Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (593)

Search Parameters:
Keywords = dummy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2222 KB  
Article
Machine Learning-Driven Security and Privacy Analysis of a Dummy-ABAC Model for Cloud Computing
by Baby Marina, Irfana Memon, Fizza Abbas Alvi, Ubaidullah Rajput and Mairaj Nabi
Computers 2025, 14(10), 420; https://doi.org/10.3390/computers14100420 - 2 Oct 2025
Abstract
The Attribute-Based Access Control (ABAC) model provides access control decisions based on subject, object (resource), and contextual attributes. However, the use of sensitive attributes in access control decisions poses many security and privacy challenges, particularly in cloud environment where third parties are involved. [...] Read more.
The Attribute-Based Access Control (ABAC) model provides access control decisions based on subject, object (resource), and contextual attributes. However, the use of sensitive attributes in access control decisions poses many security and privacy challenges, particularly in cloud environment where third parties are involved. To address this shortcoming, we present a novel privacy-preserving Dummy-ABAC model that obfuscates real attributes with dummy attributes before transmission to the cloud server. In the proposed model, only dummy attributes are stored in the cloud database, whereas real attributes and mapping tokens are stored in a local machine database. Only dummy attributes are used for the access request evaluation in the cloud, and real data are retrieved in the post-decision mechanism using secure tokens. The security of the proposed model was assessed using a simulated threat scenario, including attribute inference, policy injection, and reverse mapping attacks. Experimental evaluation using machine learning classifiers (“DecisionTree” DT, “RandomForest” RF), demonstrated that inference accuracy dropped from ~0.65 on real attributes to ~0.25 on dummy attributes confirming improved resistance to inference attacks. Furthermore, the model rejects malformed and unauthorized policies. Performance analysis of dummy generation, token generation, encoding, and nearest-neighbor search, demonstrated minimal latency in both local and cloud environments. Overall, the proposed model ensures an efficient, secure, and privacy-preserving access control in cloud environments. Full article
Show Figures

Figure 1

25 pages, 3651 KB  
Article
Machine Learning-Based Framework for Pre-Impact Same-Level Fall and Fall-from-Height Detection in Construction Sites Using a Single Wearable Inertial Measurement Unit
by Oleksandr Yuhai, Yubin Cho and Joung Hwan Mun
Biosensors 2025, 15(9), 618; https://doi.org/10.3390/bios15090618 - 17 Sep 2025
Viewed by 424
Abstract
Same-level-falls (SLFs) and falls-from-height (FFHs) remain major causes of severe injuries and fatalities on construction sites. Researchers are actively developing fall-prevention systems requiring accurate SLF and FFH detection in construction settings prone to false positives. In this study, a machine learning-based approach was [...] Read more.
Same-level-falls (SLFs) and falls-from-height (FFHs) remain major causes of severe injuries and fatalities on construction sites. Researchers are actively developing fall-prevention systems requiring accurate SLF and FFH detection in construction settings prone to false positives. In this study, a machine learning-based approach was established for accurate identification of SLF, FFH, and non-fall events using a single waist-mounted inertial measurement unit (IMU). A total of 48 participants executed 39 non-fall activities, 10 types of SLFs, and 8 types of FFHs, with a dummy used for falls exceeding 0.5 m. A two-stage feature extraction yielded 168 descriptors per data window, and an ensemble SHAP-PFI method selected the 153 most informative variables. The weighted XGBoost classifier, optimized via Bayesian techniques, outperformed other current boosting algorithms. Using 5-fold cross-validation, it achieved an average macro F1-score of 0.901 and macro Matthews correlation coefficient of 0.869, with a latency of 1.51 × 10−3 ms per window. Notably, the average lead times were 402 ms for SLFs and 640 ms for FFHs, surpassing the 130 ms inflation time required for wearable airbags. This pre-impact SLF and FFH detection approach delivers both rapid and precise detection, positioning it as a viable central component for wearable fall-prevention devices in fast-paced construction scenarios. Full article
(This article belongs to the Special Issue Sensors for Human Activity Recognition: 3rd Edition)
Show Figures

Figure 1

16 pages, 495 KB  
Article
Slomads Rising: Structural Shifts in U.S. Airbnb Stay Lengths During and After the Pandemic (2019–2024)
by Harrison Katz and Erica Savage
Tour. Hosp. 2025, 6(4), 182; https://doi.org/10.3390/tourhosp6040182 - 17 Sep 2025
Viewed by 389
Abstract
Background. Length of stay, operationalized here as nights per booking (NPB), is a first-order driver of yield, labor planning, and environmental pressure. The COVID-19 pandemic and the rise of long-stay remote workers (often labeled “slomads”, a slow-travel subset of digital nomads) plausibly altered [...] Read more.
Background. Length of stay, operationalized here as nights per booking (NPB), is a first-order driver of yield, labor planning, and environmental pressure. The COVID-19 pandemic and the rise of long-stay remote workers (often labeled “slomads”, a slow-travel subset of digital nomads) plausibly altered stay-length distributions, yet national, booking-weighted evidence for the United States remains scarce. Purpose. This study quantifies COVID-19 pandemic-era and post-pandemic shifts in U.S. Airbnb stay lengths, and identifies whether higher averages reflect (i) more long stays or (ii) longer long stays. Methods. Using every U.S. Airbnb reservation created between 1 January 2019 and 31 December 2024 (collapsed to booking-count weights), the analysis combines: weighted descriptive statistics; parametric density fitting (Gamma, log-normal, Poisson–lognormal); weighted negative-binomial regression with month effects; a two-part (logit + NB) model for ≥28-night stays; and a monthly SARIMA(0,1,1)(0,1,1)12 with COVID-19 pandemic-phase indicators. Results. Mean NPB rose from 3.68 pre-COVID-19 to 4.36 during restrictions and then stabilized near 4.07 post-2021 (≈10% above 2019); the booking-weighted median shifted permanently from 2 to 3 nights. A two-parameter log-normal fits best by wide AIC/BIC margins, consistent with a heavy-tailed distribution. Negative-binomial estimates imply post-vaccine bookings are 6.5% shorter than restriction-era bookings, while pre-pandemic bookings are 16% shorter. In a two-part (threshold) model at 28 nights, the booking share of month-plus stays rose from 1.43% (pre) to 2.72% (restriction) and settled at 2.04% (post), whereas the conditional mean among long stays was in the mid-to-high 50 s (≈55–60 nights) and varied modestly across phases. Hence, a higher average NPB is driven primarily by a greater prevalence of month-plus bookings. A seasonal ARIMA model with pandemic-phase dummies improves fit over a dummy-free specification (likelihood-ratio = 8.39, df = 2, p = 0.015), indicating a structural level shift rather than higher-order dynamics. Contributions. The paper provides national-scale, booking-weighted evidence that U.S. short-term-rental stays became durably longer and more heavy-tailed after 2020, filling a gap in the tourism and revenue-management literature. Implications. Heavy-tailed pricing and inventory policies, and explicit regime indicators in forecasting, are recommended for practitioners; destination policy should reflect the larger month-plus segment. Full article
Show Figures

Figure 1

19 pages, 3090 KB  
Article
Anthrone-Based Dummy Molecularly Imprinted PVDF Membrane for Monitoring Fluorene and Phenanthrene in River Water
by Aria Pinandita, Nurrahmi Handayani, Muhammad Iqbal, Untung Triadhi, Rusnadi Rusnadi, Samitha Dewi Djajanti, Muhammad Bachri Amran and Muhammad Ali Zulfikar
Molecules 2025, 30(18), 3754; https://doi.org/10.3390/molecules30183754 - 16 Sep 2025
Viewed by 333
Abstract
The anthrone-based dummy molecularly imprinted membrane (DIM) was successfully synthesized using a semi-interpenetrating polymer network (semi-IPN) approach for the selective recognition and adsorption of fluorene and phenanthrene in aqueous systems. Fourier-transform infrared spectroscopy (FTIR) confirmed the successful incorporation of functional groups, while scanning [...] Read more.
The anthrone-based dummy molecularly imprinted membrane (DIM) was successfully synthesized using a semi-interpenetrating polymer network (semi-IPN) approach for the selective recognition and adsorption of fluorene and phenanthrene in aqueous systems. Fourier-transform infrared spectroscopy (FTIR) confirmed the successful incorporation of functional groups, while scanning electron microscopy (SEM) revealed a uniform porous morphology favorable for analyte diffusion. Thermogravimetric analysis (TGA) demonstrated good thermal stability, and Brunauer–Emmett–Teller (BET) and Barrett–Joyner–Halenda (BJH) analyses indicated an enhanced surface area and mesoporous structure that supported improved adsorption performance. Adsorption isotherm studies revealed favorable adsorption behavior, with the maximum adsorption capacities of the DIM calculated to be 130.857 mg/g for fluorene and 453.030 mg/g for phenanthrene. The imprinting factors (IFs) were approximately 2.01 for fluorene and 2.17 for phenanthrene, confirming the successful imprinting effect. The recovery values achieved were 86.61% for fluorene and 92.40% for phenanthrene, demonstrating the efficiency and selectivity of the fabricated membrane. These results highlight the potential application of the anthrone-based DIM in the environmental monitoring of polycyclic aromatic hydrocarbons (PAHs). Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Graphical abstract

28 pages, 4536 KB  
Article
Nonlinear Impact of Seatback Recline Angle and Crash Pulse Magnitude on Head Injury Risk During Rear-End Impacts
by Aleksander Górniak
Sensors 2025, 25(18), 5695; https://doi.org/10.3390/s25185695 - 12 Sep 2025
Viewed by 300
Abstract
Out-of-position (OOP) testing is increasingly important due to the development of autonomous vehicles, innovative car seat designs, and the need to verify safety in various seating configurations. This study analyzes the impact of seatback recline angle and crash pulse magnitude on head injury [...] Read more.
Out-of-position (OOP) testing is increasingly important due to the development of autonomous vehicles, innovative car seat designs, and the need to verify safety in various seating configurations. This study analyzes the impact of seatback recline angle and crash pulse magnitude on head injury risk during rear-end impacts, focusing on the Head Injury Criterion (HIC). Using a sled system and a Hybrid III 50th-percentile dummy, 12 crash scenarios were examined with crash pulses of 10 g, 15 g, and 20 g and seatback recline angles of 21°, 25°, 38°, and 55°. The results showed that increasing the seatback recline angle reduces peak head accelerations but extends their duration, which, based on the Wayne State Tolerance Curve (WSTC), may increase injury risk. The HIC increased nonlinearly with higher crash pulses, especially in upright positions. The study proposes the Pelvis-to-Headrest Transmission Effect as a newly observed dynamic mechanism affecting head and neck injury risk. Findings suggest that a more reclined posture may enhance biomechanical safety in rear-end collisions, although the effect is complex and depends on multiple factors. Video analysis and Z-axis acceleration data confirmed that certain reclined configurations can increase compressive forces on the cervical spine, highlighting the need for comprehensive safety assessment. Full article
(This article belongs to the Special Issue Advanced Sensing and Analysis Technology in Transportation Safety)
Show Figures

Figure 1

30 pages, 14058 KB  
Article
Effect of Imaging Range on Performance of Terahertz Coded-Aperture Imaging
by Yan Teng, Haodong Yang, Xinhong Cui, Xiaoze Li and Yanchao Shi
Sensors 2025, 25(18), 5667; https://doi.org/10.3390/s25185667 - 11 Sep 2025
Viewed by 294
Abstract
This paper reveals a counterintuitive, non-monotonic dependence of terahertz coded-aperture imaging (TCAI) performance on the imaging range. This phenomenon stems from phase-induced spatiotemporal correlations in the reference-signal matrix (RSM), governed by the wavefront phase interactions between the coded-aperture elements and scatterers on the [...] Read more.
This paper reveals a counterintuitive, non-monotonic dependence of terahertz coded-aperture imaging (TCAI) performance on the imaging range. This phenomenon stems from phase-induced spatiotemporal correlations in the reference-signal matrix (RSM), governed by the wavefront phase interactions between the coded-aperture elements and scatterers on the imaging plane. Image quality deteriorates noticeably when a specific dimensionless criterion, which is defined mathematically and physically in this work, precisely reaches integer values. Under such conditions, the relative phase difference concentrates or clusters into discrete values determined by the imaging range, leading to strong column and row correlations in RSM that compromise the spatiotemporal independence essential for high-quality reconstruction. For imaging ranges exceeding the critical threshold determined by the number of grid points along one dimension of the imaging plane, two degradation mechanisms emerge: increased correlation between RSM columns mapping to directly adjacent scatterers and phase coverage reduction in wavefront encoding. Both effects intensify as the imaging range increases, resulting in a monotonic deterioration of imaging performance. Crucially, reconstruction fails primarily when strong correlations involve dominant scatterers, whereas correlations among non-dominant (dummy) scatterers have a negligible impact. The Two-step Iterative Shrinkage/Thresholding (TwIST) algorithm demonstrates superior robustness under these challenging conditions compared to some other conventional methods. These insights provide practical guidance for optimizing TCAI system design and operational range selection to avoid performance degradation zones. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

14 pages, 3113 KB  
Article
Development of the Biofidelic Instrumented Neck Surrogate (BINS) with Tunable Stiffness and Embedded Kinematic Sensors for Application in Static Tests and Low-Energy Impacts
by Giuseppe Zullo, Elisa Baldoin, Leonardo Marin, Andrey Koptyug and Nicola Petrone
Sensors 2025, 25(16), 4925; https://doi.org/10.3390/s25164925 - 9 Aug 2025
Viewed by 498
Abstract
Road accidents could result in severe or fatal neck injuries. A few surrogate necks are available to develop and test neck protectors as countermeasures, but each has its own limitations. The objective of this study was to develop a surrogate neck compatible with [...] Read more.
Road accidents could result in severe or fatal neck injuries. A few surrogate necks are available to develop and test neck protectors as countermeasures, but each has its own limitations. The objective of this study was to develop a surrogate neck compatible with the Hybrid III dummy, focused on tunable flexural stiffness and integrated angular sensors for kinematic feedback during impact tests. The neck features six 3D-printed surrogate vertebral bodies interconnected by rubber surrogate discs, providing a baseline flexibility to the surrogate fundamental spinal units. An adjustable inner cable and elastic elements hooked on the sides of vertebral elements allow to increase the flexural stiffness of the surrogate and to simulate the asymmetric behavior of the human neck. Neck flexural angles and axial compression are measured using a novel system made of wires, pulleys, and rotary potentiometers embedded in the neck base. A motion capture system and a load cell were used to determine the bending and torsional stiffness of the neck and to calibrate the sensors. Results showed that the neck flexural stiffness can be tuned between 3.29 and 5.76 Nm/rad. Torsional stiffness was 1.01 Nm/rad and compression stiffness can be tuned from 39 to 193 N/mm. Sensor flexural angles were compared with motion capture angles, showing an RMSE error of 1.35° during static testing and of 3° during dynamic testing. The developed neck could be a viable tool for investigating neck braces from a kinematic and kinetic perspective due to its inbuilt sensing ability and its tunable stiffness. Full article
(This article belongs to the Special Issue Applications of Body Worn Sensors and Wearables)
Show Figures

Figure 1

18 pages, 8744 KB  
Article
A User-Centered Teleoperation GUI for Automated Vehicles: Identifying and Evaluating Information Requirements for Remote Driving and Assistance
by Maria-Magdalena Wolf, Henrik Schmidt, Michael Christl, Jana Fank and Frank Diermeyer
Multimodal Technol. Interact. 2025, 9(8), 78; https://doi.org/10.3390/mti9080078 - 31 Jul 2025
Cited by 2 | Viewed by 907
Abstract
Teleoperation emerged as a promising fallback for situations beyond the capabilities of automated vehicles. Nevertheless, teleoperation still faces challenges, such as reduced situational awareness. Since situational awareness is primarily built through the remote operator’s visual perception, the graphical user interface (GUI) design is [...] Read more.
Teleoperation emerged as a promising fallback for situations beyond the capabilities of automated vehicles. Nevertheless, teleoperation still faces challenges, such as reduced situational awareness. Since situational awareness is primarily built through the remote operator’s visual perception, the graphical user interface (GUI) design is critical. In addition to video feed, supplemental informational elements are crucial—not only for the predominantly studied remote driving, but also for emerging desk-based remote assistance concepts. This work develops a GUI for different teleoperation concepts by identifying key informational elements during the teleoperation process through expert interviews (N = 9). Following this, a static and dynamic GUI prototype was developed and evaluated in a click dummy study (N = 36). Thereby, the dynamic GUI adapts the number of displayed elements according to the teleoperation phase. Results show that both GUIs achieve good system usability scale (SUS) ratings, with the dynamic GUI significantly outperforming the static version in both usability and task completion time. However, the results might be attributable to a learning effect due to the lack of randomization. The user experience questionnaire (UEQ) score shows potential for improvement. To enhance the user experience, the GUI should be evaluated in a follow-up study that includes interaction with a real vehicle. Full article
Show Figures

Figure 1

28 pages, 888 KB  
Article
Requiem for Olympic Ethics and Sports’ Independence
by Fabio Zagonari
Stats 2025, 8(3), 67; https://doi.org/10.3390/stats8030067 - 28 Jul 2025
Viewed by 389
Abstract
This paper suggests a theoretical framework to summarise the empirical literature on the relationships between sports and both religious and secular ethics, and it suggests two interrelated theoretical models to empirically evaluate the extent to which religious and secular ethics, as well as [...] Read more.
This paper suggests a theoretical framework to summarise the empirical literature on the relationships between sports and both religious and secular ethics, and it suggests two interrelated theoretical models to empirically evaluate the extent to which religious and secular ethics, as well as sports policies, affect achievements in sports. I identified two national ethics (national pride/efficiency) and two social ethics (social cohesion/ethics) by measuring achievements in terms of alternative indexes based on Olympic medals. I referred to three empirical models and applied three estimation methods (panel Poisson, Data Envelopment, and Stochastic Frontier Analyses). I introduced two sports policies (a quantitative policy aimed at social cohesion and a qualitative policy aimed at national pride), by distinguishing sports in terms of four possibly different ethics to be used for the eight summer and eight winter Olympic Games from 1994 to 2024. I applied income level, health status, and income inequality, to depict alternative social contexts. I used five main religions and three educational levels to depict alternative ethical contexts. I applied country dummies to depict alternative institutional contexts. Empirical results support the absence of Olympic ethics, the potential substitution of sport and secular ethics in providing social cohesion, and the dependence of sports on politics, while alternative social contexts have different impacts on alternative sport achievements. Full article
(This article belongs to the Special Issue Ethicametrics)
Show Figures

Figure 1

27 pages, 406 KB  
Article
Value Creation Through Environmental, Social, and Governance (ESG) Disclosures
by Amina Hamdouni
J. Risk Financial Manag. 2025, 18(8), 415; https://doi.org/10.3390/jrfm18080415 - 27 Jul 2025
Viewed by 1969
Abstract
This study investigates the impact of environmental, social, and governance (ESG) disclosure on value creation in a balanced panel of 100 non-financial Sharia-compliant firms listed on the Saudi Stock Exchange over the period 2014–2023. The analysis employs a combination of econometric techniques, including [...] Read more.
This study investigates the impact of environmental, social, and governance (ESG) disclosure on value creation in a balanced panel of 100 non-financial Sharia-compliant firms listed on the Saudi Stock Exchange over the period 2014–2023. The analysis employs a combination of econometric techniques, including fixed effects models with Driscoll–Kraay standard errors, Pooled Ordinary Least Squares (POLS) with Driscoll–Kraay standard errors and industry and year dummies, and two-step system generalized method of moments (GMM) estimation to address potential endogeneity and omitted variable bias. Value creation is measured using Tobin’s Q (TBQ), Return on Assets (ROA), and Return on Equity (ROE). The models also control for firm-specific variables such as firm size, leverage, asset tangibility, firm age, growth opportunities, and market capitalization. The findings reveal that ESG disclosure has a positive and statistically significant effect on firm value across all three performance measures. Furthermore, firm size significantly moderates this relationship, with larger Sharia-compliant firms experiencing greater value gains from ESG practices. These results align with agency, stakeholder, and signaling theories, emphasizing the role of ESG in enhancing transparency, reducing information asymmetry, and strengthening stakeholder trust. The study provides empirical evidence relevant to policymakers, investors, and firms striving to achieve Saudi Arabia’s Vision 2030 sustainability goals. Full article
21 pages, 9379 KB  
Article
UDirEar: Heading Direction Tracking with Commercial UWB Earbud by Interaural Distance Calibration
by Minseok Kim, Younho Nam, Jinyou Kim and Young-Joo Suh
Electronics 2025, 14(15), 2940; https://doi.org/10.3390/electronics14152940 - 23 Jul 2025
Viewed by 554
Abstract
Accurate heading direction tracking is essential for immersive VR/AR, spatial audio rendering, and robotic navigation. Existing IMU-based methods suffer from drift and vibration artifacts, vision-based approaches require LoS and raise privacy concerns, and RF techniques often need dedicated infrastructure. We propose UDirEar, a [...] Read more.
Accurate heading direction tracking is essential for immersive VR/AR, spatial audio rendering, and robotic navigation. Existing IMU-based methods suffer from drift and vibration artifacts, vision-based approaches require LoS and raise privacy concerns, and RF techniques often need dedicated infrastructure. We propose UDirEar, a COTS UWB device-based system that estimates user heading using solely high-level UWB information like distance and unit direction. By initializing an EKF with each user’s constant interaural distance, UDirEar compensates for the earbuds’ roto-translational motion without additional sensors. We evaluate UDirEar on a step-motor-driven dummy head against an IMU-only baseline (MAE 30.8°), examining robustness across dummy head–initiator distances, elapsed time, EKF calibration conditions, and NLoS scenarios. UDirEar achieves a mean absolute error of 3.84° and maintains stable performance under all tested conditions. Full article
(This article belongs to the Special Issue Wireless Sensor Network: Latest Advances and Prospects)
Show Figures

Figure 1

21 pages, 7716 KB  
Article
Resplace of the Car–Driver–Passenger System in a Frontal Crash Using a Water Impact Attenuator
by Claudiu Nedelescu, Calin Itu, Anghel Chiru, Sorin Vlase and Bogdan Cornel Benea
Vehicles 2025, 7(3), 74; https://doi.org/10.3390/vehicles7030074 - 16 Jul 2025
Viewed by 642
Abstract
Passenger safety remains a primary goal in vehicle engineering, requiring the development of advanced passive safety systems to reduce injuries during collisions. Impact attenuators (particularly for race cars) are a crucial component for the safety of the driver. The impact of the impact [...] Read more.
Passenger safety remains a primary goal in vehicle engineering, requiring the development of advanced passive safety systems to reduce injuries during collisions. Impact attenuators (particularly for race cars) are a crucial component for the safety of the driver. The impact of the impact attenuator (IA) is demonstrated by the behavior of a seat-belted dummy in a frontal collision with a rigid wall. The aim of this paper is to confirm the qualities of water as a damping agent in the manufacturing of the IA. To reach a conclusion, a theoretical model is used and experimental tests are performed. Once the loads operating on the dummy have been identified, it is confirmed that they fall within the range that the existing requirements recommend. The car is viewed as a structure with a seat-belt-fastened dummy and an impact attenuator. Research is being conducted on a new water-based impact attenuator technology. A frontal collision of the car–dummy assembly was taken into consideration when analyzing the dummy’s behavior in accordance with the criteria. A simulation program was used to calculate the accelerations at various points on the mannequin’s body as well as the force that manifested on the seat belts. So, the good qualities of IAs using water are revealed and support designers in their efforts to obtain better shock behavior. In the simulation, the variation of internal energy accumulated by the vehicle, displacements and velocities of various points on the chassis, as well as the accelerations of the vehicle and the occupant were determined. In the experiment, the vehicle velocities for both test cases were established and used in the simulation, and the accelerations of the vehicle and dummy were measured. The assessment was carried out by comparing experimental and simulation data, focusing on acceleration values recorded on both the dummy and the vehicle. Evaluation criteria such as HIC and ThAC were applied to determine the severity of the impact and the effectiveness of the proposed water-based attenuator. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

30 pages, 4492 KB  
Article
Hard Preloaded Duplex Ball Bearing Dynamic Model for Space Applications
by Pablo Riera, Luis Maria Macareno, Igor Fernandez de Bustos and Josu Aguirrebeitia
Machines 2025, 13(7), 581; https://doi.org/10.3390/machines13070581 - 4 Jul 2025
Viewed by 474
Abstract
Duplex ball bearings are common components in space satellite mechanisms, and their behaviour impacts the overall performance and reliability of these systems. During rocket launches, these bearings suffer high vibrational loads, making their dynamic response essential for their survival. To predict the dynamic [...] Read more.
Duplex ball bearings are common components in space satellite mechanisms, and their behaviour impacts the overall performance and reliability of these systems. During rocket launches, these bearings suffer high vibrational loads, making their dynamic response essential for their survival. To predict the dynamic behaviour under vibration, simulations and experimental tests are performed. However, published models for space applications fail to capture the variations observed in test responses. This study presents a multi-degree-of-freedom nonlinear multibody model of a hard-preloaded duplex space ball bearing, particularized for this work to the case in which the outer ring is attached to a shaker and the inner ring to a test dummy mass. The model incorporates the Hunt and Crossley contact damping formulation and employs quaternions to accurately represent rotational dynamics. The simulated model response is validated against previously published axial test data, and its response under step, sine, and random excitations is analysed both in the case of radial and axial excitation. The results reveal key insights into frequency evolution, stress distribution, gapping phenomena, and response amplification, providing a deeper understanding of the dynamic performance of space-grade ball bearings. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

20 pages, 454 KB  
Article
Differential Effects of Gynecological and Chronological Age on Low Birth Weight and Small for Gestational Age
by Reyna Sámano, Gabriela Chico-Barba, Estela Godínez-Martínez, Hugo Martínez-Rojano, Ashley Díaz-Medina, María Hernández-Trejo, Pablo César Navarro-Vargas, María Eugenia Flores-Quijano, María Eugenia Mendoza-Flores and Valeria Sujey Luna-Espinosa
Biomedicines 2025, 13(7), 1639; https://doi.org/10.3390/biomedicines13071639 - 4 Jul 2025
Viewed by 942
Abstract
Background: Adolescents with a chronological age of less than 15 years or a gynecological age of less than 2 years may have a higher probability of complications because they are more likely to conceive within 1 to 2 years of menarche and, therefore, [...] Read more.
Background: Adolescents with a chronological age of less than 15 years or a gynecological age of less than 2 years may have a higher probability of complications because they are more likely to conceive within 1 to 2 years of menarche and, therefore, are still growing and maturing. This could impair their ability to adapt to the physiological demands of pregnancy. Objective: To evaluate the relationship between chronological age and gynecological age with low birth weight and small for gestational age among adolescent mothers in Mexico City. Methods: A retrospective cohort design of adolescent mother–child dyads was conducted. The study followed 1242 adolescents under 19 years of age and their children, collecting data on physical, socioeconomic, and clinical characteristics, including hemoglobin levels. Low birth weight was assessed using the Intergrowth-21st project standards and categorized as above or below 2500 g. The mothers were grouped by chronological age (<15 years and ≥15 years) and gynecological age (<3 years and ≥3 years). Adjusted odds ratios were calculated using binary logistic regression models. The outcome variables were low birth weight and small for gestational age. The independent variables included gynecological age, chronological age, age at menarche, hemoglobin concentration, and gestational weight gain, among others. All independent variables were converted to dummy variables for analysis. Calculations were adjusted for the following variables: marital status, maternal education, occupation, educational lag, family structure, socioeconomic level, pre-pregnancy body mass index, and initiation of prenatal care. Results: The average age of the participants was 15.7 ± 1 years. The frequency of small for gestational age and low birth weight was 20% and 15.3%, respectively. Factors associated with small for gestational age included gynecological age < 3 years [aOR = 2.462, CI 95%; 1.081–5.605 (p = 0.032)], hemoglobin < 11.5 g/dL [aOR = 2.164, CI 95%; 1.08–605 (p = 0.019)], insufficient gestational weight gain [aOR = 1.858, CI 95%; 1.059–3.260 (p = 0.031)], preterm birth [aOR = 1.689, CI 95%; 1.133–2.519 p = 0.01], and living more than 50 km from the care center [aOR = 2.256, CI 95%; 1.263–4.031 (p = 0.006)]. An early age of menarche [aOR = 0.367, CI 95%; 0.182–0.744 (p = 0.005)] showed a protective effect against small for gestational age. Factors associated with low birth weight included gynecological age < 3 years [aOR = 3.799, CI 95%; 1.458–9.725 (p = 0.006)], maternal age < 15 years [aOR = 5.740, CI 95%; 1.343–26.369 (p = 0.019)], preterm birth [aOR = 54.401, CI 95%; 33.887–87.335, p = 0.001], living more than 50 km from the care center [aOR = 1.930, CI 95%; 1.053–3.536 (p = 0.033)], and early age of menarche [aOR = 0.382, CI 95%; 0.173–0.841 (p = 0.017), which demonstrated a protective effect, respectively. Conclusions: The study concludes that biological immaturity, particularly early gynecological age, significantly contributes to adverse birth outcomes during adolescent pregnancies. Interestingly, early menarche appeared to have a protective effect, whereas chronological age was not a significant predictor of small for gestational age. Chronological age has an even greater impact: women younger than 15 years are 5.7 times more likely to have low birth weight infants. However, chronological age did not increase the likelihood of having an SGA newborn. Full article
Show Figures

Figure 1

20 pages, 4294 KB  
Article
Design and Initial Validation of an Infrared Beam-Break Fish Counter (‘Fish Tracker’) for Fish Passage Monitoring
by Juan Francisco Fuentes-Pérez, Marina Martínez-Miguel, Ana García-Vega, Francisco Javier Bravo-Córdoba and Francisco Javier Sanz-Ronda
Sensors 2025, 25(13), 4112; https://doi.org/10.3390/s25134112 - 1 Jul 2025
Cited by 1 | Viewed by 806
Abstract
Effective monitoring of fish passage through river barriers is essential for evaluating fishway performance and supporting adaptive river management. Traditional methods are often invasive, labor-intensive, or too costly to enable widespread implementation across most fishways. Infrared (IR) beam-break counters offer a promising alternative, [...] Read more.
Effective monitoring of fish passage through river barriers is essential for evaluating fishway performance and supporting adaptive river management. Traditional methods are often invasive, labor-intensive, or too costly to enable widespread implementation across most fishways. Infrared (IR) beam-break counters offer a promising alternative, but their adoption has been limited by high costs and a lack of flexibility. We developed and tested a novel, low-cost infrared beam-break counter—FishTracker—based on open-source Raspberry Pi and Arduino platforms. The system detects fish passages by analyzing interruptions in an IR curtain and reconstructing fish silhouettes to estimate movement, direction, speed, and morphometrics under a wide range of turbidity conditions. It also offers remote access capabilities for easy management. Field validation involved controlled tests with dummy fish, experiments with small-bodied live specimens (bleak) under varying turbidity conditions, and verification against synchronized video of free-swimming fish (koi carp). This first version of FishTracker achieved detection rates of 95–100% under controlled conditions and approximately 70% in semi-natural conditions, comparable to commercial counters. Most errors were due to surface distortion caused by partial submersion during the experimental setup, which could be avoided by fully submerging the device. Body length estimation based on passage speed and beam-interruption duration proved consistent, aligning with published allometric models for carps. FishTracker offers a promising and affordable solution for non-invasive fish monitoring in multispecies contexts. Its design, based primarily on open technology, allows for flexible adaptation and broad deployment, particularly in locations where commercial technologies are economically unfeasible. Full article
(This article belongs to the Special Issue Optical Sensors for Industry Applications)
Show Figures

Figure 1

Back to TopTop