Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (310)

Search Parameters:
Keywords = domestic hot water heating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4983 KB  
Article
Multi-Energy Interplay in a Planned District Community with a Large Share of PV-Produced Electricity in a Nordic Climate
by Vartan Ahrens Kayayan, Diogo Cabral, Mattias Gustafsson and Fatemeh Johari
Buildings 2025, 15(17), 3112; https://doi.org/10.3390/buildings15173112 - 30 Aug 2025
Viewed by 62
Abstract
The world’s energy system faces major challenges due to transitions from fossil fuels to other alternatives. An important part of the transition is energy-efficient homes that partially produce their own electricity. This paper explores the energy interactions between heating, cooling, and electricity usage [...] Read more.
The world’s energy system faces major challenges due to transitions from fossil fuels to other alternatives. An important part of the transition is energy-efficient homes that partially produce their own electricity. This paper explores the energy interactions between heating, cooling, and electricity usage in a planned residential area in Sweden where a significant portion of the electricity is generated by solar PV systems. Conventional district heating and cooling systems and a low-temperature district heating system that uses return cascading technology were compared with heat pump systems. Electricity sharing in an energy community has a low impact on the calculated national energy efficiency metric. It is also shown that electrifying space heating with heat pumps improves the calculated energy efficiency metric, but heat pumps increase the peak power demand in the winter due to high heat demand and a lack of solar production. Using heat pumps for heating domestic hot water and compressor chillers for cooling offers a more balanced use/production of electricity since the electric cooling load is mostly met by local solar production, as shown by an increase in self-consumption of 8% and stable self-sufficiency. There is, however, a time mismatch between production and the peak electricity demand, which could be addressed by using energy storage systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

30 pages, 5906 KB  
Article
An Assessment of the Energy Performance and Initial Investment Cost of SDHW Systems: A Case Study of University Dormitory in Northern Cyprus
by Alpay Akgüç and Dilek Yasar
Buildings 2025, 15(17), 3042; https://doi.org/10.3390/buildings15173042 - 26 Aug 2025
Viewed by 389
Abstract
This simulation-based theoretical study addresses a critical gap by jointly assessing the technical performance and long-term economic sustainability of Solar Domestic Hot Water (SDHW) systems in economically volatile, import-dependent regions. Focusing on a fully operational system in a 700-bed dormitory at Middle East [...] Read more.
This simulation-based theoretical study addresses a critical gap by jointly assessing the technical performance and long-term economic sustainability of Solar Domestic Hot Water (SDHW) systems in economically volatile, import-dependent regions. Focusing on a fully operational system in a 700-bed dormitory at Middle East Technical University, Northern Cyprus Campus, TRNSYS 17 simulations were combined with a 15-year (2010–2024) cost trend analysis considering currency depreciation and construction price escalation. Results demonstrate that collector fluid temperatures exceeded 80 °C from April to October, maintaining domestic hot water above 60 °C for over seven months annually and reducing auxiliary heating demand by approximately 50%, translating into substantial annual energy savings. Economically, system component costs rose by 26–75 times, with circulation pumps showing the steepest increase (75×), highlighting vulnerabilities in import-dependent supply chains. Despite these cost escalations, the region’s high solar irradiation enables a competitive long-term investment profile, with potential payback periods remaining attractive under supportive policy frameworks. The originality of this work lies in its dual-focus methodology integrating performance modeling with economic resilience analysis, providing actionable insights for policymakers, designers, and investors in Mediterranean and similar climates seeking to balance renewable energy adoption with financial viability. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Graphical abstract

13 pages, 2989 KB  
Article
Employing Low-Concentration Photovoltaic Systems to Meet Thermal Energy Demand in Buildings
by Ali Hasan Shah, Ahmed Hassan, Shaimaa Abdelbaqi, Mahmoud Haggag and Mohammad Shakeel Laghari
Buildings 2025, 15(17), 2994; https://doi.org/10.3390/buildings15172994 - 22 Aug 2025
Viewed by 309
Abstract
This study evaluates the energy performance and efficiency of a low-concentration photovoltaic (CPV) system integrated with a phase change material (PCM), referred to as the CPV–PCM system, which stores and delivers thermal energy for building applications. A paraffin-based PCM with a melting point [...] Read more.
This study evaluates the energy performance and efficiency of a low-concentration photovoltaic (CPV) system integrated with a phase change material (PCM), referred to as the CPV–PCM system, which stores and delivers thermal energy for building applications. A paraffin-based PCM with a melting point range of 58–60 °C was selected to align with typical building temperature requirements. The system was tested over three consecutive days in July at Al Ain, United Arab Emirates, under extreme climatic conditions (2100 W/m2 solar irradiance, 35–45 °C ambient temperature), and its performance was compared to standard CPV and traditional tracked PV systems. The results demonstrate that PCM integration significantly enhances thermal regulation, reducing CPV peak temperatures by 38 °C (from 123 °C to 85 °C) and average temperatures by 22 °C (from 88 °C to 66 °C). The CPV–PCM system achieved a total energy efficiency of 60%, doubling that of standard CPV (30%) and tracked PV (25%), with cumulative electrical and thermal energy outputs of 370 Wh and 290 Wh, respectively. This dual electrical–thermal output enables the system to meet building heating demands, such as ~200–300 Wh/m2 for domestic hot water and ~100–150 Wh/m2 for space heating in United Arab Emirates winters, positioning it as a sustainable solution for energy-efficient buildings in arid regions. The findings underscore the advantages of PCM-based thermal control in CPV systems for hot climates, addressing gaps in prior studies focused on moderate conditions. Future research should explore long-term durability, optimized containment techniques, and alternative PCMs to further improve performance. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 1558 KB  
Article
Total Performance in Practice: Energy Efficiency in Modern Developer-Built Housing
by Wiktor Sitek, Michał Kosakiewicz, Karolina Krysińska, Magdalena Daria Vaverková and Anna Podlasek
Energies 2025, 18(15), 4003; https://doi.org/10.3390/en18154003 - 28 Jul 2025
Viewed by 404
Abstract
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building [...] Read more.
Improving the energy efficiency of residential buildings is essential for achieving global climate goals and reducing environmental impact. This study analyzes the Total Performance approach using the example of a modern semi-detached house built by a Polish developer, as an example. The building is designed with integrated systems that minimize energy consumption while maintaining resident comfort. The building is equipped with an air-to-water heat pump, underfloor heating, mechanical ventilation with heat recovery, and automatic temperature control systems. Energy efficiency was assessed using ArCADia–TERMOCAD 8.0 software in accordance with Polish Technical Specifications (TS) and verified by monitoring real-time electricity consumption during the heating season. The results show a PED from non-renewable sources of 54.05 kWh/(m2·year), representing a 23% reduction compared to the Polish regulatory limit of 70 kWh/(m2·year). Real-time monitoring conducted from December 2024 to April 2025 confirmed these results, indicating an actual energy demand of approximately 1771 kWh/year. Domestic hot water (DHW) preparation accounted for the largest share of energy consumption. Despite its dependence on grid electricity, the building has the infrastructure to enable future photovoltaic (PV) installation, offering further potential for emissions reduction. The results confirm that Total Performance strategies are not only compliant with applicable standards, but also economically and environmentally viable. They represent a scalable model for sustainable residential construction, in line with the European Union’s (EU’s) decarbonization policy and the goals of the European Green Deal. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

19 pages, 7472 KB  
Article
Research on the Performance and Energy Saving of Solar-Coupled Air Source Heat Pump Heating System: A Case Study of College Dormitory in Hot Summer and Cold Winter Zone
by Xu Wang, Shidong Wang and Tao Li
Energies 2025, 18(14), 3794; https://doi.org/10.3390/en18143794 - 17 Jul 2025
Viewed by 252
Abstract
As a densely populated area, college student dormitories consume a large amount of electricity every year to heat the domestic hot water used by students. Applying solar energy to hot water systems can effectively alleviate this situation. This paper first conducts a simulation [...] Read more.
As a densely populated area, college student dormitories consume a large amount of electricity every year to heat the domestic hot water used by students. Applying solar energy to hot water systems can effectively alleviate this situation. This paper first conducts a simulation of the hot water load and the calculation of the available area of the solar roof in a dormitory building of a certain university. Then, different solar-coupled air source heat pump systems were designed, and simulation models of the two systems were established. The thermal performance parameters and solar energy utilization of the two systems were discussed, and the energy efficiency, economy, and environmental protection of the two systems were analyzed. The results show that after coupling with the solar collector, the system operation time is shortened by 26.2%, the annual performance coefficient is 3.4, which is 0.8 higher than that of the original system, and the annual heating energy consumption is reduced by 24.4%. In contrast, the annual energy self-sufficiency rate of the photovoltaic coupled with air source heat pump system is 94.6%, achieving nearly zero energy consumption for heating. Full article
Show Figures

Figure 1

16 pages, 2467 KB  
Article
Optimal Collector Tilt Angle to Maximize Solar Fraction in Residential Heating Systems: A Numerical Study for Temperate Climates
by Krzysztof Kupiec and Barbara Król
Sustainability 2025, 17(14), 6385; https://doi.org/10.3390/su17146385 - 11 Jul 2025
Viewed by 523
Abstract
The performance of solar thermal systems for space heating and domestic hot water (DHW) production depends on the tilt angle of solar collectors, which governs the amount and seasonal distribution of captured solar radiation. This study evaluates the impact of fixed collector tilt [...] Read more.
The performance of solar thermal systems for space heating and domestic hot water (DHW) production depends on the tilt angle of solar collectors, which governs the amount and seasonal distribution of captured solar radiation. This study evaluates the impact of fixed collector tilt angles on the annual solar fraction (SF) of a solar heating system designed for a typical single-family house located in Kraków, Poland (50° N latitude). A numerical model based on the f-Chart method was employed to simulate system performance under varying collector areas, storage tank volumes, heat exchanger characteristics, and DHW proportions. The analysis revealed that although total annual irradiation decreases with increasing tilt angle, the SF reaches a maximum at a tilt angle of approximately 60°, which is about 10° higher than the local geographic latitude. This configuration offers a favorable balance between winter energy gain and summer overheating mitigation. The results align with empirical recommendations in the literature and offer practical guidance for optimizing fixed-tilt solar heating systems in temperate climates. Full article
Show Figures

Figure 1

22 pages, 1852 KB  
Review
State-of-the-Art Methodologies for Self-Fault Detection, Diagnosis and Evaluation (FDDE) in Residential Heat Pumps
by Francesco Pelella, Adelso Flaviano Passarelli, Belén Llopis-Mengual, Luca Viscito, Emilio Navarro-Peris and Alfonso William Mauro
Energies 2025, 18(13), 3286; https://doi.org/10.3390/en18133286 - 23 Jun 2025
Viewed by 395
Abstract
The European Union’s 2050 targets for decarbonization and electrification are promoting the widespread integration of heat pumps for space heating, cooling, and domestic hot water in buildings. However, their energy and environmental performance can be significantly compromised by soft faults, such as refrigerant [...] Read more.
The European Union’s 2050 targets for decarbonization and electrification are promoting the widespread integration of heat pumps for space heating, cooling, and domestic hot water in buildings. However, their energy and environmental performance can be significantly compromised by soft faults, such as refrigerant leakage or heat exchanger fouling, which may reduce system efficiency by up to 25%, even with maintenance intervals every two years. As a result, the implementation of self-fault detection, diagnosis, and evaluation (FDDE) tools based on operational data has become increasingly important. The complexity and added value of these tools grow as they progress from simple fault detection to quantitative fault evaluation, enabling more accurate and timely maintenance strategies. Direct fault measurements are often unfeasible due to spatial, economic, or intrusiveness constraints, thus requiring indirect methods based on low-cost and accessible measurements. In such cases, overlapping fault symptoms may create diagnostic ambiguities. Moreover, the accuracy of FDDE approaches depends on the type and number of sensors deployed, which must be balanced against cost considerations. This paper provides a comprehensive review of current FDDE methodologies for heat pumps, drawing insights from the academic literature, patent databases, and commercial products. Finally, the role of artificial intelligence in enhancing fault evaluation capabilities is discussed, along with emerging challenges and future research directions. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

23 pages, 5505 KB  
Article
Experimental Study of a Stationary Parabolic Trough Collector with Modified Absorbers for Domestic Water Heating
by Jihen Mahdhi, Fakher Hamdi, Hossein Ebadi, Abdallah Bouabidi, Ridha Ennetta and Laura Savoldi
Energies 2025, 18(13), 3261; https://doi.org/10.3390/en18133261 - 21 Jun 2025
Viewed by 586
Abstract
The requirement for energy transition through the residential sector has increased research on the dissemination of solar thermal power systems in this area. Parabolic Trough Collector (PTC), as one of the matured solar technologies for thermal power generation, has shown huge potential in [...] Read more.
The requirement for energy transition through the residential sector has increased research on the dissemination of solar thermal power systems in this area. Parabolic Trough Collector (PTC), as one of the matured solar technologies for thermal power generation, has shown huge potential in meeting demands for heating and domestic hot water systems. In this experimental study, several small-scale PTCs have been developed with four alternative absorber shapes: a simple cylindrical absorber, a spiral absorber, and two different configurations of a sinusoidal absorber to examine their performance under domestic application (non-evacuated and non-tracking). The study aims to analyze the applicability of such systems to be used as a water-heating source in buildings and compare the performance of the proposed configurations in terms of thermal efficiency to find the most appropriate design. The experimental results revealed that the simple shape provides a minimum average thermal efficiency of 24%, while the maximum thermal efficiency of 32% is obtained with the spiral shape. Studying various orientations of the sinusoidal shape revealed that thermal efficiencies of 30% and 20% could be achieved using the parallel and the perpendicular shapes, respectively. Finally, a concise economic and environmental analysis is performed to study the proposed systems as solutions for domestic water heating applications, which highlights the suitability of PTCs for integration with future sustainable buildings. Full article
Show Figures

Figure 1

15 pages, 2320 KB  
Article
A Comparative Analysis of Solar Thermal and Photovoltaic Systems with Heat-Pump Integration in a New-Build House Under Controlled Conditions
by Christopher Tsang, Ljubomir Jankovic, William Swan, Richard Fitton and Grant Henshaw
Energies 2025, 18(11), 2988; https://doi.org/10.3390/en18112988 - 5 Jun 2025
Cited by 1 | Viewed by 813
Abstract
This study investigates the relative benefits of solar thermal (ST) and photovoltaic (PV) systems integrated with air-source heat pumps for domestic hot water production in newly built residential buildings. Using calibrated DesignBuilder simulations of “The Future Home” located in Energy House 2.0, an [...] Read more.
This study investigates the relative benefits of solar thermal (ST) and photovoltaic (PV) systems integrated with air-source heat pumps for domestic hot water production in newly built residential buildings. Using calibrated DesignBuilder simulations of “The Future Home” located in Energy House 2.0, an environmental chamber, the study analyzes energy performance and carbon emissions for eight scenarios: (1) baseline heat pump only, (2) heat pump with 4 m2 PV panels, (3) heat pump with 4 m2 ST panels, (4) heat pump with 2 m2 PV + 2 m2 ST panels, and (5–8) variants with increased hot water demand. While ST systems directly heat water through thermal energy transfer, PV systems contribute to water heating indirectly by providing electricity to power the heat pump. The results show that the ST system provides 964.6 kWh of thermal energy annually, increasing to 1528 kWh with enhanced hot water demand, while a similarly sized PV system generates 532.5 kWh of electricity. The research reveals that Standard Assessment Procedure methodology’s fixed hot water demand assumptions could significantly underpredict solar thermal benefits, potentially discouraging UK house builders from adopting this technology. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

20 pages, 733 KB  
Article
Energy Optimization in Hotels: Strategies for Efficiency in Hot Water Systems
by Yarelis Valdivia Nodal, Luis Angel Iturralde Carrera, Araceli Zapatero-Gutiérrez, Mario Antonio Álvarez Guerra Plasencia, Royd Reyes Calvo, José M. Álvarez-Alvarado and Juvenal Rodríguez-Reséndiz
Algorithms 2025, 18(6), 301; https://doi.org/10.3390/a18060301 - 22 May 2025
Cited by 1 | Viewed by 755
Abstract
This paper presents a procedure for the energy optimization of domestic hot water (DHW) systems in hotels located in tropical climates that use centralized air conditioning systems. The study aims to maximize heat recovery from chillers and reduce the fuel consumption of auxiliary [...] Read more.
This paper presents a procedure for the energy optimization of domestic hot water (DHW) systems in hotels located in tropical climates that use centralized air conditioning systems. The study aims to maximize heat recovery from chillers and reduce the fuel consumption of auxiliary heaters by optimizing operational variables such as water mass flow in the primary and secondary DHW circuits and outlet temperature of the backup system. The optimization is implemented using genetic algorithms (GA), which enable the identification of the most efficient flow configurations under variable thermal demand conditions. The proposed methodology integrates a thermoenergetic model validated with real operational data and considers the dynamic behavior of hotel occupancy and water demand. The results show that the optimized strategy reduces auxiliary heating use by up to 75%, achieving annual energy savings of 8244 kWh, equivalent to 2.3 tons of fuel, and preventing the emission of 10.5 tons of CO2. This study contributes to the design of sustainable energy systems in the hospitality sector and provides replicable strategies for similar climatic and operational contexts. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

17 pages, 30373 KB  
Article
Experimental Investigation of Heat Pump Modules Limited to 150 g of Refrigerant R290 and a Dedicated Test Rig
by Stephan Preisinger, Michael Lauermann, Micha Schwarzfurtner, Sebastian Fischer, Stephan Kling, Heinz Moisi and Christoph Reichl
Energies 2025, 18(10), 2455; https://doi.org/10.3390/en18102455 - 10 May 2025
Cited by 1 | Viewed by 476
Abstract
Heat pumps are widely regarded as a key technology for sustainable heating, offering a pathway to significantly reduce fossil fuel dependency and combat the climate crisis. However, replacing individual gas boilers with heat pumps in multi-unit residential buildings remains a substantial challenge despite [...] Read more.
Heat pumps are widely regarded as a key technology for sustainable heating, offering a pathway to significantly reduce fossil fuel dependency and combat the climate crisis. However, replacing individual gas boilers with heat pumps in multi-unit residential buildings remains a substantial challenge despite its immense potential to lower urban greenhouse gas emissions. To address this, the following paper describes the development of a compact, modular heat pump system designed to replace conventional gas boilers, focusing on the building and testing of a prototype for such a modular heat pump system. The prototype supports multiple functionalities, including space heating, cooling, and domestic hot water production. The performance advantages of two different compressor technologies were exploited to optimize the efficiency of the complete system and the pressure lifts associated with applications for heating and domestic hot water production. Thus, measurements were conducted across a range of operating points, comparing different heat pump module types. In the case of the piston compressor module, the Carnot efficiency was in the range of 47.2% to 50.4%. The total isentropic efficiency for floor heating and domestic hot water production was above 0.45 for both piston and rotary compressors. Full article
(This article belongs to the Special Issue Advances in Refrigeration and Heat Pump Technologies)
Show Figures

Figure 1

24 pages, 3641 KB  
Article
MATLAB Simulink-Based Modelling and Performance Analysis of District Heating Substations for Renewable Energy Integration
by Gyula Richárd Kiss, Miklós Horváth and Zoltán Szánthó
Energies 2025, 18(9), 2370; https://doi.org/10.3390/en18092370 - 6 May 2025
Cited by 1 | Viewed by 1200
Abstract
Sustainable and energy-efficient district heating systems are essential for reducing carbon emissions and improving building energy performance. This study presents a MATLAB (Version: 2024b) Simulink-based modelling and performance analysis approach for evaluating district heating substations, focusing on lowering the primary return temperature to [...] Read more.
Sustainable and energy-efficient district heating systems are essential for reducing carbon emissions and improving building energy performance. This study presents a MATLAB (Version: 2024b) Simulink-based modelling and performance analysis approach for evaluating district heating substations, focusing on lowering the primary return temperature to support renewable energy integration. The analysis investigates the role of heat exchanger configurations and the effects of varying mass flow rates and domestic hot water (DHW) consumption. Three substation designs are examined. Version 1 (v1) includes three heat exchangers with a single DHW storage charge and circulation pump; version 2 (v2) has two heat exchangers with a similar pump arrangement; and version 3 (v3) features three heat exchangers with separate DHW circulation and storage charge pumps. Based on the simulation results, the v1 configuration demonstrated the most favourable performance in terms of primary return temperature reduction. The v2 configuration resulted in the highest return temperatures among the three, whereas the thermal performance of v3 was intermediate, falling between the outcomes of v1 and v2. However, the v3 configuration requires further optimization to enhance its primary return temperature reduction performance and achieve more effective functioning under varying operating conditions. The comparison highlights that optimised district heating substation design can reduce return temperatures. Lower return temperatures improve system efficiency and enable greater integration of renewable energy sources. Full article
Show Figures

Figure 1

24 pages, 3645 KB  
Article
Renewable Energy Use for Conversion of Residential House into an Off-Grid Building—Case Study
by Artur Jachimowski, Wojciech Luboń, Zofia Michlowicz, Dominika Dawiec, Mateusz Wygoda, Marcin Paprocki, Paweł Wyczesany, Grzegorz Pełka and Paweł Jastrzębski
Energies 2025, 18(9), 2301; https://doi.org/10.3390/en18092301 - 30 Apr 2025
Viewed by 568
Abstract
The reduction of harmful emissions is shaping trends across many industries, including architecture and building. With rising ecological awareness and the threat of climate change, architects, construction engineers, and developers are focusing on innovative solutions to minimize the construction sector’s environmental impact. This [...] Read more.
The reduction of harmful emissions is shaping trends across many industries, including architecture and building. With rising ecological awareness and the threat of climate change, architects, construction engineers, and developers are focusing on innovative solutions to minimize the construction sector’s environmental impact. This paper presents a technical and management approach system using renewable energy sources, based on an existing single-family house with known energy consumption. The aim is to achieve energy independence by relying solely on on-site electricity generation and storage, while remaining connected to water and sewage infrastructure. Utilizing renewable energy sources enhances self-sufficiency and investment profitability. The study evaluates the house’s energy consumption to optimally select electricity supply solutions, including a small wind farm and photovoltaic installation integrated with appropriate electricity storage. This is crucial due to the air heat pump used for heating and domestic hot water, which requires electricity. An hourly simulation of the system’s operation over a year verified the adequacy of the selected devices. Additionally, two different locations were analyzed to assess how varying climate and wind conditions influence the design and performance of off-grid energy systems. The analysis showed that solar and wind systems can meet annual energy demand, but limited storage capacity prevents full autonomy. Replacing the heat pump with a biomass boiler reduces electricity use by about 25% and battery needs by 40%, though seasonal energy surpluses remain a challenge. This concept aligns with the goal of achieving climate neutrality by 2050. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 2nd Edition)
Show Figures

Figure 1

21 pages, 7286 KB  
Article
Performance Prediction and Analysis of Solar-Assisted Ground-Source Heat Pump Systems in Typical Rural Areas, China
by Ying Cao, Zhibin Zhang, Guosheng Jia, Jianyu Zhai, Jianke Hao, Meng Zhang and Liwen Jin
Energies 2025, 18(9), 2208; https://doi.org/10.3390/en18092208 - 26 Apr 2025
Viewed by 572
Abstract
The increasingly severe energy crisis and associated environmental issues pose new challenges for the efficient and rational utilization of renewable energy. The solar-assisted ground-source heat pump (SAGSHP) system is a novel heating system that effectively combines the advantages of both solar and geothermal [...] Read more.
The increasingly severe energy crisis and associated environmental issues pose new challenges for the efficient and rational utilization of renewable energy. The solar-assisted ground-source heat pump (SAGSHP) system is a novel heating system that effectively combines the advantages of both solar and geothermal energy. In this study, an SAGSHP system was established through TRNSYS simulation software to provide winter heating and year-round domestic hot water for a residential building. By varying the area of solar collectors (A) and the number (n) and the depth (H) of the borehole heat exchangers (BHEs), the system operational performance, including the system energy consumption, ground temperature attenuation, and heat pump efficiency, was investigated. A comparison with a single ground-source heat pump (GSHP) system was also conducted. After 20 years of operation, the parameter optimization resulted in a reduction of approximately 60 MWh and 70 MWh in system energy consumption, equivalent to saving 7.37 t and 8.60 t of standard coal, respectively. At the same time, the total costs over 20 years can be reduced by 48.20% and 33.77%, respectively. The proposed design method and simulation results can serve as the reference for designing and analyzing the performance of the SAGSHP system. Full article
(This article belongs to the Special Issue Geothermal Energy Heating Systems)
Show Figures

Figure 1

35 pages, 411 KB  
Article
Model Predictive Control of Electric Water Heaters in Individual Dwellings Equipped with Grid-Connected Photovoltaic Systems
by Oumaima Laguili, Julien Eynard, Marion Podesta and Stéphane Grieu
Solar 2025, 5(2), 15; https://doi.org/10.3390/solar5020015 - 25 Apr 2025
Viewed by 570
Abstract
The residential sector is energy-consuming and one of the biggest contributors to climate change. In France, the adoption of photovoltaics (PV) in that sector is accelerating, which contributes to both increasing energy efficiency and reducing greenhouse gas (GHG) emissions, even though the technology [...] Read more.
The residential sector is energy-consuming and one of the biggest contributors to climate change. In France, the adoption of photovoltaics (PV) in that sector is accelerating, which contributes to both increasing energy efficiency and reducing greenhouse gas (GHG) emissions, even though the technology faces several issues. One issue that slows down the adoption of the technology is the “duck curve” effect, which is defined as the daily variation of net load derived from a mismatch between power consumption and PV power generation periods. As a possible solution for addressing this issue, electric water heaters (EWHs) can be used in residential building as a means of storing the PV power generation surplus in the form of heat in a context where users’ comfort—the availability of domestic hot water (DHW)—has to be guaranteed. Thus, the present work deals with developing model-based predictive control (MPC) strategies—nonlinear/linear MPC (MPC/LMPC) strategies are proposed—to the management of EWHs in individual dwellings equipped with grid-connected PV systems. The aim behind developing such strategies is to improve both the PV power generation self-consumption rate and the economic gain, in comparison with rule-based (RB) control strategies. Inasmuch as DHW and power demand profiles are needed, data were collected from a panel of users, allowing the development of profiles based on a quantile regression (QR) approach. The simulation results (over 6 days) highlight that the MPC/LMPC strategies outperform the RB strategies, while guaranteeing users’ comfort (i.e., the availability of DHW). The MPC/LMPC strategies allow for a significant increase in both the economic gain (up to 2.70 EUR) and the PV power generation self-consumption rate (up to 14.30%ps), which in turn allows the CO2 emissions to be reduced (up to 3.92 kg CO2.eq). In addition, these results clearly demonstrate the benefits of using EWHs to store the PV power generation surplus, in the context of producing DHW in residential buildings. Full article
Show Figures

Figure 1

Back to TopTop