Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (980)

Search Parameters:
Keywords = distributed strain measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7253 KB  
Article
Optimization Design of Spaceborne Microstrip Array by Strain Compensation Method Based on Multi-Physics Coupling Analysis
by Kaihang Fan, Kui Huang, Qi Xiao, Shuting Wang, Hao Liu and Huilin Wang
Electronics 2025, 14(21), 4255; https://doi.org/10.3390/electronics14214255 - 30 Oct 2025
Abstract
During orbital operations, spaceborne microstrip antennas are continuously exposed to solar radiation and the cold thermal sink of space, enduring extreme temperature variations. These extreme temperature variations induce significant thermal stress, which leads to deformation in spaceborne antennas, inevitably degrading their operational performance. [...] Read more.
During orbital operations, spaceborne microstrip antennas are continuously exposed to solar radiation and the cold thermal sink of space, enduring extreme temperature variations. These extreme temperature variations induce significant thermal stress, which leads to deformation in spaceborne antennas, inevitably degrading their operational performance. To address this issue, an optimized design method for antenna array structure based on strain compensation is proposed in this paper. The proposed method uses the COMSOL Multiphysics 6.2 to analyze thermal-structural-electromagnetic coupling behavior of spaceborne microstrip arrays under extreme temperature conditions. The simulation quantifies the thermal-strain distribution. Accordingly, different slits are introduced in regions of high-strain concentration, effectively redistributing the strain to minimize thermal deformation. This optimized configuration maintains superior electrical performance while significantly enhancing thermal stability. Both simulation and measurement results verify the effectiveness of the proposed optimization design method. Notably, the proposed method offers a novel solution for mitigating thermal-induced performance degradation in spaceborne antenna systems without requiring active thermal control. Full article
Show Figures

Figure 1

21 pages, 27385 KB  
Article
Bridging Cost and Performance in Cutting Force Measurement: A PVDF-Based Universal Plate Dynamometer
by Giovanni Totis, Alessandra Bordon, Federico Scalzo and Marco Sortino
Sensors 2025, 25(21), 6645; https://doi.org/10.3390/s25216645 - 30 Oct 2025
Abstract
Cutting force measurement plays a fundamental role in machining research and industrial applications, but existing dynamometers present important trade-offs between cost, stiffness, and dynamic bandwidth. Strain gauge devices are inexpensive but too flexible for high-speed operations, whereas piezoelectric systems provide excellent accuracy and [...] Read more.
Cutting force measurement plays a fundamental role in machining research and industrial applications, but existing dynamometers present important trade-offs between cost, stiffness, and dynamic bandwidth. Strain gauge devices are inexpensive but too flexible for high-speed operations, whereas piezoelectric systems provide excellent accuracy and bandwidth at prohibitive costs. This work presents the design, construction, and validation of a novel plate dynamometer based on polyvinylidene fluoride (PVDF) sensors, aimed at providing an effective alternative having an intermediate cost and suitable for advanced milling applications. The device integrates eight symmetrically arranged PVDF films in a stiff steel structure, complemented by four accelerometers for inertial compensation. A finite-element analysis confirmed favorable stress distribution at the PVDF contact surfaces and high resonance frequencies (under ideal clamping conditions). Modal tests demonstrated that uncompensated PVDF signals offer limited bandwidth, but the application of the Universal Inverse Filter (UIF) extended the usable bandwidth to 5 kHz along direct directions and up to 0.3–4 kHz along cross directions, approaching the performance of piezoelectric reference devices. Milling tests under diverse cutting conditions further validated the new device. Overall, the proposed device bridges the gap between low-cost strain gauge and high-performance piezoelectric dynamometers, offering a versatile and promising solution for both laboratory research and industrial applications. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

20 pages, 4789 KB  
Article
Effect of Hardening Rate on the Bendability and Fracture Response of AA6082 Aluminum Extrusions in the VDA238-100 Tight Radius Bend Test
by Jacqueline Noder, Kenneth Cheong, Cliff Butcher, Paul Rometsch and Warren J. Poole
Metals 2025, 15(11), 1199; https://doi.org/10.3390/met15111199 - 28 Oct 2025
Viewed by 156
Abstract
Understanding the microstructure–property relationship in aluminum extrusions is crucial to leverage their potential in automotive lightweighting. The sensitivity of the processing history to the microstructure and through-thickness variations poses a major challenge since it leads to strong directionality in plasticity and fracture. Reliable [...] Read more.
Understanding the microstructure–property relationship in aluminum extrusions is crucial to leverage their potential in automotive lightweighting. The sensitivity of the processing history to the microstructure and through-thickness variations poses a major challenge since it leads to strong directionality in plasticity and fracture. Reliable characterization of the mechanical response under relevant stress states is crucial for the development of modeling strategies and performance ranking in alloy design. To this end, tensile and 3-point bend tests were performed for an aluminum extrusion produced on a laboratory-scale extrusion press at Rio Tinto Aluminium. Direct measurements of surface strains during bending using stereoscopic digital image correlation revealed that a larger bend angle in the VDA238-100 test does not necessarily imply a higher fracture strain. The T4 sample tested in the extrusion direction sustained a bend angle of 104° compared to 68° in T6 for the same nominal bend severity (ratio of sheet thickness to punch radius), despite comparable major fracture strains of 0.60 and 0.58, respectively. It is proposed that the work-hardening behavior governs the strain distribution on the outer bend surface. The higher hardening rate in the T4 condition helped distribute deformation in the bend zone more uniformly. This delayed fracture to larger bend angles since strain is accumulated at a lower rate. To assess whether the effect of the hardening behavior is manifest at a microstructural lengthscale, microcomputed tomography (μ-CT) scans were conducted on interrupted bend samples. The distribution and severity of damage in the form of cracks on the outer bend surface were distinct to the temper and thus the hardening rate. Full article
Show Figures

Figure 1

22 pages, 6493 KB  
Article
Determination of HSS Model Parameters for Soft Clays in Hangzhou: Statistical Analysis and Engineering Validation
by Xing Zheng, Xiaowu Wang, Kanmin Shen and Xiaoqiang Gu
Buildings 2025, 15(21), 3886; https://doi.org/10.3390/buildings15213886 - 27 Oct 2025
Viewed by 141
Abstract
The hardening soil model with small-strain stiffness (HSS model), capturing nonlinear stiffness of soils at small strains, offers advantages for deformation analysis of tunnels or deep excavations in soft clay areas such as Hangzhou City. However, its complex parameters are rarely determinable via [...] Read more.
The hardening soil model with small-strain stiffness (HSS model), capturing nonlinear stiffness of soils at small strains, offers advantages for deformation analysis of tunnels or deep excavations in soft clay areas such as Hangzhou City. However, its complex parameters are rarely determinable via conventional tests, and regional geological differences render parameter determination methods of other areas inapplicable to Hangzhou. To address this issue, this paper summarizes the geological genesis, spatial distribution, and physical–mechanical properties of Hangzhou soft clays, and clarifies significance and acquisition of HSS model parameters. Via statistical analysis of existing literature data, the relationships between key HSS model parameters and physical indices (e.g., void ratio) were established. A 3D finite element (FE) simulation of a Hangzhou excavation validated the proposed parameter determination method: simulated lateral retaining structure displacement and surface settlement closely matched field measurements. The simulation results employing the model parameters proposed herein are closer to the measurements than those based on the method of Shanghai, providing guidance for excavation design and geotechnical parameter selection in Hangzhou soft soil region. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 2488 KB  
Article
Research on Distributed Temperature and Bending Sensing Measurement Based on DPP-BOTDA
by Zijuan Liu, Yongqian Li and Lixin Zhang
Photonics 2025, 12(11), 1056; https://doi.org/10.3390/photonics12111056 - 24 Oct 2025
Viewed by 196
Abstract
Traditional single-mode Brillouin optical time-domain analysis systems are inherently limited in terms of sensing capacity, susceptibility to bending loss, and spatial resolution. Multi-core fibers present a promising approach to overcoming these limitations. In this study, a seven-core fiber was utilized, with the central [...] Read more.
Traditional single-mode Brillouin optical time-domain analysis systems are inherently limited in terms of sensing capacity, susceptibility to bending loss, and spatial resolution. Multi-core fibers present a promising approach to overcoming these limitations. In this study, a seven-core fiber was utilized, with the central core and three asymmetrically positioned off-axis cores selected for sensing. The temperature coefficients of the four selected cores were experimentally calibrated as 1.103, 0.962, 1.277, and 0.937 MHz/°C, respectively. By employing differential pulse techniques within the Brillouin distributed sensing system, temperature-compensated bending measurements were achieved with a spatial resolution of 20 cm. The fiber was wound around cylindrical mandrels with diameters of 7 cm, 10 cm, and 15 cm. Experimental results demonstrate effective decoupling of temperature and bending strain, enabling accurate curvature reconstruction. Error analysis reveals a minimum deviation of 0.04% for smaller diameters and 0.68% for larger diameters. Cross-comparison of measurements conducted at varying temperatures confirms the robustness and effectiveness of the proposed temperature compensation method. Full article
Show Figures

Figure 1

19 pages, 559 KB  
Review
Reovirus Infections in Broiler Chickens: A Narrative Review
by George-Andrei Călugărița, Iasmina Luca, Radu-Valentin Gros, Tudor-Mihai Căsălean, Alexandru Gavrilă and Adrian Stancu
Vet. Sci. 2025, 12(11), 1021; https://doi.org/10.3390/vetsci12111021 - 22 Oct 2025
Viewed by 307
Abstract
Infections caused by avian orthoreovirus represent an emerging problem with a major impact on the global poultry industry, especially in the intensive rearing of broilers. This article addresses, in a complex manner, the etiology of some clinical syndromes of interest in poultry farming: [...] Read more.
Infections caused by avian orthoreovirus represent an emerging problem with a major impact on the global poultry industry, especially in the intensive rearing of broilers. This article addresses, in a complex manner, the etiology of some clinical syndromes of interest in poultry farming: malabsorption syndrome and arthritis/tenosynovitis syndrome. Data are presented, starting from the development and physiology of the digestive tract in broiler chickens in the post-hatch period, epidemiological data, clinical signs, morphopathological changes in the intestine, and diagnostic methods in orthoreovirus infections. The development of the digestive tract is influenced by factors such as diet, digestive enzymes, intestinal pH, and intestinal microbiome/virome. Avian orthoreoviruses, belonging to the Reoviridae family, are double-stranded RNA viruses with multiple tropism. Phylogenetic analysis revealed the existence of at least six major genotypes, with a heterogeneous geographical distribution and genetic diversity that complicates control measures with vaccination. Characterization of the intestinal virome of broilers highlights many other enteric viruses, in addition to reoviruses, with pathogenic potential in triggering malabsorption syndrome. Thus, we can state that the etiology of malabsorption syndrome is not unitary, with the association of several viruses with intestinal tropism aggravating the clinical signs. The article describes viral identification methods, including classical techniques and advanced next-generation sequencing (NGS) approaches, used to characterize the intestinal virome and emerging pathogens. Finally, for prophylaxis, autogenous vaccines adapted to local circulating strains are recommended. Frequent genetic recombinations and high antigenic variation require continuous monitoring and constant adaptation of immunization schedules to control the disease. Full article
(This article belongs to the Section Anatomy, Histology and Pathology)
Show Figures

Figure 1

30 pages, 6019 KB  
Review
A Review of Strain-Distributed Optical Fiber Sensors for Geohazard Monitoring: An Update
by Agnese Coscetta, Ester Catalano, Emilia Damiano, Martina de Cristofaro, Aldo Minardo, Erika Molitierno, Lucio Olivares, Raffaele Vallifuoco, Giovanni Zeni and Luigi Zeni
Sensors 2025, 25(20), 6442; https://doi.org/10.3390/s25206442 - 18 Oct 2025
Viewed by 640
Abstract
Geohazards pose significant dangers to human safety, infrastructures, and the environment, highlighting the need for advanced monitoring techniques for early damage detection and structure management. The distributed optical fiber sensors (DFOS) are strain, temperature, and vibration monitoring tools characterized by minimal intrusiveness, accuracy, [...] Read more.
Geohazards pose significant dangers to human safety, infrastructures, and the environment, highlighting the need for advanced monitoring techniques for early damage detection and structure management. The distributed optical fiber sensors (DFOS) are strain, temperature, and vibration monitoring tools characterized by minimal intrusiveness, accuracy, ease of deployment, and the ability to perform measurements with high spatial resolution. Although these sensors rely on well-established measurement techniques, available for over 40 years, their diffusion within monitoring and early warning systems is still limited, and there is a certain mistrust towards them. In this regard, based on several case studies, the implementation of DFOS for early warning of various geotechnical hazards, such as landslides, earthquakes and subsidence, is discussed, providing a comparative analysis of the typical advantages and limitations of the different systems. The results show that real-time monitoring systems based on well-established distributed fiber-optic sensing techniques are now mature enough to enable reliable and long-term geotechnical applications, identifying a market segment that is only minimally saturated by using other monitoring techniques. More challenging remains the application of the technique for vibration detection that still requires improved interrogation technologies and standardized practices before it can be used in large-scale, real-time early warning systems. Full article
(This article belongs to the Special Issue Feature Review Papers in Optical Sensors)
Show Figures

Figure 1

15 pages, 2931 KB  
Article
Low Poisson’s Ratio Measurement on Composites Based on DIC and Frequency Analysis on Tensile Tests
by Luis Felipe-Sesé, Andreas Kenf, Sebastian Schmeer, Elías López-Alba and Francisco Alberto Díaz
J. Compos. Sci. 2025, 9(10), 570; https://doi.org/10.3390/jcs9100570 - 16 Oct 2025
Viewed by 652
Abstract
Accurate determination of elastic properties, especially Poisson’s ratio, is crucial for the design and modeling of composite materials. Traditional methods often struggle with low strain measurements and non-uniform strain distributions inherent in these anisotropic materials. This research work introduces a novel methodology that [...] Read more.
Accurate determination of elastic properties, especially Poisson’s ratio, is crucial for the design and modeling of composite materials. Traditional methods often struggle with low strain measurements and non-uniform strain distributions inherent in these anisotropic materials. This research work introduces a novel methodology that integrates Digital Image Correlation (DIC) with frequency analysis techniques to improve the precision of Poisson’s ratio determination during tensile tests, particularly at low strain ranges. The focus is on the evaluation of two distinct frequency-based approaches: Phase-Based Motion Magnification (PBMM) and Lock-in filtering. DIC + PBMM, while promising for motion amplification, encountered specific challenges in this application, particularly at very low strain amplitudes, leading to increased variability and computational demands. In contrast, the DIC + Lock-in filtering method proved highly effective. It provided stable, filtered strain distributions, significantly reducing measurement uncertainty compared to traditional DIC and other conventional methods like strain gauges and Video Extensometers. This study demonstrates the robust potential of Lock-in filtering for characterizing subtle periodic mechanical behaviors leading to a reduction of approximately 70% in the standard deviation of the measurement. This work lays a strong foundation for more precise and reliable material characterization, crucial for advancing composite design and engineering applications. Full article
Show Figures

Figure 1

32 pages, 17501 KB  
Article
Stress Concentration-Based Material Leakage Fault Online Diagnosis of Vacuum Pressure Vessels Based on Multiple FBG Monitoring Data
by Zhe Gong, Fu-Kang Shen, Yong-Hao Liu, Chang-Lin Yan, Jia Rui, Peng-Fei Cao, Hua-Ping Wang and Ping Xiang
Materials 2025, 18(20), 4697; https://doi.org/10.3390/ma18204697 - 13 Oct 2025
Viewed by 304
Abstract
Timely detection of leaks is essential for the safe and reliable operation of pressure vessels used in superconducting systems, aerospace, and medical equipment. To address the lack of efficient online leak detection methods for such vessels, this paper proposes a quasi-distributed fiber Bragg [...] Read more.
Timely detection of leaks is essential for the safe and reliable operation of pressure vessels used in superconducting systems, aerospace, and medical equipment. To address the lack of efficient online leak detection methods for such vessels, this paper proposes a quasi-distributed fiber Bragg grating (FBG) sensing network combined with theoretical stress analysis to diagnose vessel conditions. We analyze the stress–strain distributions of vacuum vessels under varying pressures and examine stress concentration effects induced by small holes; these analyses guided the design and placement of quasi-distributed FBG sensors around the vacuum valve for online leakage monitoring. To improve measurement accuracy, we introduce a vibration correction algorithm that mitigates pump-induced vibration interference. Comparative tests under three leakage scenarios demonstrate that when leakage occurs during vacuum extraction, the proposed system can reliably detect the approximate leak location. The results indicate that combining an FBG sensing network with stress concentration analysis enables initial localization and assessment of leak severity, providing valuable support for the safe operation and rapid maintenance of vacuum pressure vessels. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

29 pages, 5820 KB  
Article
Abnormal Vibration Identification of Metro Tunnels on the Basis of the Spatial Correlation of Dynamic Strain from Dense Measurement Points of Distributed Sensing Optical Fibers
by Hong Han, Xiaopei Cai and Liang Gao
Sensors 2025, 25(20), 6266; https://doi.org/10.3390/s25206266 - 10 Oct 2025
Viewed by 229
Abstract
The failure to accurately identify abnormal vibrations in protected metro areas is a serious threat to the operational safety of metro tunnels and trains, and there is currently no suitable method for effectively improving the accuracy of abnormal vibration identification. To address this [...] Read more.
The failure to accurately identify abnormal vibrations in protected metro areas is a serious threat to the operational safety of metro tunnels and trains, and there is currently no suitable method for effectively improving the accuracy of abnormal vibration identification. To address this issue, an accurate method for identifying abnormal vibrations in a metro reserve based on spatially correlated dense measurement points is proposed. First, by arranging distributed optical fibers along the longitudinal length of a tunnel, dynamic strain vibration signals are extracted via phase-sensitive optical time-domain reflectometry analysis, and analysis of variance (ANOVA) and Pearson correlation analysis are used to jointly downscale the dynamic strain features. On this basis, a spatial correlation between the calculated values of the features of the target measurement points to be updated and its adjacent measurement points is constructed, and the spatial correlation credibility of the dynamic strain features between the dense measurement points and the target measurement points to be updated is calculated via quadratic function weighting and kernel density estimation methods. The weights are calculated, and the eigenvalues of the target measurement points are updated on the basis of the correlation credibility weights between the adjacent measurement points. Finally, a support vector machine (SVM) and back propagation (BP) identification model for the eigenvalues of the target measurement points are constructed to identify the dynamic strain eigenvalues of the abnormal vibrations in the underground tunnel. Numerical simulations and an experiment in an actual tunnel verify the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Distributed Fibre Optic Sensing Technologies and Applications)
Show Figures

Figure 1

22 pages, 4621 KB  
Article
Determination of the Mechanical Tensile Characteristics of Some 3D-Printed Specimens from NYLON 12 CARBON Fiber Material
by Claudiu Babiș, Andrei Dimitrescu, Sorin Alexandru Fica, Ovidiu Antonescu, Daniel Vlăsceanu and Constantin Stochioiu
Technologies 2025, 13(10), 456; https://doi.org/10.3390/technologies13100456 - 8 Oct 2025
Viewed by 387
Abstract
This study investigates the mechanical behavior of Nylon 12 Carbon Fiber specimens manufactured through fused filament fabrication (FFF) for potential integration into light water well drilling rigs. Fifteen tensile test samples were 3D-printed on a MakerBot Method X printer in three orientations: horizontal, [...] Read more.
This study investigates the mechanical behavior of Nylon 12 Carbon Fiber specimens manufactured through fused filament fabrication (FFF) for potential integration into light water well drilling rigs. Fifteen tensile test samples were 3D-printed on a MakerBot Method X printer in three orientations: horizontal, vertical, and lateral. Each specimen was printed with a soluble SR-30 support material, which was subsequently dissolved in an SCA 1200-HT wash station using heated alkaline solution. Following support removal, all samples underwent thermal annealing at 80 °C for 5 h in the printer’s controlled chamber to eliminate residual moisture and improve structural integrity. The annealed specimens were subjected to uniaxial tensile testing using an Instron 8875 electrohydraulic machine, with strain measured by digital image correlation (DIC) on a speckle-patterned gauge section. Key mechanical properties, including Young’s modulus, Poisson’s ratio, yield strength, and ultimate tensile strength, were determined. Finally, a finite element analysis (FEA) was performed using MSC Visual Nastran for Windows to simulate the tensile loading conditions and assess internal stress distributions for each print orientation. The combined experimental and numerical results confirm the feasibility of using additively manufactured parts in demanding engineering applications. Full article
Show Figures

Figure 1

13 pages, 3605 KB  
Article
SWCNT/PEDOT:PSS/SA Composite Yarns with High Mechanical Strength and Flexibility via Wet Spinning for Thermoelectric Applications
by Keisuke Uchida, Yoshiyuki Shinozaki, Hiroto Nakayama, Shuya Ochiai, Yuto Nakazawa and Masayuki Takashiri
Sensors 2025, 25(19), 6202; https://doi.org/10.3390/s25196202 - 7 Oct 2025
Viewed by 508
Abstract
To fabricate thermoelectric generators (TEGs) with high mechanical strength using single-walled carbon nanotubes (SWCNTs), we combined SWCNTs, poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), and sodium alginate (SA) to synthesize flexible SWCNT/PEDOT:PSS/SA composite yarns via wet spinning. The composite yarns were flexible and dense, with a diameter [...] Read more.
To fabricate thermoelectric generators (TEGs) with high mechanical strength using single-walled carbon nanotubes (SWCNTs), we combined SWCNTs, poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), and sodium alginate (SA) to synthesize flexible SWCNT/PEDOT:PSS/SA composite yarns via wet spinning. The composite yarns were flexible and dense, with a diameter of approximately 290 µm. Their tensile strength and breaking strain were 151 MPa and 12.7%, respectively, which were approximately 10 and 4 times those of the SWCNT films. However, the thermoelectric properties of the composite yarns were inferior to those of the SWCNT films. The temperature distribution and output voltage of the fabricated TEG with composite yarns were measured at a heater temperature of 100 °C. The temperature difference generated by the TEG with composite yarns was approximately 75% of that generated by the TEG with SWCNT films because the composite yarn had a smaller specific surface area. The output voltage of the TEG with two composite yarns (0.21 mV) was lower than that of the TEG with two SWCNT films. However, arranging the composite yarns at a high density resulted in an output voltage exceeding that for the TEGs with SWCNT films. These findings are highly beneficial for yarn-based TEGs used in wearable sensors. Full article
(This article belongs to the Special Issue Nanotechnology Applications in Sensors Development)
Show Figures

Figure 1

15 pages, 2939 KB  
Article
DIC-Aided Mechanoluminescent Film Sensor for Quantitative Measurement of Full-Field Strain
by Guoqing Gu, Liya Dai and Liyun Chen
Sensors 2025, 25(19), 6018; https://doi.org/10.3390/s25196018 - 1 Oct 2025
Viewed by 527
Abstract
To break through the bottleneck in the mapping of the mechanoluminescent (ML) intensity field to the strain field, a quantification method for full-field strain measurement based on pixel-level data fusion is proposed, integrating ML imaging with digital image correlation (DIC) to achieve precise [...] Read more.
To break through the bottleneck in the mapping of the mechanoluminescent (ML) intensity field to the strain field, a quantification method for full-field strain measurement based on pixel-level data fusion is proposed, integrating ML imaging with digital image correlation (DIC) to achieve precise reconstruction of the strain field. Experiments are conducted using aluminum alloy specimens coated with ML film sensor on their surfaces. During the tensile process, ML images of the films and speckle images of the specimen backsides are simultaneously acquired. Combined with DIC technology, high-precision full-field strain distributions are obtained. Through spatial registration and region matching algorithms, a quantitative calibration model between ML intensity and DIC strain is established. The research results indicate that the ML intensity and DIC strain exhibit a significant linear correlation (R2 = 0.92). To verify the universality of the model, aluminum alloy notched specimen tests show that the reconstructed strain field is in good agreement with the DIC and finite element analysis results, with an average relative error of 0.23%. This method enables full-field, non-contact conversion of ML signals into strain distributions with high spatial resolution, providing a quantitative basis for studying ML response mechanisms under complex loading. Full article
Show Figures

Figure 1

27 pages, 3454 KB  
Article
Analysis and Design of Anchored Sheet-Pile Walls: Theoretical Comparisons, Experimental Validation, and Practical Procedures
by Eltayeb H. Onsa Elsadig, Tareg Abdalla Abdalla, Turki S. Alahmari, Dafalla A. El Turabi and Ahmed H. A. Yassin
Buildings 2025, 15(19), 3527; https://doi.org/10.3390/buildings15193527 - 1 Oct 2025
Viewed by 651
Abstract
Anchored sheet-pile walls (ASPWs) are widely used as earth-retaining structures in engineering practice. The difficulty in analyzing sheet piles arises because the loading on the wall is a function of the deformation of the soil and the sheet-pile configuration. This paper discusses the [...] Read more.
Anchored sheet-pile walls (ASPWs) are widely used as earth-retaining structures in engineering practice. The difficulty in analyzing sheet piles arises because the loading on the wall is a function of the deformation of the soil and the sheet-pile configuration. This paper discusses the predictions of different theoretical solutions for ASPWs, and it briefly presents and discusses four main theories of ASPWs: the two distribution theories, the finite element method, and Rowe’s theory. The effect of different influencing factors on the behavior and design of ASPWs is also examined. The above theoretical solutions are evaluated experimentally through measurements of strains, deflections, tie-rod force, and tie-rod yield on a small-scale sheet-pile model tested in a sandbox. The four theories provide an acceptable analytical solution for the ASPW problem under the given conditions. However, no theory fully predicts the behavior of ASPWs over the entire range of the different design parameters: soil conditions, sheet-pile flexibility, dredge depth, anchor location, and anchor yield. This paper proposes simple charts and tables for SPW design based on extrapolation between distribution theories while accounting for sheet pile flexibility and other influencing parameters. Illustrating examples for the proposed design procedure are provided. Full article
Show Figures

Figure 1

14 pages, 2128 KB  
Article
Safety Monitoring Method for Pipeline Crossing the Mining Area Based on Vibration–Strain Fusion Analysis
by Jianping He, Tongchun Qin, Zhe Zhang, Ronggui Liu and Yuping Bao
Micromachines 2025, 16(9), 1074; https://doi.org/10.3390/mi16091074 - 22 Sep 2025
Viewed by 644
Abstract
The overlying rock layers in a mining area may collapse or settle, subjecting pipelines to uneven forces that can lead to deformation or even fracture. This paper proposes a pipeline safety monitoring method that combines fiberoptic vibration and strain sensing to detect vibrations [...] Read more.
The overlying rock layers in a mining area may collapse or settle, subjecting pipelines to uneven forces that can lead to deformation or even fracture. This paper proposes a pipeline safety monitoring method that combines fiberoptic vibration and strain sensing to detect vibrations and deformations caused by rock layer collapse in mining zones. First, pipeline deformation monitoring under unknown force directions was investigated using fiber Bragg grating (FBG) sensing technology. Second, we constructed a mining area pipeline model and conducted vibration/deformation monitoring tests employing FBG sensors, distributed Brillouin strain sensing, and distributed fiberoptic vibration sensing technologies. The experimental results demonstrate that FBG sensor arrays deployed at 90-degree intervals can effectively identify the pipeline’s primary force direction and maximum strain, with direction angle errors of less than 5.2%. The integrated analysis of vibration and strain data enables accurate identification and measurement of extended vibration responses and pipeline deformations in open-air zones. This study establishes a comprehensive monitoring framework for ensuring pipeline safety in mining areas. Full article
(This article belongs to the Special Issue Fiber-Optic Technologies for Communication and Sensing)
Show Figures

Figure 1

Back to TopTop