belongs to the Special Issue Sensors Technology and Application in ECG Signal Processing)
Show Figures

Figure 1

23 pages, 11596 KB  
Article
Combined Hyperspectral Imaging with Wavelet Domain Multivariate Feature Fusion Network for Bioactive Compound Prediction of Astragalus membranaceus var. mongholicus
by Suning She, Zhiyun Xiao and Yulong Zhou
Agriculture 2025, 15(19), 2009; https://doi.org/10.3390/agriculture15192009 - 25 Sep 2025
Viewed by 300
Abstract
The pharmacological quality of Astragalus membranaceus var. mongholicus (AMM) is determined by its bioactive compounds, and developing a rapid prediction method is essential for quality assessment. This study proposes a predictive model for AMM bioactive compounds using hyperspectral imaging (HSI) and wavelet domain [...] Read more.
The pharmacological quality of Astragalus membranaceus var. mongholicus (AMM) is determined by its bioactive compounds, and developing a rapid prediction method is essential for quality assessment. This study proposes a predictive model for AMM bioactive compounds using hyperspectral imaging (HSI) and wavelet domain multivariate features. The model employs techniques such as the first-order derivative (FD) algorithm and the continuum removal (CR) algorithm for initial feature extraction. Unlike existing models that primarily focus on a single-feature extraction algorithm, the proposed tree-structured feature extraction module based on discrete wavelet transform and one-dimensional convolutional neural network (1D-CNN) integrates FD and CR, enabling robust multivariate feature extraction. Subsequently, the multivariate feature cross-fusion module is introduced to implement multivariate feature interaction, facilitating mutual enhancement between high- and low-frequency features through hierarchical recombination. Additionally, a multi-objective prediction mechanism is proposed to simultaneously predict the contents of flavonoids, saponins, and polysaccharides in AMM, effectively leveraging the enhanced, recombined spectral features. During testing, the model achieved excellent predictive performance with R2 values of 0.981 for flavonoids, 0.992 for saponins, and 0.992 for polysaccharides. The corresponding RMSE values were 0.37, 0.04, and 0.86; RPD values reached 7.30, 10.97, and 11.16; while MAE values were 0.14, 0.02, and 0.38, respectively. These results demonstrate that integrating multivariate features extracted through diverse methods with 1D-CNN enables efficient prediction of AMM bioactive compounds using HSI. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

25 pages, 17229 KB  
Article
Improved Multi-Stage Rice Above-Ground Biomass Estimation Using Wavelet-Texture-Fused Vegetation Indices from UAV Remote Sensing
by Jinpeng Li, Qiang Cao, Shuaipeng Wang, Jiayi Li, Dongxue Zhao, Shuai Feng, Yingli Cao and Tongyu Xu
Plants 2025, 14(18), 2903; https://doi.org/10.3390/plants14182903 - 18 Sep 2025
Viewed by 456
Abstract
When estimating above-ground biomass (AGB) across multiple growth stages, vegetation indices (VIs) have limitations due to saturation under dense canopies and poor sensitivity to vertically growing organs (e.g., panicles). Discrete wavelet transform (DWT) can extract multi-directional, multi-frequency texture features reflecting canopy structure changes, [...] Read more.
When estimating above-ground biomass (AGB) across multiple growth stages, vegetation indices (VIs) have limitations due to saturation under dense canopies and poor sensitivity to vertically growing organs (e.g., panicles). Discrete wavelet transform (DWT) can extract multi-directional, multi-frequency texture features reflecting canopy structure changes, but its application in crop biomass monitoring is underexplored. Therefore, to evaluate whether DWT-based textures can be used to estimate AGB across multiple growth stages and whether combining VIs can improve estimation accuracy, two-year field experiments involving four rice varieties and five nitrogen treatments were conducted. UAV multispectral images were acquired during the critical growth stages, from which Vis and wavelet textures (WTs) were extracted, and novel wavelet texture indices (WTIs) were constructed. Correlation analysis guided feature selection, and simple regression, multiple linear regression, and Optuna-optimized random forest were employed to develop rice AGB estimation models. The results indicated: (1) Compared to a single WT, the WTIs exhibited higher correlation with rice AGB across different growth stages. (2) Among the three models, the RF model performed best. Specifically, using only VIs to estimate AGB during pre-heading yielded relatively higher accuracy (R2 = 0.713), while using WTIs to estimate AGB during post-heading and all-stage yielded higher accuracy (R2 = 0.709 and 0.668). (3) Combining WTIs with VIs significantly improves the prediction accuracy of AGB at different growth stages (R2 = 0.782, 0.769, and 0.732; RMSE = 114.655, 161.779, and 223.654 g/m2), with R2 improving by 10–15% and RMSE decreasing by 13–17% compared to the VIs. The study demonstrates that DWT-based textures can effectively assist in the high-precision estimation of rice AGB. Moreover, integrating WTIs with VIs enables accurate and stable prediction of rice AGB under different management practices and varieties, providing an economical and efficient method for estimating rice AGB. Full article
(This article belongs to the Special Issue Remote Sensing Technologies in Crop Monitoring and Plant Phenotyping)
Show Figures

Figure 1

18 pages, 813 KB  
Article
Heart Rate Estimation Using FMCW Radar: A Two-Stage Method Evaluated for In-Vehicle Applications
by Jonas Brandstetter, Eva-Maria Knoch and Frank Gauterin
Biomimetics 2025, 10(9), 630; https://doi.org/10.3390/biomimetics10090630 - 17 Sep 2025
Viewed by 583
Abstract
Assessing the driver’s state in real time is a critical challenge in modern vehicle safety systems, as human factors account for the vast majority of traffic accidents. Heart rate (HR) is a key physiological indicator of the driver’s condition, yet contactless measurements in [...] Read more.
Assessing the driver’s state in real time is a critical challenge in modern vehicle safety systems, as human factors account for the vast majority of traffic accidents. Heart rate (HR) is a key physiological indicator of the driver’s condition, yet contactless measurements in dynamic in-vehicle environments remain difficult due to motion artifacts, vibrations, and varying operational conditions. This paper presents a novel two-stage method for HR estimation using a commercial 60 GHz frequency-modulated continuous wave (FMCW) radar sensor, specifically designed and validated for in-vehicle applications. In the first stage, coarse HR estimation is performed using the discrete wavelet transform (DWT) and autoregressive (AR) spectral analysis. The second stage refines the estimate using an inverse application of the relevance vector machine (RVM) approach, leveraging a narrowed frequency window derived from Stage 1. Final HR estimates are stabilized through sequential Kalman filtering (SKF) across time segments. The system was implemented using an Infineon BGT60TR13C radar module installed in the sun visor of a passenger vehicle. Extensive data collection was conducted during real-world driving across diverse traffic scenarios. The results demonstrate robust HR estimations with an accuracy comparable to that of commercial wearable devices, validated against a Polar H10 chest strap. This method offers several advantages over prior work, including short measurement windows (5 s), operation under varying lighting and clothing conditions, and validation in realistic driving environments. In this sense, the method contributes to the field of biomimetics by transferring the biological principles of continuous vital sign perception to technical sensorics in the automotive domain. Future work will explore the fusion of sensors with visual methods and potential extension to heart rate variability (HRV) estimations to enhance driver monitoring systems (DMSs) further. Full article
(This article belongs to the Section Bioinspired Sensorics, Information Processing and Control)
Show Figures

Figure 1

24 pages, 4497 KB  
Article
Geomagnetic Signatures of Moderate Earthquakes from Kumaun Himalaya, India
by Rahul Prajapati and Kusumita Arora
Geosciences 2025, 15(9), 365; https://doi.org/10.3390/geosciences15090365 - 16 Sep 2025
Viewed by 449
Abstract
In this study, a statistical analysis of ground geomagnetic data has been attempted to extract the seismo-electromagnetic (SEM) signatures associated with moderate earthquakes in the region of the seismic gap in the Kumaun Himalaya, Uttarakhand, India. We applied the discrete wavelet transform (DWT) [...] Read more.
In this study, a statistical analysis of ground geomagnetic data has been attempted to extract the seismo-electromagnetic (SEM) signatures associated with moderate earthquakes in the region of the seismic gap in the Kumaun Himalaya, Uttarakhand, India. We applied the discrete wavelet transform (DWT) method to the geomagnetic data to identify the ULF energy of the signal. The ULF energy obtained in the central frequency range of 0.01 Hz was further filtered to extract the anomalous ULF energy, which is associated with pre-earthquake processes. We also applied multifractal analysis to the geomagnetic data to classify the complexities in the signal, which are indicative of the seismotectonic environment. We observed enhancements in the ULF energy anomalies associated with large-magnitude earthquakes occurring in the western part of Nepal, even over large epicentral distances (~120 km). The multifractal analysis shows the overlap of anomalies in the Hwp and Hwn signatures in most cases, which suggests that multiple mechanisms generate low- and high-frequency components in the anomalous data. This reflects the complex nature of seismicity in this region of the Main Central Thrust (MCT). Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

Back to TopTop