Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (500)

Search Parameters:
Keywords = dual band applications

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7927 KB  
Article
Dual-Mode Reconfigurable Frequency-Selective Surface for Switching Between Narrowband and Wideband Applications
by Batuhan Uslu, Sena Esen Bayer Keskin and Nurhan Türker Tokan
Micromachines 2025, 16(9), 1030; https://doi.org/10.3390/mi16091030 (registering DOI) - 8 Sep 2025
Abstract
This study presents a reconfigurable frequency-selective surface (R-FSS) designed to dynamically switch between WLAN, WiMAX, and sub-6 GHz band frequencies. The electronic switching mechanism of this R-FSS is controlled in real-time using PIN-diodes. Depending on the activation state of these diodes, the structure [...] Read more.
This study presents a reconfigurable frequency-selective surface (R-FSS) designed to dynamically switch between WLAN, WiMAX, and sub-6 GHz band frequencies. The electronic switching mechanism of this R-FSS is controlled in real-time using PIN-diodes. Depending on the activation state of these diodes, the structure operates in three distinct modes. Among the three modes, one exhibits polarization-stable wideband suppression, whereas the other two demonstrate polarization selectivity by interchanging between the dual-narrow and single-wide stopband regimes under orthogonal polarizations. The design is described with an equivalent-circuit model, corroborated by full-wave electromagnetic simulations, and validated through measurements of a fabricated prototype. This reconfigurability allows the proposed structure to operate across WLAN, sub-6 GHz, and WiMAX frequency ranges either with two narrow stopbands or with a single-wide stopband, while providing polarization selectivity for frequency-selective applications. Full article
(This article belongs to the Special Issue RF MEMS and Microsystems)
Show Figures

Figure 1

21 pages, 3182 KB  
Article
High-Resolution Chaos Maps for Optically Injected Lasers
by Gerardo Antonio Castañón Ávila, Alejandro Aragón-Zavala, Ivan Aldaya and Ana Maria Sarmiento-Moncada
Appl. Sci. 2025, 15(17), 9724; https://doi.org/10.3390/app15179724 - 4 Sep 2025
Viewed by 187
Abstract
Deterministic chaos in optically injected semiconductor lasers (OILs) has attracted significant attention due to its relevance in secure communications, entropy generation, and photonic applications. However, existing studies often rely on low-resolution parameter sweeps or include noise contributions that obscure the intrinsic nonlinear dynamics. [...] Read more.
Deterministic chaos in optically injected semiconductor lasers (OILs) has attracted significant attention due to its relevance in secure communications, entropy generation, and photonic applications. However, existing studies often rely on low-resolution parameter sweeps or include noise contributions that obscure the intrinsic nonlinear dynamics. To address this gap, we investigate a noise-free OIL model and construct high-resolution chaos maps across the injection strength and frequency detuning parameter space. Chaos is characterized using two complementary approaches for computing the largest Lyapunov exponent: the Rosenstein time-series method and the exact variational method. This dual approach provides reliable and reproducible detection of deterministic chaotic regimes and reveals a rich attractor landscape with alternating bands of periodicity, quasi-periodicity, and chaos. The novelty of this work lies in combining high-resolution mapping with rigorous chaos indicators, enabling fine-grained identification of dynamical transitions. The results not only deepen the fundamental understanding of nonlinear laser dynamics but also provide actionable guidelines for exploiting or avoiding chaos in photonic devices, with potential applications in random chaos-based communications, number generation, and optical security systems. Full article
(This article belongs to the Special Issue Optical Communications Systems and Optical Sensing)
Show Figures

Figure 1

16 pages, 5285 KB  
Article
Design of Dual-Polarized All-Dielectric Transmitarray Antenna for Ka-Band Applications
by Baixin Liu, Haixin Sun, Xujia Jiang, Jiayu Hu and Changjiang Deng
Appl. Sci. 2025, 15(17), 9560; https://doi.org/10.3390/app15179560 - 30 Aug 2025
Viewed by 323
Abstract
This paper proposes two all-dielectric transmitarrays operating at Ka-band (26.5–40 GHz), achieving dual-polarization and beam-scanning functionalities. The dual-polarized design employs a cross-shaped dielectric post transmission unit, where the lengths of the two posts can be adjusted to enable independent phase modulation in the [...] Read more.
This paper proposes two all-dielectric transmitarrays operating at Ka-band (26.5–40 GHz), achieving dual-polarization and beam-scanning functionalities. The dual-polarized design employs a cross-shaped dielectric post transmission unit, where the lengths of the two posts can be adjusted to enable independent phase modulation in the two orthogonal polarizations. Both polarizations provide 360° continuous phase coverage. To reduce the design complexity and achieve independent control of polarization, an optimized unit group with 16 states and 2-bit phase quantization is developed. A prototype of the all-dielectric transmitarray with 20 × 20 units is fabricated. The measured x/y-polarized peak gains are 25.3 dBi/25.5 dBi and the 1 dB bandwidths achieve 27% and 22%, respectively. To address feed–array integration, another all-dielectric transmitarray is further designed, which uses the same dual-polarized dielectric units, but replaces the horn feed with a dielectric rod antenna array. The feed array can generate multiple beams, enabling discrete beam-scanning within a 60° angle range. Both the dielectric transmitarray and the feed array can be fabricated by using 3D-printed technology, which greatly enhances the system integration and provides flexibility in generating multiple high-gain beams. Full article
(This article belongs to the Special Issue Millimeter-Wave Antenna Arrays: From Design to Applications)
Show Figures

Figure 1

11 pages, 2855 KB  
Article
A Compact Dual-Band Dual-Mode Wearable Button Antenna for WBAN Applications
by Xue-Ping Li, Xue-Lin Zhang, Xue-Qing Yang, Zhen-Yong Dong, Xue-Mei Feng and Wei Li
Micromachines 2025, 16(9), 975; https://doi.org/10.3390/mi16090975 - 25 Aug 2025
Viewed by 405
Abstract
A novel dual-band dual-mode wearable button antenna for wireless body area network (WBAN) applications is proposed in this paper. The antenna ingeniously integrates a monopole structure and an optimized planar inverted-F antenna (PIFA) configuration in a shared radiator, enabling dual-mode operation with a [...] Read more.
A novel dual-band dual-mode wearable button antenna for wireless body area network (WBAN) applications is proposed in this paper. The antenna ingeniously integrates a monopole structure and an optimized planar inverted-F antenna (PIFA) configuration in a shared radiator, enabling dual-mode operation with a compact size. In the low-frequency band, the monopole structure generates an omnidirectional radiation pattern, facilitating efficient on-body communication. Meanwhile, the PIFA structure in the high-frequency band exhibits directed radiation, optimizing off-body communication. To enhance bandwidth, a parasitic structure is incorporated into the design. Both numerical simulations and experimental measurements are conducted to evaluate the antenna’s bandwidth and radiation performance in free space and on-body environments, with results showing excellent agreement. The measured bandwidth of the antenna on the human tissue is 300 MHz (2.3–2.6 GHz) in the low-frequency band and 4.5 GHz (5.5–10 GHz) in the high-frequency band. The maximum radiation efficiency reaches 76% in the low band (2.4–2.4835 GHz) and 93% in the upper band (5.725–5.875 GHz). Additionally, the peak gain on the human body can achieve 2.5 dB and 6.9 dB for the low and upper bands, respectively. The results confirm that the antenna meets the design requirements for Industrial, Scientific, and Medical (ISM) band applications, making it a promising candidate for WBAN systems. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

24 pages, 7981 KB  
Article
A Flexible and Compact UWB MIMO Antenna with Dual-Band-Notched Double U-Shaped Slot on Mylar® Polyester Film
by Vanvisa Chutchavong, Wanchalerm Chanwattanapong, Norakamon Wongsin, Paitoon Rakluea, Maleeya Tangjitjetsada, Chawalit Rakluea, Chatree Mahatthanajatuphat and Prayoot Akkaraekthalin
Electronics 2025, 14(17), 3363; https://doi.org/10.3390/electronics14173363 - 24 Aug 2025
Viewed by 1130
Abstract
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article [...] Read more.
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article discusses the development of small, high-performance MIMO UWB antennas with mutual suppression capabilities to fully use the benefits of both technologies. Additionally, the suggested antenna features a straightforward design and dual-band-notched characteristics. The antenna structure includes two radiating elements measuring 85 × 45 mm2. These elements use a rectangular patch provided by a coplanar waveguide (CPW). Double U-shaped slots are incorporated into the rectangular patch to introduce dual-band-notched properties, which help mitigate interference from WiMAX and WLAN communication systems. The antenna is fabricated on a Mylar® polyester film substrate of 0.3 mm in thickness, with a dielectric constant of 3.2. According to the measurement results, the suggested antenna functions efficiently across the frequency spectrum of 2.29 to 20 GHz, with excellent impedance matching throughout the bandwidth. Furthermore, it provides dual-band-notched coverage at 3.08–3.8 GHz for WiMAX and 4.98–5.89 GHz for WLAN. The antenna exhibits impressive performance, including favorable radiation attributes, consistent gain, and little mutual coupling (less than −20 dB). Additionally, the envelope correlation coefficient (ECC) is extremely low (ECC < 0.01) across the working bandwidth, which indicates excellent UWB MIMO performance. This paper offers an appropriate design methodology for future flexible and compact UWB MIMO systems that can serve as interference-resilient antennas for next-generation wireless applications. Full article
(This article belongs to the Collection MIMO Antennas)
Show Figures

Figure 1

24 pages, 8653 KB  
Article
Sea Surface Wind Speed Retrieval from Marine Radar Image Sequences Based on GLCM-Derived Texture Features
by Hui Wang, Haiyang Qiu, Lei Wang, Jingxi Huang and Xingbo Ruan
Entropy 2025, 27(8), 877; https://doi.org/10.3390/e27080877 - 19 Aug 2025
Viewed by 491
Abstract
Sea surface wind speed is a key parameter in marine meteorology, navigation safety, and offshore engineering. Traditional marine radar wind speed retrieval algorithms often suffer from poor environmental adaptability and limited applicability across different radar systems, while existing empirical models face challenges in [...] Read more.
Sea surface wind speed is a key parameter in marine meteorology, navigation safety, and offshore engineering. Traditional marine radar wind speed retrieval algorithms often suffer from poor environmental adaptability and limited applicability across different radar systems, while existing empirical models face challenges in accuracy and generalization. To address these issues, this study proposes a novel wind speed retrieval method based on X-band marine radar image sequences and texture features derived from the Gray-Level Co-occurrence Matrix (GLCM). A three-stage preprocessing pipeline—comprising noise suppression, geometric correction, and interpolation—is employed to extract small-scale wind streaks that reflect wind field characteristics, ensuring high-quality image data. Two key GLCM texture features of wind streaks, energy and entropy, are identified, and their stable values are used to construct a segmented dual-parameter wind speed model with a division at 10 m/s. Experimental results show that both energy- and entropy-based models outperform traditional empirical models, reducing mean errors by approximately 49.3% and 16.7%, respectively. The energy stable model achieves the best overall performance with a correlation coefficient of 0.89, while the entropy stable model demonstrates superior performance at low wind speeds. The complementary nature of the two models enhances robustness under varying conditions, providing a more accurate and efficient solution for sea surface wind speed retrieval. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

24 pages, 8256 KB  
Article
Dual-Element Wideband CP Slot-Integrated MIMO Antenna with X-Notch Square AMC for DSRC Applications
by Chanwit Musika, Nathapat Supreeyatitikul, Jessada Konpang, Pongsathorn Chomtong and Prayoot Akkaraekthalin
Technologies 2025, 13(8), 367; https://doi.org/10.3390/technologies13080367 - 17 Aug 2025
Viewed by 676
Abstract
This study proposes a dual-element wideband circularly polarized (CP) slot-integrated multiple-input multiple-output (MIMO) antenna with an X-notch square-shaped artificial magnetic conductor (AMC) for dedicated short-range communications (DSRC) applications. The proposed antenna design consists of two substrate layers separated by an air gap. The [...] Read more.
This study proposes a dual-element wideband circularly polarized (CP) slot-integrated multiple-input multiple-output (MIMO) antenna with an X-notch square-shaped artificial magnetic conductor (AMC) for dedicated short-range communications (DSRC) applications. The proposed antenna design consists of two substrate layers separated by an air gap. The upper layer features a dual-element coplanar waveguide-fed slot antenna and a defected ground structure decoupling isolator, while the lower layer comprises an 8 × 8 array of X-notch square-shaped elemental units, functioning as an AMC reflector. Characteristic mode analysis shows that circular polarization is produced by the dominant orthogonal mode pair (modes J5 and J6), whose modal significance exceeds 0.92 and whose characteristic angle separation is 82° around the 5.9 GHz DSRC band. An I-shaped slot embedded in the ground plane of the upper layer serves as a defected ground structure isolator to suppress mutual coupling between antenna elements. Meanwhile, the X-notch square AMC reflector enhances radiation characteristics and antenna gain. The measured return loss bandwidth and axial ratio bandwidth are 32% (4.72–6.61 GHz) and 21.18% (5.2–6.45 GHz), respectively. The dual-element antenna scheme achieves high isolation exceeding 19 dB, with a maximum gain of 8.6 dBic at 5.9 GHz. The envelop correlation coefficient remains below 0.003, while the diversity gain exceeds 9.98 dB. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

14 pages, 3027 KB  
Article
Generation of Four-Channel Multi-Polarization Bessel Vortex Beams with Equal Divergence Angle Based on Co-Aperture Metasurface
by Zhiwei Wang, Yongzhong Zhu, Jun Chen and Wenxuan Xie
Photonics 2025, 12(8), 816; https://doi.org/10.3390/photonics12080816 - 15 Aug 2025
Viewed by 516
Abstract
This paper proposes a co-aperture reflective metasurface that successfully generates four-channel Bessel vortex beams with equal divergence angle in both Ka and Ku bands. Initially, a frequency-selective surface (FSS) is employed to suppress inter-unit crosstalk. Subsequently, modified cross-dipole metasurface units are implemented using [...] Read more.
This paper proposes a co-aperture reflective metasurface that successfully generates four-channel Bessel vortex beams with equal divergence angle in both Ka and Ku bands. Initially, a frequency-selective surface (FSS) is employed to suppress inter-unit crosstalk. Subsequently, modified cross-dipole metasurface units are implemented using spin-decoupling theory to achieve independent multi-polarization control. Through theoretical calculation-based divergence angle engineering, the dual-concentric-disk structure integrated with multi-polarization control demonstrates enhanced aperture utilization efficiency compared to conventional partitioning strategies, yielding high-purity equal-divergence-angle Bessel vortex beams across multiple modes. Finally, experiments on the metasurface fabricated via printed circuit board (PCB) technology verify that the design simultaneously generates x-polarization +1 mode and y-polarization +2 mode equal divergence angle Bessel vortex beams in the Ku band and ±3 mode beams in the Ka band. Vortex beam divergence angles remain stable at 9° ± 0.5° under diverse polarization states and modes, with modal purity reaching 65–80% at the main radiation direction. This work provides a straightforward implementation method for generating equal-divergence-angle vortex beams applicable to Orbital Angular Momentum (OAM) multimode multiplexing and vortex wave detection. Full article
Show Figures

Figure 1

19 pages, 12156 KB  
Article
Dual-Port Butterfly Slot Antenna for Biosensing Applications
by Marija Milijic, Branka Jokanovic, Miodrag Tasic, Sinisa Jovanovic, Olga Boric-Lubecke and Victor Lubecke
Sensors 2025, 25(16), 4980; https://doi.org/10.3390/s25164980 - 12 Aug 2025
Viewed by 278
Abstract
This paper presents the novel design of a printed, low-cost, dual-port, and dual-polarized slot antenna for microwave biomedical radars. The butterfly shape of the radiating element, with orthogonally positioned arms, enables simultaneous radiation of both vertically and horizontally polarized waves. The antenna is [...] Read more.
This paper presents the novel design of a printed, low-cost, dual-port, and dual-polarized slot antenna for microwave biomedical radars. The butterfly shape of the radiating element, with orthogonally positioned arms, enables simultaneous radiation of both vertically and horizontally polarized waves. The antenna is intended for full-duplex in-band applications using two mutually isolated antenna ports, with the CPW port on the same side of the substrate as the slot antenna and the microstrip port positioned orthogonally on the other side of the substrate. Those two ports can be used as transmit and receive ports in a radar transceiver, with a port isolation of 25 dB. Thanks to the bow-tie shape of the slots and an additional coupling region between the butterfly arms, there is more flexibility in simultaneous optimization of the resonant frequency and input impedance at both ports, avoiding the need for a complicated matching network that introduces the attenuation and increases antenna dimensions. The advantage of this design is demonstrated through the modeling of an eight-element dual-port linear array with an extremely simple feed network for high-gain biosensing applications. To validate the simulation results, prototypes of the proposed antenna were fabricated and tested. The measured operating band of the antennas spans from 2.35 GHz to 2.55 GHz, with reflection coefficients of less than—10 dB, a maximum gain of 8.5 dBi, and a front-to-back gain ratio that is greater than 15 dB, which is comparable with other published single dual-port slot antennas. This is the simplest proposed dual-port, dual-polarization antenna that enables straightforward scaling to other frequency bands. Full article
(This article belongs to the Special Issue Design and Application of Millimeter-Wave/Microwave Antenna Array)
Show Figures

Figure 1

19 pages, 1107 KB  
Article
A Novel Harmonic Clocking Scheme for Concurrent N-Path Reception in Wireless and GNSS Applications
by Dina Ibrahim, Mohamed Helaoui, Naser El-Sheimy and Fadhel Ghannouchi
Electronics 2025, 14(15), 3091; https://doi.org/10.3390/electronics14153091 - 1 Aug 2025
Viewed by 572
Abstract
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, [...] Read more.
This paper presents a novel harmonic-selective clocking scheme that facilitates concurrent downconversion of spectrally distant radio frequency (RF) signals using a single low-frequency local oscillator (LO) in an N-path receiver architecture. The proposed scheme selectively generates LO harmonics aligned with multiple RF bands, enabling simultaneous downconversion without modification of the passive mixer topology. The receiver employs a 4-path passive mixer configuration to enhance harmonic selectivity and provide flexible frequency planning.The architecture is implemented on a printed circuit board (PCB) and validated through comprehensive simulation and experimental measurements under continuous wave and modulated signal conditions. Measured results demonstrate a sensitivity of 55dBm and a conversion gain varying from 2.5dB to 9dB depending on the selected harmonic pair. The receiver’s performance is further corroborated by concurrent (dual band) reception of real-world signals, including a GPS signal centered at 1575 MHz and an LTE signal at 1179 MHz, both downconverted using a single 393 MHz LO. Signal fidelity is assessed via Normalized Mean Square Error (NMSE) and Error Vector Magnitude (EVM), confirming the proposed architecture’s effectiveness in maintaining high-quality signal reception under concurrent multiband operation. The results highlight the potential of harmonic-selective clocking to simplify multiband receiver design for wireless communication and global navigation satellite system (GNSS) applications. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

16 pages, 3616 KB  
Article
A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications
by Xinju Wang, Lihan Tong, Peng Chen, Lu Liu, Yutong Yin and Haowei Zhang
Appl. Sci. 2025, 15(15), 8499; https://doi.org/10.3390/app15158499 - 31 Jul 2025
Viewed by 322
Abstract
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current [...] Read more.
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current (DC) bias circuit is designed to minimize the interaction between the radio frequency (RF) signal and the DC source, allowing control of the LC dielectric constant via bias voltage. This enables multi-band operation to improve communication capacity and quality for x-band devices. The polarization conversion (PC) structure employs an orthogonal anisotropic design, utilizing logarithmic functions to create two pairs of bowtie microstrip patches for linear-to-circular polarization conversion (LCPC). Simulation results show that for x-polarized incident waves, with an LC dielectric constant of εr = 2.8, left- and right-handed circularly polarized (LHCP and RHCP) waves are achieved in the frequency ranges of 8.15–8.46 GHz and 9.84–12.52 GHz, respectively. For εr = 3.9, LHCP and RHCP are achieved in 9–9.11 GHz and 9.86–11.81 GHz, respectively, and for εr = 4.6, they are in 8.96–9.11 GHz and 9.95–11.51 GHz. In the case of y-polarized incident waves, the MS reflects the reverse CP waves within the same frequency ranges. Measured results show that at εr = 2.8, the axial ratio (AR) is below 3 dB in the frequency ranges 8.16–8.46 GHz and 9.86–12.48 GHz, with 3 dB AR relative bandwidth (ARBW) of 3.61% and 23.46%, respectively. For εr = 4.6, the AR < 3 dB in the frequency range of 9.78–11.34 GHz, with a 3 dB ARBW of 14.77%. Finally, the measured and simulated results are compared to validate the proposed design, which can be applied to various applications within the corresponding operating frequency band. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

12 pages, 5121 KB  
Article
Design of an Energy Selective Surface Employing Dual-Resonant Circuit Topology
by Honglin Zhang, Jihong Zhang, Song Zha, Huan Jiang, Tao Zhou, Chenxi Liu and Peiguo Liu
Electronics 2025, 14(15), 3029; https://doi.org/10.3390/electronics14153029 - 30 Jul 2025
Viewed by 281
Abstract
A dual-polarization energy selective surface (ESS) with low insertion loss (IL) and high shielding effectiveness (SE) based on a dual-resonant equivalent circuit topology was proposed for high-intensity radiation field (HIRF) protection in this paper. The design principle was elucidated through an equivalent circuit [...] Read more.
A dual-polarization energy selective surface (ESS) with low insertion loss (IL) and high shielding effectiveness (SE) based on a dual-resonant equivalent circuit topology was proposed for high-intensity radiation field (HIRF) protection in this paper. The design principle was elucidated through an equivalent circuit model and translated into a physical ESS implementation. It consists of two resonant rings, vertically arranged and loaded with diodes, along with two lumped capacitors. Simulation and measurement results demonstrate that the IL is less than 3 dB when in the OFF state in a working frequency band, and the SE exceeds 20 dB when in the ON state. Moreover, the ESS’s dual-polarization, low cost, and easy-to-design characteristics hold great promise for broad applications in protecting communication and radar systems in complex electromagnetic environments. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

15 pages, 2921 KB  
Article
Enhanced Photoelectrochemical Performance of BiVO4 Photoanodes Co-Modified with Borate and NiFeOx
by Siqiang Cheng, Yun Cheng, Taoyun Zhou, Shilin Li, Dong Xie and Xinyu Li
Micromachines 2025, 16(8), 866; https://doi.org/10.3390/mi16080866 - 27 Jul 2025
Viewed by 510
Abstract
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge [...] Read more.
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge transport, sluggish surface kinetics, and photocorrosion. In this study, porous monoclinic BiVO4 films are fabricated via a simplified successive ionic layer adsorption and reaction (SILAR) method, followed by borate treatment and PEC deposition of NiFeOx. The resulting B/BiVO4/NiFeOx photoanode exhibits a significantly enhanced photocurrent density of 2.45 mA cm−2 at 1.23 V vs. RHE—5.3 times higher than pristine BiVO4. It also achieves an ABPE of 0.77% and a charge transfer efficiency of 79.5%. These results demonstrate that dual surface modification via borate and NiFeOx is a cost-effective strategy to improve BiVO4-based PEC water splitting performance. This work provides a promising pathway for the scalable development of efficient and economically viable photoanodes for solar hydrogen production. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

19 pages, 1711 KB  
Article
TSDCA-BA: An Ultra-Lightweight Speech Enhancement Model for Real-Time Hearing Aids with Multi-Scale STFT Fusion
by Zujie Fan, Zikun Guo, Yanxing Lai and Jaesoo Kim
Appl. Sci. 2025, 15(15), 8183; https://doi.org/10.3390/app15158183 - 23 Jul 2025
Viewed by 835
Abstract
Lightweight speech denoising models have made remarkable progress in improving both speech quality and computational efficiency. However, most models rely on long temporal windows as input, limiting their applicability in low-latency, real-time scenarios on edge devices. To address this challenge, we propose a [...] Read more.
Lightweight speech denoising models have made remarkable progress in improving both speech quality and computational efficiency. However, most models rely on long temporal windows as input, limiting their applicability in low-latency, real-time scenarios on edge devices. To address this challenge, we propose a lightweight hybrid module, Temporal Statistics Enhancement, Squeeze-and-Excitation-based Dual Convolutional Attention, and Band-wise Attention (TSE, SDCA, BA) Module. The TSE module enhances single-frame spectral features by concatenating statistical descriptors—mean, standard deviation, maximum, and minimum—thereby capturing richer local information without relying on temporal context. The SDCA and BA module integrates a simplified residual structure and channel attention, while the BA component further strengthens the representation of critical frequency bands through band-wise partitioning and differentiated weighting. The proposed model requires only 0.22 million multiply–accumulate operations (MMACs) and contains a total of 112.3 K parameters, making it well suited for low-latency, real-time speech enhancement applications. Experimental results demonstrate that among lightweight models with fewer than 200K parameters, the proposed approach outperforms most existing methods in both denoising performance and computational efficiency, significantly reducing processing overhead. Furthermore, real-device deployment on an improved hearing aid confirms an inference latency as low as 2 milliseconds, validating its practical potential for real-time edge applications. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

14 pages, 2402 KB  
Article
On-Chip Mid-Infrared Dual-Band Wavelength Splitting with Integrated Metalens and Enhanced Bandwidth
by Deming Hu, Qi Zhang, Zhibin Ye, Xuan-Ming Duan and Yang Zhang
Photonics 2025, 12(7), 736; https://doi.org/10.3390/photonics12070736 - 19 Jul 2025
Viewed by 332
Abstract
On-chip spectral splitting structures with compact footprints hold tremendous potential for next-generation molecular sensing applications in the mid-infrared region. Here, we propose and theoretically investigate a carefully designed structure comprising a tilt grating and metalenses for dual-band spectral splitting with enhanced bandwidth. The [...] Read more.
On-chip spectral splitting structures with compact footprints hold tremendous potential for next-generation molecular sensing applications in the mid-infrared region. Here, we propose and theoretically investigate a carefully designed structure comprising a tilt grating and metalenses for dual-band spectral splitting with enhanced bandwidth. The tilt grating serves to separate the wavelength bands, and the metalenses following the grating guarantee a smooth transition of light into single-mode waveguides, giving rise to transmittances of 73.59% at 4 μm and 68.74% at 11 μm. The use of this tandem structure results in a significant footprint reduction and a remarkable 25.8% bandwidth enhancement over conventional approaches. The proposed spectral splitting scheme, with its broad wavelength range applicability, unlocks new pathways for on-chip simultaneous multi-target molecule detection. Full article
(This article belongs to the Special Issue Infrared Optoelectronic Materials and Devices)
Show Figures

Figure 1

Back to TopTop