Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (330)

Search Parameters:
Keywords = dominant partitioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 12379 KB  
Article
Evaluation of Spatial Variability of Soil Nutrients in Saline–Alkali Farmland Using Automatic Machine Learning Model and Hyperspectral Data
by Meiyan Xiang, Qianlong Rao, Xiaohang Yang, Xiaoqian Wu, Dexi Zhan, Jin Zhang, Miao Lu and Yingqiang Song
ISPRS Int. J. Geo-Inf. 2025, 14(10), 403; https://doi.org/10.3390/ijgi14100403 - 15 Oct 2025
Abstract
Saline–alkali soils represent a significant reserve of arable land, playing a vital role in ensuring national food security. Given that saline–alkali soil has low soil organic matter (SOM) and soil nutrient contents, and that soil quality degradation poses a threat to regional high-quality [...] Read more.
Saline–alkali soils represent a significant reserve of arable land, playing a vital role in ensuring national food security. Given that saline–alkali soil has low soil organic matter (SOM) and soil nutrient contents, and that soil quality degradation poses a threat to regional high-quality agricultural development and ecological balance, this study took coastal saline–alkali land as a case study. It adopted the extreme gradient boosting (XGB) model optimized by the tree-structured Parzen estimator (TPE) algorithm, combined with in situ hyperspectral (ISH) and spaceborne hyperspectral (SBH) data, to predict and map soil organic matter and four soil nutrients: alkali nitrogen (AN), available phosphorus (AP), and available potassium (AK). From the research outputs, one can deduce that superior predictive efficacy is exhibited by the TPE-XGB construct, employing in situ hyperspectral datasets. Among these, available phosphorus (R2 = 0.67) exhibits the highest prediction accuracy, followed by organic matter (R2 = 0.65), alkali-hydrolyzable nitrogen (R2 = 0.56), and available potassium (R2 = 0.51). In addition, the spatial continuity mapping results based on spaceborne hyperspectral data show that SOM, AN, AP, and AK in soil nutrients in the study area are concentrated in the northern, eastern, southern, and riverbank and estuarine delta areas, respectively. The variability of soil nutrients from large to small is phosphorus, potassium, nitrogen, and organic matter. The SHAP (SHapley Additive exPlanations) analysis results reveal that the bands with the greatest contribution to the fitting of SOM, AN, AP, and AK are 612 nm, 571 nm, 1493 nm, and 1308 nm, respectively. Extending into realms of hierarchical partitioning (HP) and variation partitioning (VP), it is discerned that climatic factors (CLI) alongside vegetative aspects (VEG) wield dominant influence upon the spatial differentiation manifest in nutrients. Meanwhile, comparatively diminished are the contributions possessed by terrain (TER) and soil property (SOIL). In summary, this study effectively assessed the significant variation patterns of soil nutrient distribution in coastal saline–alkali soils using the TPE-XGB model, providing scientific basis for the sustainable advancement of agricultural development in saline–alkali coastal regions. Full article
Show Figures

Figure 1

21 pages, 6544 KB  
Article
Optimization of Production Layer Combinations in Multi-Superposed Coalbed Methane Systems Using Numerical Simulation: A Case Study from Western Guizhou and Eastern Yunnan, China
by Fangkai Quan, Hongji Li, Wei Lu, Tao Song, Haiying Wang and Zhengyuan Qin
Processes 2025, 13(10), 3280; https://doi.org/10.3390/pr13103280 - 14 Oct 2025
Abstract
Coalbed methane (CBM) reservoirs in southwestern China are characterized by thick, multi-layered coal sequences partitioned into several independent pressure systems by impermeable strata. Commingled production from multiple coal seams in such multi-superposed CBM systems often suffers from severe inter-layer interference, leading to suboptimal [...] Read more.
Coalbed methane (CBM) reservoirs in southwestern China are characterized by thick, multi-layered coal sequences partitioned into several independent pressure systems by impermeable strata. Commingled production from multiple coal seams in such multi-superposed CBM systems often suffers from severe inter-layer interference, leading to suboptimal gas recovery. To address this challenge, we developed a systematic four-step optimization workflow integrating geological data screening, pressure compartmentalization analysis, and numerical reservoir simulation. The workflow identifies the key “main” coal seams and evaluates various co-production layer combinations to maximize gas recovery while minimizing negative interference. We applied this method to a CBM well (LC-C2) in the Western Guizhou–Eastern Yunnan region, which penetrates three discrete CBM pressure systems. In the case study, single-layer simulations first revealed that one seam (No. 7 + 8) contributed over 30% of the total gas potential, with a few other seams (e.g., No. 18, 13, 4, 16) providing moderate contributions and many seams yielding negligible gas. Guided by these results, we simulated five commingling scenarios of increasing complexity. The optimal scenario was to co-produce the seams from the two higher-pressure systems (a total of six seams) while excluding the low-pressure shallow seams. This optimal six-seam configuration achieved a 10-year cumulative gas production of approximately 2.53 × 106 m3 (about 700 m3/day average)—roughly 75% higher than producing the main seam alone, and even about 15% greater than a scenario involving all available seams. In contrast, including all three pressure systems (ten seams) led to interference effects where the high-pressure seams dominated flow and the low-pressure seams contributed little, resulting in lower overall recovery. The findings demonstrate that more is not always better in multi-seam CBM production. By intelligently selecting a moderate number of compatible seams for co-production, the reservoir’s gas can be extracted more efficiently. The proposed quantitative optimization approach provides a practical tool for designing multi-seam CBM wells and can be broadly applied to similar geologically compartmentalized reservoirs. Full article
Show Figures

Figure 1

22 pages, 6982 KB  
Article
Numerical Investigation on Wave-Induced Boundary Layer Flow over a Near-Wall Pipeline
by Guang Yin, Sindre Østhus Gundersen and Muk Chen Ong
Coasts 2025, 5(4), 40; https://doi.org/10.3390/coasts5040040 - 9 Oct 2025
Viewed by 155
Abstract
Pipelines and power cables are critical infrastructures in coastal areas for transporting energy resources from offshore renewable installations to onshore grids. It is important to investigate the hydrodynamic forces on pipelines and cables and their surrounding flow fields, which are highly related to [...] Read more.
Pipelines and power cables are critical infrastructures in coastal areas for transporting energy resources from offshore renewable installations to onshore grids. It is important to investigate the hydrodynamic forces on pipelines and cables and their surrounding flow fields, which are highly related to their on-bottom stability. The time-varying hydrodynamic forces coefficients and unsteady surrounding flows of a near-seabed pipeline subjected to a wave-induced oscillatory boundary layer flow are studied through numerical simulations. The Keulegan–Carpenter numbers of the oscillatory flow are up to 400, which are defined based on the maximum undisturbed near-bed orbital velocity, the pipeline diameter and the period of the oscillatory flow. The investigated Reynolds number is set to 1×104, defined based on Uw and D. The influences of different seabed roughness ratios ks/D (where ks is the Nikuradse equivalent sand roughness) up to 0.1 on the hydrodynamic forces and the flow fields are considered. Both a wall-mounted pipeline with no gap ratio to the bottom wall and a pipeline with different gap ratios to the wall are investigated. The correlations between the hydrodynamic forces and the surrounding flow patterns at different time steps during one wave cylinder are analyzed by using the force partitioning method and are discussed in detail. It is found that there are influences of the increasing ks/D on the force coefficients at large KC, while for the small KC, the inertial effect from the oscillatory flow dominates the force coefficients with small influences from different ks/D. The FPM analysis shows that the elongated shear layers from the top of the cylinder contribute to the peak values of the drag force coefficients. Full article
Show Figures

Figure 1

13 pages, 1200 KB  
Article
Quantitative Assessment of Retention Mechanisms of Nucleosides on a Bare Silica Stationary Phase in Hydrophilic Interaction Liquid Chromatography (HILIC)
by David Kleiner, David Muscatiello, Zugeily Gutierrez, Vanessa Asare and Yong Guo
Analytica 2025, 6(4), 39; https://doi.org/10.3390/analytica6040039 - 3 Oct 2025
Viewed by 396
Abstract
Nucleosides are of significant interest to biomedical and pharmaceutical research and have been successfully separated in hydrophilic interaction liquid chromatography (HILIC). However, there have been few studies focusing on the retention mechanisms, and detailed retention mechanisms are not clearly understood. The quantitative assessment [...] Read more.
Nucleosides are of significant interest to biomedical and pharmaceutical research and have been successfully separated in hydrophilic interaction liquid chromatography (HILIC). However, there have been few studies focusing on the retention mechanisms, and detailed retention mechanisms are not clearly understood. The quantitative assessment methodology based on the linear relationship between the observed retention factors and the phase ratio has been shown to be a new tool to investigate the retention mechanisms of polar compounds in HILIC. This study evaluated the retention mechanisms of 16 nucleosides on a bare silica column. The retention contributions by partitioning, adsorption, and electrostatic attractions are quantitatively determined, and the main retention mechanism can be unambiguously identified for each nucleoside. The study results indicate that the main retention mechanism can shift with the salt concentration in the mobile phase, but partitioning seems to dominate at higher salt concentrations. In addition, the partitioning coefficients are measured using the quantitative assessment methodology and have a relatively strong correlation with the log P values of the nucleosides. Considering large errors in the log P values for these very polar compounds, the partitioning coefficients measured experimentally in the HILIC system may provide a more accurate measure for polarity assessment. Full article
(This article belongs to the Section Chromatography)
Show Figures

Figure 1

19 pages, 6121 KB  
Article
Natural Variability and External Forcing Factors That Drive Surface Air Temperature Trends over East Asia
by Debashis Nath, Reshmita Nath and Wen Chen
Atmosphere 2025, 16(10), 1113; https://doi.org/10.3390/atmos16101113 - 23 Sep 2025
Viewed by 294
Abstract
Community Earth System Model-Large Ensemble (CESM-LE) simulations are used to partition the Surface Air Temperature (SAT) trends over East Asia into the contribution of external forcing factors and internal variability. In the historical period (1966–2005), the summer SAT trends display a considerable diversity [...] Read more.
Community Earth System Model-Large Ensemble (CESM-LE) simulations are used to partition the Surface Air Temperature (SAT) trends over East Asia into the contribution of external forcing factors and internal variability. In the historical period (1966–2005), the summer SAT trends display a considerable diversity (≤−2 °C to ≥2 °C) across the 35 member ensembles, while under the RCP8.5 scenario, the region is mostly dominated by a strong warming trend (~1.5–2.5 °C/51 years) and touches the ~4 °C mark by the end of the 21st century. In the historical period, the warming is prominent over the Yangtze River basin of China, while under the RCP8.5 scenario, the warming pattern shifts northward towards Mongolia. In the historical period, the Signal-to-Noise Ratio (SNR) is less than 1, while it is higher than 4 under the RCP8.5 scenario, which indicates that, in the early period, internal variability overrides the forced response and vice versa under the RCP8.5 scenario. In addition, over much of the East Asian region, the chances of cooling are relatively high in the historical period, which partially counteracted the warming trend due to external forcing factors. In contrast, under the RCP8.5 scenario, the chances of warming reach ~100% over East Asia due to contributions from the external forcing factors. The novel aspect of the current study is that, in the negative phase (from the mid-1960s to ~2000), the Atlantic Multidecadal Oscillation (AMO) accounts for ~70–80% of the cooling trend or the SAT variability over East Asia, and thereafter, natural variability exhibits a slow increasing trend in the future. However, the contribution of external forcing factors increases from ~55% in 2000 to 95% in 2075 at a rate much faster than natural variability, which is primarily due to increasing downward solar radiation fluxes and albedo feedback on SAT over East Asia. Full article
(This article belongs to the Special Issue Tropical Monsoon Circulation and Dynamics)
Show Figures

Figure 1

26 pages, 2437 KB  
Article
Interphase-Resolved Performance in PA6/TiO2 Nanocomposite Fibers: Four-Phase Geometry Linking Structure to Mechanical and UV Protection
by Hailong Yu, Ping Liu, Xiaohuan Ji, Xiaoze Jiang and Bin Sun
Polymers 2025, 17(18), 2551; https://doi.org/10.3390/polym17182551 - 21 Sep 2025
Viewed by 360
Abstract
Melt-spun PA6/TiO2 fibers with TiO2 modified by silane coupling agents KH550 and KH570 at 0, 1.6, and 4 wt% provide a practical testbed to address three fiber-centric gaps: transferable interphase quantification, interphase-resolved indications of compatibility, and a reproducible kinetics–structure–property link. This [...] Read more.
Melt-spun PA6/TiO2 fibers with TiO2 modified by silane coupling agents KH550 and KH570 at 0, 1.6, and 4 wt% provide a practical testbed to address three fiber-centric gaps: transferable interphase quantification, interphase-resolved indications of compatibility, and a reproducible kinetics–structure–property link. This work proposes, for the first time at fiber scale, a four-phase partition into crystal (c), crystal-adjacent rigid amorphous fraction (RAF-c), interfacial rigid amorphous fraction (RAF-i), and mobile amorphous fraction (MAF), and extracts an interfacial triad consisting of the specific interfacial area (Sv), polymer-only RAF-i fraction expressed per composite volume (Γi), and interphase thickness (ti) from SAXS invariants to establish a quantitative interphase-structure–property framework. A documented SAXS/DSC/WAXS workflow partitions the polymer into the above four components on a polymer-only basis. Upon filling, Γi increases while RAF-c decreases, leaving the total RAF approximately conserved. Under identical cooling, DSC shows the crystallization peak temperature is higher by 1.6–4.3 °C and has longer half-times, indicating enhanced heterogeneous nucleation together with growth are increasingly limited by interphase confinement. At 4 wt% loading, KH570-modified fibers versus KH550-modified fibers exhibit higher α-phase orientation (Hermans factor f(α): 0.697 vs. 0.414) but an ~89.4% lower α/γ ratio. At the macroscale, compared to pure (neat) PA6, 4 wt% KH550- and KH570-modified fibers show tenacity enhancements of ~9.5% and ~33.3%, with elongation decreased by ~31–68%. These trends reflect orientation-driven stiffening accompanied by a reduction in the mobile amorphous fraction and stronger interphase constraints on chain mobility. Knitted fabrics achieve a UV protection factor (UPF) of at least 50, whereas pure PA6 fabrics show only ~5.0, corresponding to ≥16-fold improvement. Taken together, the SAXS-derived descriptors (Sv, Γi, ti) provide transferable interphase quantification and, together with WAXS and DSC, yield a reproducible link from interfacial geometry to kinetics, structure, and properties, revealing two limiting regimes—orientation-dominated and phase-fraction-dominated. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

21 pages, 6273 KB  
Article
The Bacterial Community Characteristics of Hippophae rhamnoides Subsp. sinensis Rousi in Different Distribution Areas of the Qinghai–Tibet Plateau and Their Responses to Habitat Factors
by Pei Gao, Guisheng Ye and Yuhua Ma
Biology 2025, 14(9), 1304; https://doi.org/10.3390/biology14091304 - 21 Sep 2025
Viewed by 375
Abstract
Investigating the compositional characteristics of rhizosphere soil bacterial communities of Chinese seabuckthorn across different distribution areas and their relationship with habitat factors holds significant value for the development and utilization of characteristic medicinal plant resources in the Qinghai–Tibet Plateau. This study targeted rhizosphere [...] Read more.
Investigating the compositional characteristics of rhizosphere soil bacterial communities of Chinese seabuckthorn across different distribution areas and their relationship with habitat factors holds significant value for the development and utilization of characteristic medicinal plant resources in the Qinghai–Tibet Plateau. This study targeted rhizosphere soil from 12 distribution areas of Chinese seabuckthorn on the Qinghai–Tibet Plateau. By integrating measurements of soil and climatic parameters with high-throughput sequencing and redundancy analysis (RDA), the research systematically elucidated the characteristics of rhizosphere bacterial communities and their environmental driving mechanisms. The results revealed that rhizosphere bacterial communities of Chinese seabuckthorn across all 12 distribution areas were dominated by Proteobacteria, Acidobacteriota, and Actinobacteriota. Among them, the R2 habitat exhibited the highest amplicon sequence variant counts (3496), while R1, R8, R9, and R12 habitats showed significantly lower counts. α/β diversity analysis revealed that Shannon, Ace, and Chao1 indices in R2 and R7 habitats were significantly higher than those in R1 and R8. Regarding community aggregation patterns, soil bacterial communities in R1, R9, and R12 habitats exhibited the highest aggregation, while those in R2 and R11 habitats showed relatively lower aggregation. Functional prediction demonstrated that Metabolism dominated across all distribution areas (50.40–52.02%), with the R11 habitat exhibiting exceptionally high metabolic function abundance (>9300). Clustering analysis partitioned the 12 habitats into two distinct groups: one comprising R2, R6, R7, R9, R10, and R11, and the other containing the remaining six habitats. Redundancy analysis (RDA) further clarified that habitat factors, including altitude, soil water content (SWC), east longitude (EAST), and pH, were key drivers shaping bacterial community structure. This study underscores the pivotal regulatory role of environmental factors in shaping rhizosphere microbial diversity, community structure, and functional profiles of Chinese seabuckthorn, thereby providing a valuable scientific foundation for the sustainable development of characteristic medicinal plant resources on the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

48 pages, 12749 KB  
Article
Comparative Analysis of CO2 Sequestration Potential in Shale Reservoirs: Insights from the Longmaxi and Qiongzhusi Formations
by Bo Li, Bingsong Yu, Paul W. J. Glover, Piroska Lorinczi, Kejian Wu, Ciprian-Teodor Panaitescu, Wei Wei, Jingwei Cui and Miao Shi
Minerals 2025, 15(9), 997; https://doi.org/10.3390/min15090997 - 19 Sep 2025
Viewed by 469
Abstract
Shale reservoirs offer significant potential for CO2 geological sequestration due to their extensive nanopore networks and heterogeneous pore systems. This study comparatively assessed the CO2 storage potential of the Lower Silurian Longmaxi and Lower Cambrian Qiongzhusi shales through an integrated approach [...] Read more.
Shale reservoirs offer significant potential for CO2 geological sequestration due to their extensive nanopore networks and heterogeneous pore systems. This study comparatively assessed the CO2 storage potential of the Lower Silurian Longmaxi and Lower Cambrian Qiongzhusi shales through an integrated approach involving organic geochemical analysis, mineralogical characterization through X-ray diffraction (XRD), mercury intrusion capillary pressure (MICP), low-pressure nitrogen and carbon dioxide physisorption, field-emission scanning electron microscopy (FE-SEM), stochastic 3D microstructure reconstruction, multifractal analysis, and three-dimensional succolarity computation. The results demonstrate that mineral assemblages and diagenetic history govern pore preservation: Longmaxi shales, with moderate maturity and shallower burial, retain abundant organic-hosted mesopores, whereas overmature and deeply buried Qiongzhusi shales are strongly compacted and mineralized, reducing pore availability. Multifractal spectra and 3D reconstructions reveal that Longmaxi develops broader singularity spectra and higher succolarity values, reflecting more isotropic meso-/macropore connectivity at the SEM scale, while Qiongzhusi exhibits narrower spectra and lower succolarity, indicating micropore-dominated and anisotropic networks. Longmaxi has nanometer-scale throats (D50 ≈ 10–25 nm) with high CO2 breakthrough pressures (P10 ≈ 0.57 MPa) and ultra-low RGPZ permeability (mean ≈ 1.5 × 10−2 nD); Qiongzhusi has micrometer-scale throats (D50 ≈ 1–3 μm), very low breakthrough pressures (P10 ≈ 0.018 MPa), and much higher permeability (mean ≈ 4.63 × 103 nD). Storage partitioning further differs: Longmaxi’s median total capacity is ≈15.6 kg m−3 with adsorption ≈ 93%, whereas Qiongzhusi’s median is ≈12.8 kg m−3 with adsorption ≈ 70%. We infer Longmaxi favors secure adsorption-dominated retention but suffers from injectivity limits; Qiongzhusi favors injectivity but requires reliable seals. Full article
(This article belongs to the Special Issue CO2 Mineralization and Utilization)
Show Figures

Figure 1

12 pages, 2882 KB  
Article
Spatial Patterns of Stem Tissue Carbon Content in Fagaceae Species from Typical Forests in China
by Chengke Dong, Yulong Liu, Luna Zhang, Zhecheng Liu, Huabin Zhao, Wenjing Li, Xiaoyi Chao and Xingchang Wang
Forests 2025, 16(9), 1478; https://doi.org/10.3390/f16091478 - 18 Sep 2025
Viewed by 334
Abstract
Fagaceae plants are dominant species in subtropical and temperate forests in China. Studying the geographical pattern of their carbon contents can provide key parameter support for high-precision forest carbon accounting. To investigate the spatial variation and influencing factors of carbon content in bark, [...] Read more.
Fagaceae plants are dominant species in subtropical and temperate forests in China. Studying the geographical pattern of their carbon contents can provide key parameter support for high-precision forest carbon accounting. To investigate the spatial variation and influencing factors of carbon content in bark, sapwood, and heartwood, stem samples from 168 individual trees belonging to 41 species of 5 genera in the Fagaceae family were collected from different regions of China. Carbon was determined with the dry combustion method using an elemental analyzer. The variation in carbon content was partitioned, carbon content among tissues were compared, spatial patterns with latitude and longitude and relative importance of interpreting variables were quantified. The carbon content of stem tissues ranged from 411 to 563 mg·g−1. Variation was primarily driven by geographical location (34%–53%), followed by residuals (26%–40%). The inter-species difference also made significant contributions, ranging from 23% (bark) and 21% (sapwood) to 18% (heartwood). Generally, the carbon content among the three tissues followed the order: bark (494 ± 26 mg g−1) (±SD) < sapwood (503 ± 21 mg g−1) < heartwood (509 ± 23 mg g−1). There was an obvious geographical variation pattern in stem carbon content. The carbon content of different tissues gradually decreased with northward latitude and westward longitude. Aridity index (with a relative importance of 22%), longitude (38%), and solar radiation (27%) were the most important driving factors of bark, sapwood, and heartwood C, while the influence of temperature and precipitation was weak. The results highlight the importance of geographical and environmental gradients over taxonomic differences and provide critical parameters for improving forest carbon storage estimates in China. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

31 pages, 7901 KB  
Article
Temporal and Spatial Variations of Energy Exchanging Under Varying Urban Riparian Forest Plant Communities: A Case Study of Shanghai, China
by Yifeng Qin, Caihua Yang, Anze Liang, Changkun Xie, Yajun Zhang, Jing Wang and Shengquan Che
Forests 2025, 16(9), 1466; https://doi.org/10.3390/f16091466 - 15 Sep 2025
Viewed by 398
Abstract
Urban riparian areas serve as vital blue-green infrastructure for climate adaptation, yet mechanisms governing energy exchange remain underexplored. This study aims to quantify the spatiotemporal patterns of sensible heat flux (H) and latent heat flux (LE) across riparian plant communities on daily and [...] Read more.
Urban riparian areas serve as vital blue-green infrastructure for climate adaptation, yet mechanisms governing energy exchange remain underexplored. This study aims to quantify the spatiotemporal patterns of sensible heat flux (H) and latent heat flux (LE) across riparian plant communities on daily and annual scales, and to disentangle the interactive effects of vegetation structure and water bodies on these fluxes. Using year-long field monitoring (September 2020–August 2021) across seven riparian plant communities along the Danshui River in Shanghai, environmental parameters were collected at multiple distances from the river. Interpretable machine learning models (Random Forest with SHAP analysis) were employed to identify key drivers. Results reveal significant diurnal and seasonal dynamics: LE amplitude exceeded H in summer but reversed in winter, with spatial gradients in H and LE strongly influenced by proximity to water bodies in grasslands and broadleaf forests but weakened in conifers. Meteorological factors such as photosynthetically active radiation and sunshine duration dominated daily-scale fluxes, while vegetation structures such as canopy height and leaf area index (LAI) contributed >50% to annual-scale variability. These findings underscore vegetation’s role in modulating energy partitioning, providing a theoretical basis for optimizing riparian plant configurations to enhance microclimate regulation in urban riparian. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

28 pages, 4004 KB  
Article
Influencing Factors and Adaptation Strategies of Stoichiometric Characteristics of Main Shrubs and Herbs in Karst Area at Microhabitat Scale
by Peng Wu, Hua Zhou, Wenjun Zhao, Guangneng Yang, Yingchun Cui, Yiju Hou, Chengjiang Tan, Ting Zhou, Run Liu and Fangjun Ding
Plants 2025, 14(18), 2839; https://doi.org/10.3390/plants14182839 - 11 Sep 2025
Viewed by 354
Abstract
In order to reveal the adaptation strategies of karst forest plants to “high-calcium (Ca)–low-phosphorus (P) heterogeneous” habitats, the dominant shrubs and herbs in the Maolan karst area were taken as the research objects. The carbon (C), nitrogen (N), P, potassium (K), Ca, and [...] Read more.
In order to reveal the adaptation strategies of karst forest plants to “high-calcium (Ca)–low-phosphorus (P) heterogeneous” habitats, the dominant shrubs and herbs in the Maolan karst area were taken as the research objects. The carbon (C), nitrogen (N), P, potassium (K), Ca, and magnesium (Mg) contents of plant components and their stoichiometric ratios in different microhabitats were systematically measured, and the environmental driving factors were analyzed by redundancy analysis (RDA) and variance partitioning analysis (VPA). The results showed that there were no significant differences in the plant nutrient contents and stoichiometric ratios in different microhabitats, but there were significant differences with respect to the components. The contents of N, P, K, and Mg in shrub leaves were significantly higher than those in branches and roots, while the contents of C/N, C/P, and C/K in branches and roots were significantly higher than those in leaves. The K content of herb leaves was significantly higher than that of roots. This reflects the functional differentiation of plant components and the different trade-off strategies for resource acquisition and storage. The stoichiometric characteristics of shrub leaves are dominated by species characteristics, while herb leaves are controlled by leaf tissue density (LTD), and soil-exchangeable Ca has a significant regulatory effect on the roots of both plant forms. Shrubs directly obtain bedrock slow-release nutrients through deep roots penetrating rock crevices and combine high C/N and C/P to improve nutrient utilization efficiency, forming a “mechanical resistance priority–metabolic cost optimization” adaptation strategy. Herbs respond to environmental fluctuations through functional trait plasticity and achieve rapid growth with high specific leaf area (SLA) and low LTD. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition Responses and Stress)
Show Figures

Figure 1

21 pages, 1791 KB  
Article
Multi-Objective Black-Start Planning for Distribution Networks with Grid-Forming Storage: A Control-Constrained NSGA-III Framework
by Linlin Wu, Yinchi Shao, Yu Gong, Yiming Zhao, Zhengguo Piao and Yuntao Cao
Processes 2025, 13(9), 2875; https://doi.org/10.3390/pr13092875 - 9 Sep 2025
Viewed by 471
Abstract
The increasing frequency of climate- and cyber-induced blackouts in modern distribution networks calls for restoration strategies that are both resilient and control-aware. Traditional black-start schemes, based on predefined energization sequences from synchronous machines, are inadequate for inverter-dominated grids characterized by high penetration of [...] Read more.
The increasing frequency of climate- and cyber-induced blackouts in modern distribution networks calls for restoration strategies that are both resilient and control-aware. Traditional black-start schemes, based on predefined energization sequences from synchronous machines, are inadequate for inverter-dominated grids characterized by high penetration of distributed energy resources and limited system inertia. This paper proposes a novel multi-layered black-start planning framework that explicitly incorporates the dynamic capabilities and operational constraints of grid-forming energy storage systems (GFESs). The approach formulates a multi-objective optimization problem solved via the Non-Dominated Sorting Genetic Algorithm III (NSGA-III), jointly minimizing total restoration time, voltage–frequency deviations, and maximizing early-stage load recovery. A graph-theoretic partitioning module identifies restoration subgrids based on topological cohesion, critical load density, and GFES proximity, enabling localized energization and autonomous island formation. Restoration path planning is embedded as a mixed-integer constraint layer, enforcing synchronization stability, surge current thresholds, voltage drop limits, and dispatch-dependent GFES constraints such as SoC evolution and droop-based frequency support. The model is evaluated on a modified IEEE 123-bus system with five distributed GFES units under multiple blackout scenarios. Simulation results show that the proposed method achieves up to 31% faster restoration and 46% higher voltage compliance compared to MILP and heuristic baselines, while maintaining strict adherence to dynamic safety constraints. The framework yields a diverse Pareto frontier of feasible restoration strategies and provides actionable insights into the coordination of distributed grid-forming resources for decentralized black-start planning. These results demonstrate that control-aware, partition-driven optimization is essential for scalable, safe, and fast restoration in the next generation of resilient power systems. Full article
Show Figures

Figure 1

20 pages, 4058 KB  
Article
SCSU–GDO: Superpixel Collaborative Sparse Unmixing with Graph Differential Operator for Hyperspectral Imagery
by Kaijun Yang, Zhixin Zhao, Qishen Yang and Ruyi Feng
Remote Sens. 2025, 17(17), 3088; https://doi.org/10.3390/rs17173088 - 4 Sep 2025
Viewed by 926
Abstract
In recent years, remarkable advancements have been achieved in hyperspectral unmixing (HU). Sparse unmixing, in which models mix pixels as linear combinations of endmembers and their corresponding fractional abundances, has become a dominant paradigm in hyperspectral image analysis. To address the inherent limitations [...] Read more.
In recent years, remarkable advancements have been achieved in hyperspectral unmixing (HU). Sparse unmixing, in which models mix pixels as linear combinations of endmembers and their corresponding fractional abundances, has become a dominant paradigm in hyperspectral image analysis. To address the inherent limitations of spectral-only approaches, spatial contextual information has been integrated into unmixing. In this article, a superpixel collaborative sparse unmixing algorithm with graph differential operator (SCSU–GDO), is proposed, which effectively integrates superpixel-based local collaboration with graph differential spatial regularization. The proposed algorithm contains three key steps. First, superpixel segmentation partitions the hyperspectral image into homogeneous regions, leveraging boundary information to preserve structural coherence. Subsequently, a local collaborative weighted sparse regression model is formulated to jointly enforce data fidelity and sparsity constraints on abundance estimation. Finally, to enhance spatial consistency, the Laplacian matrix derived from graph learning is decomposed into a graph differential operator, adaptively capturing local smoothness and structural discontinuities within the image. Comprehensive experiments on three datasets prove the accuracy, robustness, and practical efficacy of the proposed method. Full article
Show Figures

Figure 1

21 pages, 3453 KB  
Article
Analysis of the Effects of Prey, Competitors, and Human Activity on the Spatiotemporal Distribution of the Wolverine (Gulo gulo) in a Boreal Region of Heilongjiang Province, China
by Yuhan Ma, Xinxue Wang, Binglian Liu, Ruibo Zhou, Dan Ju, Xuyang Ji, Qifan Wang, Lei Liu, Xinxin Liu and Zidong Zhang
Biology 2025, 14(9), 1165; https://doi.org/10.3390/biology14091165 - 1 Sep 2025
Viewed by 650
Abstract
Understanding how endangered carnivores partition spatiotemporal distribution in human-dominated landscapes is pivotal for mitigating biodiversity loss in climate-sensitive boreal ecosystems. Here, we used kernel density data derived from a 16-month camera-trap survey (140 UVL7 cameras), cold single-season (November–April) occupancy models, and MaxEnt 3.4.4 [...] Read more.
Understanding how endangered carnivores partition spatiotemporal distribution in human-dominated landscapes is pivotal for mitigating biodiversity loss in climate-sensitive boreal ecosystems. Here, we used kernel density data derived from a 16-month camera-trap survey (140 UVL7 cameras), cold single-season (November–April) occupancy models, and MaxEnt 3.4.4 to identify the effects of biotic interactions, anthropogenic disturbance, and environmental factors on the spatiotemporal distribution of the wolverine (Gulo gulo) in Beijicun National Nature Reserve, Heilongjiang Province, China. We found that wolverines exhibited crepuscular activity patterns using night-time relative abundance index (NRAI) = 50.29% with bimodal peaks (05:00–07:00, 13:00–15:00), with dawn activity predominant during the warm season (05:00–06:00) and a bimodal activity pattern in the cold season (08:00–09:00, 14:00–15:00). Temporal overlap with prey (overlap coefficient Δ = 0.84) and competitors (Δ = 0.70) was high, but overlap with human-dominated temporal patterns was low (Δ = 0.58). Wolverines avoided human settlements and major roads, preferred moving along forest trails and gentle slopes, and avoided high-altitude deciduous forests. Populations were mainly concentrated in southern Hedong and Qianshao Forest Farms, which are characterized by high habitat integrity, high prey densities, and minimal anthropogenic disturbance. These findings suggest that wolverines may influence boreal trophic networks, especially in areas with intact prey communities, competitors, and spatial refugia from human disturbances. We recommend that habitat protection and management within the natural reserve be prioritized and that sustainable management practices for prey species be implemented to ensure the long-term survival of wolverines. Full article
Show Figures

Figure 1

19 pages, 5168 KB  
Article
Green Tea Modulates Temporal Dynamics and Environmental Adaptation of Microbial Communities in Daqu Fermentation
by Liang Zhao, Fangfang Li, Hao Xiao, Tengfei Zhao, Yanxia Zhong, Zhihui Hu, Lu Jiang, Xiangyong Wang and Xinye Wang
Fermentation 2025, 11(9), 511; https://doi.org/10.3390/fermentation11090511 - 31 Aug 2025
Viewed by 628
Abstract
This study investigated the impact of green tea addition on microbial community dynamics during Daqu fermentation, a critical process in traditional baijiu production. Four Daqu variants (0%, 10%, 20%, 30% tea) were analyzed across six fermentation periods using 16S rRNA/ITS sequencing, coupled with [...] Read more.
This study investigated the impact of green tea addition on microbial community dynamics during Daqu fermentation, a critical process in traditional baijiu production. Four Daqu variants (0%, 10%, 20%, 30% tea) were analyzed across six fermentation periods using 16S rRNA/ITS sequencing, coupled with STR, TDR, Sloan neutral model, and phylogenetic analyses. Results showed time-dependent increases in bacterial/fungal richness, with 30% tea maximizing species richness. Tea delayed bacterial shifts until day 15 but accelerated fungal reconstruction from day 6, expanding the temporal response window. While stochastic processes dominated initial assembly (77–94% bacteria, 88–99% fungi), deterministic processes intensified with tea concentration, particularly in fungi (1% → 12%). Tea increased bacterial dispersal limitation and reduced phylogenetic conservatism of endogenous factors. This work proposed a framework for rationally engineering fermentation ecosystems by decoding evolutionary-ecological rules of microbial assembly. It revealed how plant-derived additives can strategically adjust niche partitioning and ancestral constraints to reprogram microbiome functionality. These findings provided a theoretical foundation in practical strategies for optimizing industrial baijiu production through targeted ecological interventions. Full article
(This article belongs to the Special Issue Development and Application of Starter Cultures, 2nd Edition)
Show Figures

Figure 1

Back to TopTop