Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (619)

Search Parameters:
Keywords = dissolved organic C

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
3151 KB  
Article
Removal of Ciprofloxacin from Pharmaceutical Wastewater Using Untreated and Treated Eggshells as Biosorbents
by Maryam Bin Hammad, Sameer Al-Asheh and Mohamed Abouleish
Water 2025, 17(17), 2656; https://doi.org/10.3390/w17172656 (registering DOI) - 8 Sep 2025
Abstract
Pharmaceutical wastewater contains high levels of organic matter, salts, and toxic compounds that are resistant to conventional treatment methods. Even after secondary treatment, traces of dissolved organics and suspended solids often remain, contributing to environmental concerns such as increased microbial resistance and harm [...] Read more.
Pharmaceutical wastewater contains high levels of organic matter, salts, and toxic compounds that are resistant to conventional treatment methods. Even after secondary treatment, traces of dissolved organics and suspended solids often remain, contributing to environmental concerns such as increased microbial resistance and harm to aquatic life. This study introduces a sustainable “waste-to-treat-waste” approach that utilizes discarded white chicken eggshells as a low-cost biosorbent for removing ciprofloxacin, a common antibiotic. Unlike previous eggshell-based adsorption studies that primarily targeted dyes or heavy metals, this work demonstrates the first comprehensive evaluation of both untreated and chemically/thermally modified eggshells for antibiotic removal from real pharmaceutical wastewater. Batch adsorption experiments under optimized conditions showed removal efficiencies of 85% for raw eggshells, 91% after HCl activation, and 96% after thermal conversion to CaO. Batch adsorption experiments under optimized conditions (pH 7, 25 °C, 625 µm particle size, 3 g/100 mL dose, 90 min contact time) showed maximum adsorption capacities of 23.75 mg/g for untreated ES, 4.08 mg/g after HCl activation, and 1.82 mg/g after thermal conversion to CaO, with removal efficiencies of 85%, 91%, and 96%, respectively. The simplicity of preparation, use of an abundant waste material, and high removal efficiency highlight the potential for scalable cost-effective applications in industrial wastewater treatment systems. Full article
Show Figures

Figure 1

13 pages, 1936 KB  
Article
The Input of Terrestrial Dissolved Organic Carbon Enhanced Bacteria Growth Efficiency on Phytoplankton-DOC and Indigenous Lake DOC: A Microcosm Study
by Zong’an Jin, Huiping Zhang, Zhengwen Liu, Erik Jeppesen, Jian Gao and Yali Tang
Microorganisms 2025, 13(9), 2081; https://doi.org/10.3390/microorganisms13092081 - 6 Sep 2025
Viewed by 113
Abstract
As a consequence of global climate change, lakes are increasingly receiving terrestrial dissolved organic carbon (DOC), which serves as a key substrate for microbial metabolism and fuels bacterial production (BP). However, bacteria in aquatic systems play a dual role in the carbon cycle [...] Read more.
As a consequence of global climate change, lakes are increasingly receiving terrestrial dissolved organic carbon (DOC), which serves as a key substrate for microbial metabolism and fuels bacterial production (BP). However, bacteria in aquatic systems play a dual role in the carbon cycle by not only incorporating DOC into their biomass but also respiring it as CO2 into the atmosphere (bacterial respiration, BR). As such, the estimation of bacterial growth efficiency (BGE), defined as BP/(BP + BR), is critical for understanding lake carbon dynamics and bacterial carbon processing. To investigate the effects of terrestrial organic carbon on bacterial carbon processing in lakes, we conducted a 13C-labeling experiment utilizing three microcosms, each filled with 0.22 μm filtered lake water inoculated with a microbial inoculum and set as follows: no extra DOC addition as a control, adding phytoplankton-derived DOC, and adding a mixture of phytoplankton-derived and terrestrial DOC. Our findings revealed that the addition of terrestrial DOC significantly enhanced both overall BGE (40.0%) and specific BGE based on phytoplankton-DOC (62.3%) and indigenous lake DOC (27.0%). Furthermore, terrestrial DOC inputs also altered bacterial carbon consumption pathways, as indicated by isotopic evidence. These results suggest that the input of terrestrial DOC may significantly affect lake DOC processing by changing the way bacteria process phytoplankton-DOC and indigenous lake DOC. This study highlights the profound influence of terrestrial DOC on lake carbon processing and suggests that terrestrial–aquatic cross-ecosystem interactions are critical for understanding lake carbon dynamics under changing climatic conditions. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

16 pages, 2205 KB  
Article
Environmental Factors Driving Carbonate Distribution in Marine Sediments in the Canary Current Upwelling System
by Hasnaa Nait-Hammou, Khalid El Khalidi, Ahmed Makaoui, Melissa Chierici, Chaimaa Jamal, Nezha Mejjad, Otmane Khalfaoui, Fouad Salhi, Mohammed Idrissi and Bendahhou Zourarah
J. Mar. Sci. Eng. 2025, 13(9), 1709; https://doi.org/10.3390/jmse13091709 - 4 Sep 2025
Viewed by 174
Abstract
This study illustrates the complex interaction between environmental parameters and carbonate distribution in marine sediments along the Tarfaya–Boujdour coastline (26–28° N) of Northwest Africa. Analysis of 21 surface sediment samples and their associated bottom water properties (salinity, temperature, dissolved oxygen, nutrients) reveals CaCO [...] Read more.
This study illustrates the complex interaction between environmental parameters and carbonate distribution in marine sediments along the Tarfaya–Boujdour coastline (26–28° N) of Northwest Africa. Analysis of 21 surface sediment samples and their associated bottom water properties (salinity, temperature, dissolved oxygen, nutrients) reveals CaCO3 content ranging from 16.8 wt.% to 60.5 wt.%, with concentrations above 45 wt.% occurring in multiple stations, especially in nearshore deposits. Mineralogy indicates a general decrease in quartz, with an arithmetic mean and standard deviation of 52.5 wt.% ± 19.8 towards the open sea, and an increase in carbonate minerals (calcite ≤ 24%, aragonite ≤ 10%) with depth. Sediments are predominantly composed of fine sand (78–99%), poorly classified, with gravel content reaching 6.7% in energetic coastal stations. An inverse relationship between organic carbon (0.63–3.23 wt.%) and carbonates is observed in upwelling zones, correlated with nitrate concentrations exceeding 19 μmol/L. Hydrological gradients show temperatures from 12.41 °C (offshore) to 21.62 °C (inshore), salinity from 35.64 to 36.81 psu and dissolved oxygen from 2.06 to 4.21 mL/L. The weak correlation between carbonates and depth (r = 0.10) reflects the balance between three processes: biogenic production stimulated by upwelling, dilution by Saharan terrigenous inputs, and hydrodynamic sorting redistributing bioclasts. These results underline the need for models integrating hydrology, mineralogy and hydrodynamics to predict carbonate dynamics in desert margins under upwelling. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

17 pages, 3734 KB  
Article
Response Patterns of Soil Organic Carbon Fractions and Storage to Vegetation Types in the Yellow River Wetland
by Shuangquan Li, Chuang Yan, Mengke Zhu, Shixin Yan, Jingxu Wang and Fajun Qian
Land 2025, 14(9), 1785; https://doi.org/10.3390/land14091785 - 2 Sep 2025
Viewed by 258
Abstract
To promote soil carbon (C) sequestration and alleviate climate change, it is crucial to understand how vegetation types affect soil organic C (SOC) storage and stability in riverine wetlands. This study investigates the characteristics of SOC fractions and storage among different vegetation types [...] Read more.
To promote soil carbon (C) sequestration and alleviate climate change, it is crucial to understand how vegetation types affect soil organic C (SOC) storage and stability in riverine wetlands. This study investigates the characteristics of SOC fractions and storage among different vegetation types and evaluates their soil C sequestration potential. Soil samples were collected and analyzed from four vegetation types (Typha orientalis, Tamarix chinensis, Avena sativa, and Phragmites australis) in wetlands at the junction of the middle and lower reaches of the Yellow River. Soil particulate organic C, dissolved organic C, and microbial biomass C contents of Avena sativa and Phragmites australis communities were higher than those of Tamarix chinensis and Typha orientalis communities (p < 0.001). Typha orientalis communities exhibited the highest SOC stability (4.31 ± 0.38), whereas Tamarix chinensis communities showed the lowest (1.34 ± 0.17) (p < 0.001). Soil organic C storage of Avena sativa (2.81 ± 0.32 kg m−2) and Phragmites australis (2.53 ± 0.06 kg m−2) communities was higher than that of Tamarix chinensis (0.88 ± 0.06 kg m−2) and Typha orientalis (1.35 ± 0.13 kg m−2) communities (p < 0.001). Soil electrical conductivity (EC) was significantly correlated with SOC fractions of Typha orientalis and Phragmites australis communities, while soil water content and particle size composition affected SOC fractions of Avena sativa communities (p < 0.05). Soil particle size composition affected the SOC storage of Typha orientalis, Tamarix chinensis, and Avena sativa communities (p < 0.05). Soil pH, water content, and EC influenced the SOC storage of Typha orientalis, Tamarix chinensis, and Phragmites australis communities (p < 0.05). These results demonstrate that Avena sativa and Phragmites australis communities play a vital role in maintaining C sink potential and ecological function in the Yellow River wetland. Nonetheless, the Typha orientalis community had greater C sequestration in the long term due to its high SOC stability. This research suggests that the effects of vegetation types should be considered when exploring the soil C cycle in riverine wetlands. Full article
(This article belongs to the Section Land, Soil and Water)
Show Figures

Graphical abstract

26 pages, 3046 KB  
Article
Distribution Patterns of Humus and Mineral Composition in Dark-Brown, Meadow, and Paddy Soils in Northeast China
by Donghui Dai, Haihang Sun, Yubao Huang, Jingwei Gao, Bowen Song, Haoyu Gao, Baoyi Lu and Shuai Wang
Agronomy 2025, 15(9), 2108; https://doi.org/10.3390/agronomy15092108 - 31 Aug 2025
Viewed by 455
Abstract
This study aimed to investigate vertical variations in dissolved organic matter (DOM) properties, humus (HS) composition, humic acid (HA) characteristics, and clay mineral dynamics, with a particular focus on the vertical distribution of HS components and mineral composition across Dark-brown, Meadow, and Paddy [...] Read more.
This study aimed to investigate vertical variations in dissolved organic matter (DOM) properties, humus (HS) composition, humic acid (HA) characteristics, and clay mineral dynamics, with a particular focus on the vertical distribution of HS components and mineral composition across Dark-brown, Meadow, and Paddy soil profiles. Results indicated that: (1) DOM in all three soil types was predominantly endogenous, primarily derived from microbial metabolism with minimal contributions from plant residues. (2) Vertical trends in DOM carbon content (CDOM) were specific to soil type: in Dark-brown soil, CDOM slightly increased from the Ap to Bt layer, followed by a sharp increase in the C layer; Meadow soil exhibited a significant decrease in CDOM in the AB layer but remained relatively stable in other layers; Paddy soil showed a consistent decline in CDOM with increasing depth. (3) HS and its fractions exhibited vertical variability: Paddy soil showed higher HS content in surface layers; carbon contents of water-soluble substances, HA, and humic-extracted acid (CWSS, CHA, and CHE) decreased with depth in Dark-brown and Paddy soils, whereas they remained relatively stable in deeper layers of Meadow soil. (4) HA characteristics, including C/N ratio, functional groups, and aromaticity, were influenced by both depth and soil type: the Ap2 layer of Paddy soil effectively restricted the downward movement of organic matter; Fe3+ complexation played a key role in HA stabilization in Dark-brown soil; Meadow soil exhibited transitional HS properties. (5) Clay mineral assemblages were dominated by 2:1 type minerals (illite, smectite, illite–smectite interstratifications), showing distinct vertical weathering patterns: illite content decreased with depth due to hydrolysis, while proton-driven dissolution promoted kaolinite formation in surface layers, particularly in Dark-brown soil 2:1 minerals enhancing organic–mineral complexation in Meadow soil. The findings of this study provided a scientific basis for optimizing soil carbon pool management and offer insights into organic–mineral interactions that can enhance organic matter sequestration in agricultural soils. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

12 pages, 1717 KB  
Article
Land-Use Change Impacts on Glomalin-Related Soil Protein and Soil Organic Carbon in Huangshan Mountain Region
by Yuan Zhao, Yuexin Xiao, Wei Chen, Buqing Wang and Zongyao Qian
Forests 2025, 16(9), 1362; https://doi.org/10.3390/f16091362 - 22 Aug 2025
Viewed by 503
Abstract
The glomalin-related soil protein (GRSP), a class of stable glycoproteins produced by arbuscular mycorrhizal fungi, constitute an important microbial-derived carbon pool in terrestrial ecosystems. However, the response of GRSP accumulation to land-use change and quantitative contribution to soil organic carbon (SOC) pools, as [...] Read more.
The glomalin-related soil protein (GRSP), a class of stable glycoproteins produced by arbuscular mycorrhizal fungi, constitute an important microbial-derived carbon pool in terrestrial ecosystems. However, the response of GRSP accumulation to land-use change and quantitative contribution to soil organic carbon (SOC) pools, as well as the environmental and edaphic factors controlling GRSP dynamics in different land-use systems, require further elucidation. To address these knowledge gaps, we systematically collected surface soil samples (0–20 cm depth) from 72 plots across three land-use types—tea plantations (TP; n = 24), artificial forests (AF; n = 24), and natural forests (NF; n = 24) in China’s Huangshan Mountain region between July and August 2024. GRSP was extracted via autoclaving (121 °C, 20 min) in 20 mM citrate buffer (pH 8.0), fractionated into total GRSP (T-GRSP), and quantified using the Bradford assay. Results revealed distinct patterns in soil carbon storage, with NF exhibiting the highest concentrations of both SOC (33.2 ± 8.69 g kg−1) and total GRSP (T-GRSP: 2.64 ± 0.34 g kg−1), followed by AF (SOC: 14.9 ± 2.55 g kg−1; T-GRSP: 1.42 ± 0.25 g kg−1) and TP (SOC: 7.07 ± 1.72 g kg−1; T-GRSP: 0.58 ± 0.11 g kg−1). Although absolute GRSP concentrations were lowest in TP, its proportional contribution to SOC remained consistent across land uses (TP: 8.72 ± 2.84%; AF: 9.69 ± 1.81%; NF: 8.40 ± 2.79%). Statistical analyses identified dissolved organic carbon and microbial biomass carbon as primary drivers of GRSP accumulation. Structural equation modeling further demonstrated that land-use type influenced SOC through its effects on MBC and fine-root biomass, which subsequently enhanced GRSP production. These findings demonstrate that undisturbed forest ecosystems enhance GRSP-mediated soil carbon sequestration, emphasizing the critical role of natural forest conservation in ecological sustainability. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

16 pages, 3851 KB  
Article
Contrasting Reaction of Dissolved Organic Matter with Birnessite Induced by Humic and Fulvic Acids in Flooded Paddy Soil
by Xiangbiao Zhang, Xin Zhou, Yanyue Ma, Wenjin Zhang, Ruihua Zhang and Weiwei Zhai
Sustainability 2025, 17(16), 7203; https://doi.org/10.3390/su17167203 - 8 Aug 2025
Viewed by 359
Abstract
Manganese (Mn) oxides exhibit significant potential to either stabilize or destabilize soil organic carbon (SOC) through the polymerization and/or oxidation of organic molecules via organo-mineral interactions. Birnessite (MnO2) is known to strongly interact with soil dissolved organic matter (DOM), which is [...] Read more.
Manganese (Mn) oxides exhibit significant potential to either stabilize or destabilize soil organic carbon (SOC) through the polymerization and/or oxidation of organic molecules via organo-mineral interactions. Birnessite (MnO2) is known to strongly interact with soil dissolved organic matter (DOM), which is DOM composition-dependent. Humic acid (HA) and fulvic acid (FA) are commonly used as organic fertilizers in soils. In this study, the contrasting reaction of DOM with birnessite in flooded paddy soil with HA and FA amendment was investigated at a molecular level. The results demonstrated that HA amendment enhanced the reaction of phenolic compounds in soil DOM with birnessite, leading to the formation of condensed aromatic compounds and polymeric products (PP) with higher molecular weights and aromaticity. This suggests that HA amendment enhances the birnessite-induced polymerization of soil DOM. In contrast, FA facilitated the birnessite-induced oxidation of soil DOM, yielding dicarboxylic acids (DA), monocarboxylic acids (MA), and quinones products (QP). These findings demonstrate that the reactivity of soil DOM with birnessite is significantly influenced by the composition of DOM exogenously added. This study provides comprehensive understandings of the interactions among Mn and C and helps to predict behaviors of DOM molecules in flooded paddy soil, which is critical for optimizing sustainable soil management. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

17 pages, 3193 KB  
Article
Effects of Nitrogen and Phosphorus Additions on the Stability of Soil Carbon Fractions in Subtropical Castanopsis sclerophylla Forests
by Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(8), 1264; https://doi.org/10.3390/f16081264 - 2 Aug 2025
Viewed by 332
Abstract
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To [...] Read more.
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To investigate the effects of N and P deposition on soil C sequestration and C-N coupling relationship in broad-leaved evergreen forests, a 6-year field nutrient regulation experiment was implemented in subtropical Castanopsis sclerophylla forests with four different N and P additions: N addition (100 kg N·hm−2·year−1), N + P (100 kg N·hm−2·year−1 + 50 kg P·hm−2·year−1), P addition (50 kg P·hm−2·year−1), and CK (0 kg N·hm−2·year−1). The changes in the C and N contents and stable isotope distributions (δ13C and δ15N) of different soil organic fractions were examined. The results showed that the SOC and total nitrogen (STN) (p > 0.05) increased with N addition, while SOC significantly decreased with P addition (p < 0.05), and N + P treatment has low effect on SOC, STN (p > 0.05). By density grouping, it was found that N addition significantly increased light fraction C and N (LFOC, LFN), significantly decreased the light fraction C to N ratio (LFOC/N) (p < 0.05), and increased heavy fraction C and N (HFOC, HFN) accumulation and light fraction to total organic C ratio (LFOC/SOC, p > 0.05). Contrary to N addition, P addition was detrimental to the accumulation of LFOC, LFN and reduced LFOC/SOC. It was found that different reactive oxidized carbon (ROC) increased under N addition but ROC/SOC did not change, while N + P and P treatments increased ROC/SOC, resulting in a decrease in SOC chemical stability. Stable isotope analysis showed that N addition promoted the accumulation of new soil organic matter, whereas P addition enhanced the transformation and utilization of C and N from pre-existing organic matter. Additionally, N addition indirectly increased LFOC by significantly decreasing pH; significantly contributed to LFOC and ROC by increasing STN accumulation promoted by NO3-N and NH4+-N; and decreased light fraction δ13C by significantly increasing dissolved organic C (p < 0.05). P addition had directly significant negative effect on LFOC and SOC (p < 0.05). In conclusion, six-year N deposition enhances soil C and N sequestration while the P enrichment reduces the content of soil C, N fractions and stability in Castanopsis sclerophylla forests. The results provide a scientific basis for predicting the soil C sink function of evergreen broad-leaved forest ecosystem under the background of future climate change. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

17 pages, 1110 KB  
Article
Environmental Behavior of Novel “Smart” Anti-Corrosion Nanomaterials in a Global Change Scenario
by Mariana Bruni, Joana Figueiredo, Fernando C. Perina, Denis M. S. Abessa and Roberto Martins
Environments 2025, 12(8), 264; https://doi.org/10.3390/environments12080264 - 31 Jul 2025
Viewed by 1248
Abstract
Maritime corrosion is a global problem often retarded through protective coatings containing corrosion inhibitors (CIs). ZnAl layered double hydroxides (LDH) have been used to immobilize CIs, which can reduce their early leaching and, thus, foster long-term corrosion protection. However, the environmental behavior of [...] Read more.
Maritime corrosion is a global problem often retarded through protective coatings containing corrosion inhibitors (CIs). ZnAl layered double hydroxides (LDH) have been used to immobilize CIs, which can reduce their early leaching and, thus, foster long-term corrosion protection. However, the environmental behavior of these nanomaterials remains largely unknown, particularly in the context of global changes. The present study aims to assess the environmental behavior of four anti-corrosion nanomaterials in an ocean acidification scenario (IPCC SSP3-7.0). Three different concentrations of the nanostructured CIs (1.23, 11.11, and 100 mg L−1) were prepared and maintained at 20 °C and 30 °C in artificial salt water (ASW) at two pH values, with and without the presence of organic matter. The nanomaterials’ particle size and the release profiles of Al3+, Zn2+, and anions were monitored over time. In all conditions, the hydrodynamic size of the dispersed nanomaterials confirmed that the high ionic strength favors their aggregation/agglomeration. In the presence of organic matter, dissolved Al3+ increased, while Zn2+ decreased, and increased in the ocean acidification scenario at both temperatures. CIs were more released in the presence of humic acid. These findings demonstrate the influence of the tested parameters in the nanomaterials’ environmental behavior, leading to the release of metals and CIs. Full article
Show Figures

Figure 1

18 pages, 1290 KB  
Article
The Impact of Substituting Chalk with Fly Ash in Formulating a Two-Component Polyurethane Adhesive on Its Physicochemical and Mechanical Properties
by Edyta Pęczek, Renata Pamuła, Żaneta Ciastowicz, Paweł Telega, Łukasz Bobak and Andrzej Białowiec
Materials 2025, 18(15), 3591; https://doi.org/10.3390/ma18153591 - 30 Jul 2025
Viewed by 538
Abstract
This study aimed to evaluate the effect of replacing chalk with fly ash in a two-component polyurethane (2C PU) adhesive on its physicochemical, mechanical, and environmental properties, as a practical application of circular economy principles. Six adhesive formulations were prepared, each containing a [...] Read more.
This study aimed to evaluate the effect of replacing chalk with fly ash in a two-component polyurethane (2C PU) adhesive on its physicochemical, mechanical, and environmental properties, as a practical application of circular economy principles. Six adhesive formulations were prepared, each containing a chalk-to-fly ash ratio as a filler. The study evaluated rheological, mechanical, thermal, and environmental parameters. Mechanical tests confirmed cohesive failure within the bonded material, indicating that the bond strength at the adhesive–substrate interface exceeded the internal strength of the substrate. The highest contaminant elution levels recorded were 0.62 mg/kg for molybdenum and 0.20 mg/kg for selenium, which represent only 6.2% and 40% of the regulatory limits, respectively. Dissolved organic carbon (DOC) and total dissolved solids (TDS) did not exceed 340 mg/kg and 4260 mg/kg, respectively. GC-MS analysis did not reveal the presence of prominent volatile organic compound emissions. Initial screening suggests possible compatibility with low-emission certification schemes (e.g., A+, AgBB, EMICODE®), though confirmation requires further quantitative testing. The results demonstrate that fly ash can be an effective substitute for chalk in polyurethane adhesives, ensuring environmental compliance and maintaining functional performance while supporting the principles of the circular economy. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

17 pages, 2126 KB  
Article
Stable Carbon and Nitrogen Isotope Signatures in Three Pondweed Species—A Case Study of Rivers and Lakes in Northern Poland
by Zofia Wrosz, Krzysztof Banaś, Marek Merdalski and Eugeniusz Pronin
Plants 2025, 14(15), 2261; https://doi.org/10.3390/plants14152261 - 22 Jul 2025
Viewed by 454
Abstract
Aquatic plants, as sedentary lifestyle organisms that accumulate chemical substances from their surroundings, can serve as valuable indicators of long-term anthropogenic pressure. In Poland, water monitoring is limited both spatially and temporally, which hampers a comprehensive assessment of water quality. Since the implementation [...] Read more.
Aquatic plants, as sedentary lifestyle organisms that accumulate chemical substances from their surroundings, can serve as valuable indicators of long-term anthropogenic pressure. In Poland, water monitoring is limited both spatially and temporally, which hampers a comprehensive assessment of water quality. Since the implementation of the Water Framework Directive (WFD), biotic elements, including macrophytes, have played an increasingly important role in water monitoring. Moreover, running waters, due to their dynamic nature, are susceptible to episodic pollution inputs that may be difficult to detect during isolated, point-in-time sampling campaigns. The analysis of stable carbon (δ13C) and nitrogen (δ15N) isotope signatures in macrophytes enables the identification of elemental sources, including potential pollutants. Research conducted between 2008 and 2011 encompassed 38 sites along 15 rivers and 108 sites across 21 lakes in northern Poland. This study focused on the isotope signatures of three pondweed species: Stuckenia pectinata, Potamogeton perfoliatus, and Potamogeton crispus. The results revealed statistically significant differences in the δ13C and δ15N values of plant organic matter between river and lake environments. Higher δ15N values were observed in rivers, whereas higher δ13C values were recorded in lakes. Spearman correlation analysis showed a negative relationship between δ13C and δ15N, as well as correlations between δ15N and the concentrations of Ca2+ and HCO3. A positive correlation was also found between δ13C and dissolved oxygen levels. These findings confirm the utility of δ13C and, in particular, δ15N as indicators of anthropogenic eutrophication, including potentially domestic sewage input and its impact on aquatic ecosystems. Full article
Show Figures

Figure 1

21 pages, 3984 KB  
Article
Organic Acid Leaching of Black Mass with an LFP and NMC Mixed Chemistry
by Marc Simon Henderson, Chau Chun Beh, Elsayed Oraby and Jacques Eksteen
Recycling 2025, 10(4), 145; https://doi.org/10.3390/recycling10040145 - 21 Jul 2025
Viewed by 880
Abstract
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide [...] Read more.
There is an increasing demand for the development of efficient and sustainable battery recycling processes. Currently, many recycling processes rely on toxic inorganic acids to recover materials from high-value battery chemistries such as lithium nickel manganese cobalt oxides (NMCs) and lithium cobalt oxide (LCOs). However, as cell manufacturers seek more cost-effective battery chemistries, the value of the spent battery value chain is increasingly diluted by chemistries such as lithium iron phosphate (LFPs). These cheaper alternatives present a difficulty when recycling, as current recycling processes are geared towards dealing with high-value chemistries; thus, the current processes become less economical. To date, much research is focused on treating a single battery chemistry; however, often, the feed material entering a battery recycling facility is contaminated with other battery chemistries, e.g., LFP feed contaminated with NMC, LCO, or LMOs. This research aims to selectively leach various battery chemistries out of a mixed feed material with the aid of a green organic acid, namely oxalic acid. When operating at the optimal conditions (2% solids, 0.25 M oxalic acid, natural pH around 1.15, 25 °C, 60 min), this research has proven that oxalic acid can be used to selectively dissolve 95.58% and 93.57% of Li and P, respectively, from a mixed LFP-NMC mixed feed, all while only extracting 12.83% of Fe and 8.43% of Mn, with no Co and Ni being detected in solution. Along with the high degree of selectivity, this research has also demonstrated, through varying the pH, that the selectivity of the leaching system can be altered. It was determined that at pH 0.5 the system dissolved both the NMC and LFP chemistries; at a pH of 1.15, the LFP chemistry (Li and P) was selectively targeted. Finally, at a pH of 4, the NMC chemistry (Ni, Co and Mn) was selectively dissolved. Full article
Show Figures

Graphical abstract

20 pages, 8459 KB  
Article
Membrane Processes for Remediating Water from Sugar Production By-Product Stream
by Amal El Gohary Ahmed, Christian Jordan, Eva Walcher, Selma Kuloglija, Reinhard Turetschek, Antonie Lozar, Daniela Tomasetig and Michael Harasek
Membranes 2025, 15(7), 207; https://doi.org/10.3390/membranes15070207 - 12 Jul 2025
Viewed by 811
Abstract
Sugar production generates wastewater rich in dissolved solids and organic matter, and improper disposal poses severe environmental risks, exacerbates water scarcity, and creates regulatory challenges. Conventional treatment methods, such as evaporation and chemical precipitation, are energy-intensive and often ineffective at removing fine particulates [...] Read more.
Sugar production generates wastewater rich in dissolved solids and organic matter, and improper disposal poses severe environmental risks, exacerbates water scarcity, and creates regulatory challenges. Conventional treatment methods, such as evaporation and chemical precipitation, are energy-intensive and often ineffective at removing fine particulates and dissolved impurities. This study evaluates membrane-based separation as a sustainable alternative for water reclamation and sugar recovery from sugar industry effluents, focusing on replacing evaporation with membrane processes, ensuring high permeate quality, and mitigating membrane fouling. Cross-flow filtration experiments were conducted on a lab-scale membrane system at 70 °C to suppress microbial growth, comparing direct reverse osmosis (RO) of the raw effluent to an integrated ultrafiltration (UF)–RO process. Direct RO resulted in rapid membrane fouling. A tight UF (5 kDa) pre-treatment before RO significantly mitigated fouling and improved performance, enabling 28% water recovery and 79% sugar recovery, maintaining permeate conductivity below 0.5 mS/cm, sustaining stable flux, and reducing membrane blocking. Additionally, the UF and RO membranes were tested via SEM, EDS, and FTIR to elucidate the fouling mechanisms. Full article
(This article belongs to the Special Issue Emerging Superwetting Membranes: New Advances in Water Treatment)
Show Figures

Figure 1

18 pages, 2765 KB  
Article
The Effects of Burning Intensity on the Soil C-Related Properties and Mineralogy of Two Contrasting Forest Soils from Chilean National Parks
by Karla Erazo, Clara Martí-Dalmau, David Badía-Villas, Silvia Quintana-Esteras, Blanca Bauluz and Carolina Merino
Fire 2025, 8(7), 277; https://doi.org/10.3390/fire8070277 - 12 Jul 2025
Viewed by 729
Abstract
Forest fires alter multiple soil properties, from those related to the carbon cycle to mineralogy; however, the responses of various soils to thermal impact remain unclear. This study examined the impact of fire-induced heating (300, 600, and 900 °C) on the properties of [...] Read more.
Forest fires alter multiple soil properties, from those related to the carbon cycle to mineralogy; however, the responses of various soils to thermal impact remain unclear. This study examined the impact of fire-induced heating (300, 600, and 900 °C) on the properties of two contrasted soils (Andisol and Inceptisol) with regard to soil organic carbon (SOC), total organic carbon (TOC), dissolved organic carbon (DOC), recalcitrant organic carbon (ROC), soil pH, electrical conductivity (EC), soil water repellency (SWR), soil aggregate stability (SAS), and mineralogy using X-ray diffraction (XRD). SOC and TOC decreased as temperatures increased, with a more pronounced decrease in Andisol (90% loss) than in Inceptisol (80% loss). DOC and SWR peaked at 300 °C but disappeared above 600 °C. Further, ROC increased at 300 °C in both soils, but behaved differently at higher temperatures, remaining stable in Inceptisol and being eliminated in Andisol. Soil pH increased at 600 and 900 °C; meanwhile, EC increased progressively in Andisol but peaked at 300 °C in Inceptisol. SAS remained high in both soils (between 85 and 95%) despite heating. The mineralogical analysis demonstrated how heating induced transformations in iron minerals into more oxidized forms (as hematite and maghemite) in the Andisol, while clay minerals and gibbsite decreased feldspar and quartz accumulation promotion in the Inceptisol. In summary, the initial properties of each soil influenced their respective responses to fire. Full article
Show Figures

Graphical abstract

12 pages, 2220 KB  
Article
The Effects of Tree Species on Soil Organic Carbon Mineralization in Reservoir Water-Level Drawdown Zones
by Jiayi Zhang, Fang Wang, Jia Yang, Yanting Zhang, Li Qiu, Ziting Chen, Xi Wang, Tianya Zhang, Songzhe Li, Jiacheng Tong, Shunbao Lu and Yanjie Zhang
Forests 2025, 16(7), 1145; https://doi.org/10.3390/f16071145 - 11 Jul 2025
Viewed by 369
Abstract
Soil organic carbon (SOC) mineralization is the conversion of SOC to inorganic forms of carbon (C) by microbial decomposition and conversion. It plays an important role in global C cycling. Currently, most of the studies investigating the effects of different tree species on [...] Read more.
Soil organic carbon (SOC) mineralization is the conversion of SOC to inorganic forms of carbon (C) by microbial decomposition and conversion. It plays an important role in global C cycling. Currently, most of the studies investigating the effects of different tree species on SOC mineralization focus on forest ecosystems, and few have focused on reservoir water-level drawdown zones. In this study, we used an indoor incubation method to investigate SOC mineralization in the plantation soils of Glyptostrobus pensilis, Taxodium Zhongshanshan, Taxodium distichum and CK (unplanted plantation) in the reservoir water-level drawdown zones. We aimed to explore the effects of different tree species on the process of SOC mineralization in the reservoir water-level drawdown zones by considering both the biological and chemical processes of the soil. The results showed that the rates of SOC mineralization in the G. pensilis and T. Zhongshanshan plantations were 47% and 37%, respectively, higher than those in CK (p < 0.05), whereas the rate of SOC mineralization in T. distichum soils did not differ from that in CK. The structural equation model’s results showed microbial biomass carbon (MBC) is a key driver of SOC mineralization, while SOC and dissolved organic carbon (DOC) concentrations are also important factors that affect SOC mineralization and follow MBC. Compared to soil biochemical properties, the bacterial community composition has relatively little effect on SOC mineralization. Planted forests can, to a degree, change the biochemical properties of the soil in the reservoir water-level drawdown zones, effectively improving soil pH, and significantly increasing the amount of potential soil C mineralization, the content of SOC and the diversity of the soil bacteria (p < 0.05). Full article
Show Figures

Figure 1

Back to TopTop