Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = double-bladed disk system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10008 KB  
Article
Design and Testing of a Device to Investigate Dynamic Performance of Aero-Engine Rotor–Stator Rubbing Dynamics
by Qinqin Mu, Qun Yan, Peng Sun, Yonghui Chen, Jiaqi Chang and Shiyu Huo
Eng 2025, 6(7), 162; https://doi.org/10.3390/eng6070162 - 17 Jul 2025
Viewed by 250
Abstract
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was [...] Read more.
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was evaluated in terms of its critical speed, vibration characteristics, component strength under operational conditions, and response characteristics in abnormal extreme scenarios. A ball screw-type feeding system is employed to achieve precise rotor–stator rubbing during rotation by controlling the coating feed. Additionally, a quartz lamp heating system is used to apply thermal loads to coating specimens, and the appropriate heat insulation and cooling measures are implemented. Furthermore, a high-frequency rubbing force test platform is developed to capture the key characteristics caused by rubbing. The test rig can conduct response tests of the system with rotor–stator rubbing and abrasion tests with tip speeds reaching 425 m/s, feed rates ranging from 2 to 2000 μm/s, and heating temperatures up to 1200 °C. Test debugging has confirmed these specifications and successfully executed rubbing tests, which demonstrate stability throughout the process and provide reliable rubbing force test results. This designed test rig and analysis methodology offers valuable insights for developing high-speed rotating machinery. Full article
Show Figures

Figure 1

26 pages, 46716 KB  
Article
Effects of Blade Numbers on Wind-Induced Fatigue Lives of Straight-Bladed Vertical-Axis Wind-Turbine Tower Bases
by Hua-Dong Zheng, Bo Zhang, Sheng-Bin Wang and Guan-Zheng Zhou
Metals 2022, 12(2), 321; https://doi.org/10.3390/met12020321 - 11 Feb 2022
Cited by 4 | Viewed by 3319
Abstract
Vertical-axis wind turbines (VAWTs) are being reconsidered as a complementary technology to the more commercially used horizontal-axis wind turbines (HAWTs) because of their economical installation and maintenance. The selection of the blade numbers is one of the crucial concerns for VAWTs. This study [...] Read more.
Vertical-axis wind turbines (VAWTs) are being reconsidered as a complementary technology to the more commercially used horizontal-axis wind turbines (HAWTs) because of their economical installation and maintenance. The selection of the blade numbers is one of the crucial concerns for VAWTs. This study focuses on the effects of the blade numbers on the fatigue lives of VAWT tower bases subjected to wind loading. Three straight-bladed VAWTs, with the same solidity ratios but different blade numbers, varying from two to four, were designed. The aerodynamic loading incurred by the VAWTs was computed using the corrected double-disk multistreamtube (DMS) model. The dynamic equations of the turbine systems were solved using the explicit central difference method. Then, a fatigue assessment model, including the crack-initiation and crack-propagation stages, was developed for the turbine tower bases. The results indicate that the three- and four-bladed VAWTs always presented better performances than the two-bladed VAWT in terms of the fatigue life. Moreover, increasing the number of blades from two to three improves the fatigue life of the tower base more than increasing it from three to four at lower wind speeds, while the latter is the more effective way to improve the tower-base fatigue life at higher wind speeds. Full article
Show Figures

Graphical abstract

21 pages, 13089 KB  
Article
Analysis of the Vibration Suppression of Double-Beam System via Nonlinear Switching Piezoelectric Network
by Fengling Zhang, Jiuzhou Liu and Jing Tian
Machines 2021, 9(6), 115; https://doi.org/10.3390/machines9060115 - 8 Jun 2021
Cited by 7 | Viewed by 3318
Abstract
In this paper, a method to suppress the vibration of a double-beam system with nonlinear synchronized switch damping on the inductor via a network (SSDI-net) is proposed. Unlike the classical linear piezoelectric shunt damping, SSDI-net is a nonlinear piezoelectric damping. A double-beam system [...] Read more.
In this paper, a method to suppress the vibration of a double-beam system with nonlinear synchronized switch damping on the inductor via a network (SSDI-net) is proposed. Unlike the classical linear piezoelectric shunt damping, SSDI-net is a nonlinear piezoelectric damping. A double-beam system with SSDI-net was simplified to a lumped parameter electromechanical coupling model and analyzed by using the multi-harmonic balance method, at first with alternating frequency–time techniques (MHBM/AFT). Then, a new lower-power autonomous switching control circuit board was designed, based on SSD technique, and vibration control experiments using a double-beam system with an SSDI network are conducted, to verify the validity of the proposed analysis method and its calculation results. The nonlinear switching piezoelectric network proposed in this article can increase the voltage inversion factor. Furthermore, future applications of this switching piezoelectric network technology in the vibration suppression of bladed-disk structures in aero engines can reduce the number of switches by at least half and obtain almost the same damping effect. Full article
Show Figures

Figure 1

20 pages, 3365 KB  
Article
Coupled Free Vibration of Spinning Functionally Graded Porous Double-Bladed Disk Systems Reinforced with Graphene Nanoplatelets
by Tianyu Zhao, Yu Ma, Hongyuan Zhang and Jie Yang
Materials 2020, 13(24), 5610; https://doi.org/10.3390/ma13245610 - 9 Dec 2020
Cited by 17 | Viewed by 2258
Abstract
This paper presents, for the first time, the mechanical model and theoretical analysis of free vibration of a spinning functionally graded graphene nanoplatelets reinforced composite (FG-GPLRC) porous double-bladed disk system. The nanocomposite rotor is made of porous metal matrix and graphene nanoplatelet (GPL) [...] Read more.
This paper presents, for the first time, the mechanical model and theoretical analysis of free vibration of a spinning functionally graded graphene nanoplatelets reinforced composite (FG-GPLRC) porous double-bladed disk system. The nanocomposite rotor is made of porous metal matrix and graphene nanoplatelet (GPL) reinforcement material with different porosity and nanofillers distributions. The effective material properties of the system are graded in a layer-wise manner along the thickness directions of the blade and disk. Considering the gyroscopic effect, the coupled model of the double-bladed disk system is established based on Euler–Bernoulli beam theory for the blade and Kirchhoff’s plate theory for the disk. The governing equations of motion are derived by employing the Lagrange’s equation and then solved by employing the substructure mode synthesis method and the assumed modes method. A comprehensive parametric analysis is conducted to examine the effects of the distribution pattern, weight fraction, length-to-thickness ratio, and length-to-width ratio of graphene nanoplatelets, porosity distribution pattern, porosity coefficient, spinning speed, blade length, and disk inner radius on the free vibration characteristics of the FG-GPLRC double-bladed disk system. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

23 pages, 9647 KB  
Article
Dual-Connected Synchronized Switch Damping for Vibration Control of Bladed Disks in Aero-Engines
by Fengling Zhang, Lin Li, Yu Fan and Jiuzhou Liu
Appl. Sci. 2020, 10(4), 1478; https://doi.org/10.3390/app10041478 - 21 Feb 2020
Cited by 11 | Viewed by 2818
Abstract
An enhanced SSDI (synchronized switch damping on inductor) approach is proposed to suppress the vibration of bladed disks in aero-engines. Different from the authors’ former work (MSSP, 2017; JIMSS, 2018) where a local SSDI circuit is shunted to the piezoelectric materials at each [...] Read more.
An enhanced SSDI (synchronized switch damping on inductor) approach is proposed to suppress the vibration of bladed disks in aero-engines. Different from the authors’ former work (MSSP, 2017; JIMSS, 2018) where a local SSDI circuit is shunted to the piezoelectric materials at each blade sector, in this work two blade sectors are interconnected by a shared SSDI circuit. In this way, the switching action of SSDI is triggered by the relative displacement between two blade sectors. The feasibility of the dual-connected SSDI is numerically examined by a 2-DOF (degree-of-freedom) mechanical system, and further experimentally validated on a single-beam and a double-beam system. Results show that the damping performance increases with the amplitude of relative displacement. This feature is especially favorable for the application of blisks where the blade normally vibrates in different amplitudes and phases. Eventually, we conduct numerical simulation on the forced response of mistuned bladed disk undergoing travelling wave excitation. Results show that the dual-connected configuration can reduce at least half the number of switching shunts while maintain nearly the same performance as the conventional (local) SSDI. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

Back to TopTop