Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = duodenal digest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1906 KB  
Review
The Duodenum-Centered Neurohormonal Hypothesis of Type 2 Diabetes: A Mechanistic Review and Therapeutic Perspective
by Athena N. Kapralou, Christos Yapijakis and George P. Chrousos
Curr. Issues Mol. Biol. 2025, 47(8), 657; https://doi.org/10.3390/cimb47080657 - 14 Aug 2025
Viewed by 1193
Abstract
Type 2 diabetes mellitus (T2DM) is a multifactorial disorder defined by insulin resistance, β-cell dysfunction, and chronic hyperglycemia. Although peripheral mechanisms have been extensively studied, increasing evidence implicates the gastrointestinal tract in disease onset. Insights from bariatric surgery, gut hormone signaling, and incretin-based [...] Read more.
Type 2 diabetes mellitus (T2DM) is a multifactorial disorder defined by insulin resistance, β-cell dysfunction, and chronic hyperglycemia. Although peripheral mechanisms have been extensively studied, increasing evidence implicates the gastrointestinal tract in disease onset. Insights from bariatric surgery, gut hormone signaling, and incretin-based therapies suggest that the gut contributes actively beyond nutrient absorption. Yet, a cohesive framework integrating these observations remains absent, leaving a critical gap in our understanding of T2DM’s upstream pathophysiology. This work builds upon the anti-incretin theory, which posits that nutrient-stimulated neurohormonal signals—termed “anti-incretins”—arise from the proximal intestine to counteract incretin effects and regulate glycemic homeostasis. The excess of anti-incretin signals, perhaps stimulated by macronutrient composition or chemical additives of modern diets, disrupts this balance and may cause insulin resistance and β-cell depletion, leading to T2D. We hypothesize that the neuroendocrine signals produced by cholecystokinin (CCK)-I and secretin-S cells, both located in the proximal intestine, function as endogenous anti-incretins. In this context, we hypothesize a novel model centered on the chronic overstimulation of I and S cells by high-fat, high glycemic index modern diets. This drives what we term “amplified digestion”—a state marked by heightened vagal and hormonal stimulation of biliary and pancreatic secretions, increased enzymatic and bile acid activity, and alterations in bile acid composition. This condition leads to an extended breakdown of carbohydrates, lipids, and proteins into absorbable units, thereby promoting excessive nutrient absorption and ultimately contributing to insulin resistance and progressive β-cell failure. Multiple lines of clinical, surgical, and experimental evidence converge to support our model, rooted in the physiology of digestion and absorption. Western dietary patterns appear to induce an over-digestive adaptation—marked by excessive vagal and hormonal stimulation of biliary and pancreatic secretion—which amplifies digestive signaling. This heightened state correlates with increased nutrient absorption, insulin resistance, and β-cell dysfunction. Interventions that disrupt this maladaptive signaling—such as truncal vagotomy combined with duodenal bypass—may offer novel, physiology-based strategies for T2DM treatment. This hypothesis outlines a potential upstream contributor to insulin resistance and T2DM, grounded in digestive tract-derived neurohormonal dysregulation. This gut-centered model may provide insight into early, potentially reversible stages of the disease and identify a conceptual therapeutic target. Nonetheless, both the hypothesis and the accompanying surgical strategy—truncal vagotomy combined with proximal intestinal bypass—remain highly exploratory and require systematic validation through mechanistic and clinical studies. Further investigation is warranted to clarify the molecular regulation of I and S enteroendocrine cells, including the genetic and epigenetic factors that may drive hypersecretion. While speculative, interventions—surgical or pharmacologic—designed to modulate these digestive signals could represent a future avenue for research into T2DM prevention or remission, pending rigorous evidence. Full article
Show Figures

Figure 1

18 pages, 2536 KB  
Article
Effects of Dietary Metabolizable Energy and Crude Protein Levels on the Nutrient Metabolism, Gut Development and Microbiota Composition in Jingyuan Chicken
by Xin Guo, Jie Liu, Jie Yang, Qiaoxian Gao, Juan Zhang, Wenzhi Yang and Guosheng Xin
Animals 2025, 15(16), 2387; https://doi.org/10.3390/ani15162387 - 14 Aug 2025
Viewed by 409
Abstract
The effects of varying dietary metabolizable energy (ME) and crude protein (CP) levels, along with their interactive effects, on the apparent nutrient metabolism, development of digestive organs, intestinal morphology, and microbiota composition in Jingyuan chickens during the growing phase were evaluated. A total [...] Read more.
The effects of varying dietary metabolizable energy (ME) and crude protein (CP) levels, along with their interactive effects, on the apparent nutrient metabolism, development of digestive organs, intestinal morphology, and microbiota composition in Jingyuan chickens during the growing phase were evaluated. A total of 540 seven-week-old male Jingyuan chickens were randomly assigned to nine groups, with six replicates per group and 10 chickens per replicate. The trial lasted for 11 weeks. A 3 × 3 factorial design was adopted, comprising three levels of ME, namely, low (11.28 MJ/kg, LE group), medium (11.70 MJ/kg, ME group), and high (12.12 MJ/kg, HE group) and three levels of CP, namely, low (14.00%, LP group), medium (15.50%, MP group), and high (17.00%, HP group). The levels of ME and CP, along with their interactions, had significant effects on the average daily gain (ADG), average daily feed intake, feed conversion ratio (FCR), apparent metabolizable rate of CP, gizzard weight, duodenal lengths, jejunal villus height (VH), crypt depth (CD), and muscle layer thickness (MLT) (p < 0.05). The combination of medium level ME (11.70 MJ/kg) and medium level CP (15.50%) (MEMP group) exhibited the best performance, with the highest ADG and the lowest FCR (p < 0.05). Moreover, this group showed significantly higher duodenal length, jejunal CD, VH/CD and MLT compared with the other groups (p < 0.05). Dietary ME and CP levels greatly influenced cecal microbiota composition. Chickens in the MEMP group exhibited an increased abundance of Erysipelotrichaceae, Syntrophomonadaceae, Akkermansia, and Clostridia_vadinBB60_group, and there was an obvious decrease in the relative abundance of Desulfobacterota (p < 0.05). This study demonstrated that dietary ME and CP levels, along with their interactions, could significantly influence the growth performance, apparent nutrient metabolism, and intestinal development of Jingyuan chickens during the growing phase. Dietary ME and CP levels modulated the cecal microbiota composition, potentially inhibiting the abundance of harmful bacteria Desulfobacterota, while enriching the abundance of beneficial bacteria, thereby enhancing gut development and nutrient absorption. The combination of medium-level ME and CP (11.70 MJ/kg ME, 15.50% CP) demonstrated the most favorable outcomes in our study. Full article
(This article belongs to the Special Issue Poultry Nutritional Requirements)
Show Figures

Figure 1

19 pages, 3251 KB  
Article
Effects of Dietary Cinnamaldehyde Supplementation on Growth Performance, Serum Antioxidant Capacity, Intestinal Digestive Enzyme Activities, Morphology, and Caecal Microbiota in Meat Rabbits
by Dongjin Chen, Yuxiang Lan, Yuqin He, Chengfang Gao, Bin Jiang and Xiping Xie
Animals 2025, 15(15), 2262; https://doi.org/10.3390/ani15152262 - 1 Aug 2025
Viewed by 496
Abstract
Cinnamaldehyde (CA) is a potential substitute for antibiotic growth promoters in animal breeding. In this study, we investigated its effects as a dietary supplement on growth performance, serum antioxidant capacity, intestinal digestive enzyme activities, intestinal morphology, and caecal microbiota in meat rabbits. Weaned [...] Read more.
Cinnamaldehyde (CA) is a potential substitute for antibiotic growth promoters in animal breeding. In this study, we investigated its effects as a dietary supplement on growth performance, serum antioxidant capacity, intestinal digestive enzyme activities, intestinal morphology, and caecal microbiota in meat rabbits. Weaned meat rabbits (n = 450) were randomly assigned to five groups, Groups A, B, C, D, and E, and fed 0, 50, 100, 150, and 200 mg/kg CA diets, respectively, for 47 days. Biological samples including serum (antioxidants), duodenal/caecal content (enzymes), intestinal tissue (morphology), and caecal digesta (microbiota) were collected at day 47 postweaning for analysis. Groups C and D showed significantly higher final body weights than Group A, with Group D (150 mg/kg CA) demonstrating superior growth performance including 11.73% longer duodenal villi (p < 0.05), 28.6% higher microbial diversity (p < 0.01), and 62% lower diarrhoea rate versus controls. Digestive enzyme activity as well as serum antioxidant capacity increased with increasing CA dose, Microbiota analysis revealed CA increased fibre-fermenting Oscillospiraceae (+38%, p < 0.01) while reducing Ruminococcaceae (−27%, p < 0.05). Thus, dietary CA supplementation at 150 mg/kg was identified as the optimal CA dose for improving meat rabbit production. These findings highlight CA as a functional feed additive for promoting sustainable rabbit production. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

20 pages, 1908 KB  
Article
Effects of Dietary Calcium and Phosphorus Levels on Growth Performance, Calcium–Phosphorus Homeostasis, and Gut Microbiota in Ningxiang Pigs
by Wenzhi Liu, Cheng Zhang, Xijie Kuang, Xianglin Zeng, Jiaqi Zhang, Qiye Wang and Huansheng Yang
Life 2025, 15(7), 1083; https://doi.org/10.3390/life15071083 - 9 Jul 2025
Viewed by 622
Abstract
Optimal dietary calcium (Ca) and phosphorus (P) requirements remain undetermined for Ningxiang pigs, a valuable indigenous Chinese breed. This study conducted a continuous feeding trial with two growth phases (grower: 30–50 kg; finisher: 50–80 kg) using fixed Ca/P ratios to systematically evaluate the [...] Read more.
Optimal dietary calcium (Ca) and phosphorus (P) requirements remain undetermined for Ningxiang pigs, a valuable indigenous Chinese breed. This study conducted a continuous feeding trial with two growth phases (grower: 30–50 kg; finisher: 50–80 kg) using fixed Ca/P ratios to systematically evaluate the effects of Ca/P levels on growth performance and mineral metabolism. A total of 180 pigs per phase were allocated to four Ca/P levels. During the grower phase, a dietary regimen of 0.83% Ca/0.67% P significantly increased the average daily feed intake (ADFI), average daily gain (ADG), and apparent total tract digestibility (ATTD) of energy and P. In the finisher phase, 0.60/0.48% Ca/P showed optimal growth performance, upregulated jejunal mineral transporters (CaSR and SLC34A2), enhanced bone mineralization (metatarsal ash content), and improved intestinal morphology (duodenal and jejunal villus height, jejunal villus surface area). This regimen also selectively enriched Peptostreptococcaceae abundance, indicating improved host–microbe interactions. Based on these findings, stage-specific nutritional strategies were recommended: 0.83% Ca/0.67% P during the grower phase and 0.60% Ca/0.48% P during the finisher phase. These protocols synergistically improve microbial ecology, intestinal function, and bone metabolism, thereby maximizing the growth potential of Ningxiang pigs. Full article
(This article belongs to the Special Issue Pig Microbiota Metabolism and Intestinal Health)
Show Figures

Figure 1

15 pages, 281 KB  
Article
Impacts of Protease Sources on Growth and Carcass Response, Gut Health, Nutrient Digestibility, and Cecal Microbiota Profiles in Broilers Fed Poultry-by-Product-Meal-Based Diets
by Muhammad Shahbaz Zafar, Shafqat Nawaz Qaisrani, Saima, Zafar Hayat and Kashif Nauman
Metabolites 2025, 15(7), 445; https://doi.org/10.3390/metabo15070445 - 2 Jul 2025
Viewed by 640
Abstract
Background: The current study aimed to evaluate the effects of the supplementation of protease sources on growth and carcass response, gut health, nutrient digestibility, and cecal microbiota profiles in broilers fed poultry-by-product-meal (PBM)-containing diets. Methods: In total, 800 one-day-old mixed-sex broilers (Arbor Acres) [...] Read more.
Background: The current study aimed to evaluate the effects of the supplementation of protease sources on growth and carcass response, gut health, nutrient digestibility, and cecal microbiota profiles in broilers fed poultry-by-product-meal (PBM)-containing diets. Methods: In total, 800 one-day-old mixed-sex broilers (Arbor Acres) were weighed and allocated to one of the four dietary treatments in a completely randomized design, with eight replicates and 25 birds each per replicate. The treatments were as follows: (1) T0, control diet (without protease supplementation and 3% PBM); (2) T1, control diet supplemented with acidic protease at 100 g/ton (50,000 U/g); (3) T2, control diet supplemented with alkaline protease at 200 g/ton (25,000 U/g); (4) T3, control diet supplemented with neutral protease at 200 g/ton (25,000 U/g). Results: Protease supplementation enhanced (p < 0.05) body weight gain and the feed conversion ratio, predominantly in broilers fed PBM-based diets containing alkaline protease. Alkaline protease supplementation increased (p < 0.05) the apparent ileal digestibility of proteins (AIDP) by 4.3% and the apparent ileal digestibility of amino acids (AIDAA) by up to 5.8%, except for ornithine. Increments (p < 0.05) in carcass, breast, and leg quarter yields due to protease supplementation were evident, particularly in broilers fed diets containing alkaline protease. Alkaline protease improved (p < 0.05) the duodenal villus height (VH), reduced the crypt depth (CD), and increased the villus height to crypt depth ratio (VCR). Alkaline protease supplementation reduced (p < 0.05) cecal counts of Salmonella, Escherichia coli, and Clostridium in the broilers, whereas it increased (p < 0.05) the Lactobacillus counts. Conclusions: the supplemented alkaline protease resulted in improved growth performance and carcass traits, better gut health, as well as improved ileal digestibility of nutrients, including crude protein (CP) and acid insoluble ash (AIA), with a more balanced cecal microbial composition in broilers. Full article
(This article belongs to the Section Animal Metabolism)
24 pages, 12602 KB  
Article
Effects of Different Rearing Methods on the Intestinal Morphology, Intestinal Metabolites, and Gut Microbiota of Lueyang Black-Bone Chickens
by Shuang Zeng, Linqing Shao, Mingming Zhao, Ling Wang, Jia Cheng, Tao Zhang and Hongzhao Lu
Animals 2025, 15(12), 1758; https://doi.org/10.3390/ani15121758 - 14 Jun 2025
Viewed by 984
Abstract
The Lueyang black-bone chicken represents a distinct indigenous avian breed native to China and it is a slow-growing broiler breed. The gut, whose primary function is to digest food and absorb nutrients, is also home to a large and diverse microbial community. The [...] Read more.
The Lueyang black-bone chicken represents a distinct indigenous avian breed native to China and it is a slow-growing broiler breed. The gut, whose primary function is to digest food and absorb nutrients, is also home to a large and diverse microbial community. The intestinal morphology, intestinal metabolites, and gut microbiota are critical determinants of nutrient utilization efficiency and immune health in poultry. This study investigates the impact of two distinct rearing modalities—cage-raised (CR) and cage-free (CF)—on the intestinal morphology, intestinal metabolites, and gut microbiota of the duodenum and cecum in Lueyang black-bone chickens. Additionally, we have integrated metabolomics and microbiome analyses. Morphological assessments revealed that, in comparison to the CR group, the CF group exhibited a significant increase in duodenal villi height (VH) and crypt depth (CD) (p < 0.01). Furthermore, there was a notable increase in the number of intestinal inflammatory cells within the CF group. Non-targeted metabolomics indicated an upregulation of omega-3 series polyunsaturated fatty acids and bile acid metabolites in the CR group. Conversely, the CF group demonstrated significantly elevated levels of lysophosphatidylcholine (LPC) and phosphatidylcholine (PE) in the intestine. Microbiome analysis revealed that in the duodenum, beneficial bacteria (e.g., Lactobacillus) were the dominant genera in the CF group, while the Bacteroides predominate in the CR group. Correlation analyses indicated a positive association between LPC levels and the presence of eight bacterial genera, including Ureaplasma. The omega-3 series polyunsaturated fatty acids were positively correlated with three bacterial genera, such as Flavobacterium. Notably, bile acid metabolites exhibited a significant positive correlation with Rikenellaceae_RC9_gut_group. In conclusion, this study provides novel insights into how rearing methods influence intestinal morphology, intestinal metabolites, and gut microbiota, offering a new perspective for the scientific management of poultry with the premise of ensuring animal health and welfare. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

13 pages, 1529 KB  
Article
Preliminary Study of CCR9 and MAdCAM-1 Upregulation and Immune Imbalance in Canine Chronic Enteropathy: Findings Based on Histopathological Analysis
by Macarena Pino, Galia Ramirez, Caroll Beltrán, Eduard Martinez, Ismael Pereira, Jaime Villegas, Federico Cifuentes and Daniela Siel
Animals 2025, 15(12), 1710; https://doi.org/10.3390/ani15121710 - 10 Jun 2025
Viewed by 703
Abstract
Canine chronic enteropathy (CE) is a gastrointestinal disorder characterized by persistent or recurrent digestive symptoms lasting more than three weeks. It shares similarities with human inflammatory bowel disease but its immunopathogenesis remains poorly characterized in dogs. The aim of this study was to [...] Read more.
Canine chronic enteropathy (CE) is a gastrointestinal disorder characterized by persistent or recurrent digestive symptoms lasting more than three weeks. It shares similarities with human inflammatory bowel disease but its immunopathogenesis remains poorly characterized in dogs. The aim of this study was to characterize the local and systemic immune profile of dogs with CE by assessing cytokine and chemokine expression in serum and intestinal tissue, as well as the mRNA expression of immune-related receptors such as integrins, chemokine receptors, and cytokines. Duodenal biopsies and blood samples were collected from five dogs diagnosed with a CE and five healthy controls. Serum concentrations of cytokines and chemokines were determined by multiplex ELISA, and mRNA expression in the intestinal mucosa was analyzed by quantitative PCR. Dogs with a CE showed increased expression of pro-inflammatory cytokines, including TNF-α and IFN-γ, and increased concentrations of chemokines such as CXCL10 and CCL2 in both serum and tissue samples. Increased mRNA expression of the chemokine receptor CCR9 and the adhesion molecule MAdCAM-1 were also observed in intestinal samples. These findings provide new insights into the immune response involved in CE and may aid the development of future diagnostic biomarkers and targeted therapies for canine chronic enteropathies. Full article
(This article belongs to the Section Animal Physiology)
Show Figures

Figure 1

14 pages, 238 KB  
Article
Dietary Sweet Sorghum (Sorghum bicolor (L.) Moench) Inclusion in Geese: Impacts on Growth Performance, Blood Biochemistry, and Intestinal Health
by Zuolan Liu, Xiaofeng Huang, Ying Chen, Jiajia Xue, Qun Xie, Hang Zhong, Yi Luo, Qigui Wang and Chao Wang
Animals 2025, 15(12), 1706; https://doi.org/10.3390/ani15121706 - 9 Jun 2025
Viewed by 562
Abstract
This study investigated the effects of dietary sweet sorghum (SW) inclusion (0%, 4%, 8%, or 12%) on the growth performance, plasma biochemistry, antioxidant capacity, intestinal morphology, and duodenal digestive enzyme activity of geese. A total of 144 male geese (28 days old) were [...] Read more.
This study investigated the effects of dietary sweet sorghum (SW) inclusion (0%, 4%, 8%, or 12%) on the growth performance, plasma biochemistry, antioxidant capacity, intestinal morphology, and duodenal digestive enzyme activity of geese. A total of 144 male geese (28 days old) were randomly divided into four groups (36 birds/group; six replicates). Experimental diets were formulated to contain 0%, 4%, 8%, or 12% SW to replace corn. The geese’s body weight and feed intake were recorded at 49 and 70 days, with samples collected at 70 days. The results showed that as SW levels increased, the geese’s average daily gain decreased during days 28–49 (p < 0.05), while their average daily feed intake (ADFI) and feed/gain ratio (F/G) increased during days 28–70 (p < 0.05). The cost of feed decreased with increasing SW levels, but the 12% SW group exhibited a higher feed cost/kg gain than the other groups (p < 0.05). The plasma biochemical parameters, antioxidant capacity, and duodenal digestive enzyme activity did not differ among the groups (p > 0.05). Geese fed 12% SW had higher duodenal villus heights than those in the 0% group (p < 0.05), and the jejunal muscularis thickness peaked in the 4% group (p < 0.05). The ileal morphology was unaffected (p > 0.05). SW increased the ADFI and F/G but had no adverse effects on plasma biochemistry, antioxidant status, or enzyme activity. Additionally, it improved duodenal and jejunal morphology. Based on the observed growth performance, feed cost/kg gain, and intestinal morphology, 8% dietary inclusion of SW is recommended. Full article
(This article belongs to the Section Poultry)
14 pages, 672 KB  
Article
Optimization of Pectin-Zein Beads via Response Surface Methodology for Enhanced Colon-Targeted Delivery of p-Coumaric Acid from Rice Husk Extract
by Ilaria Frosi, Raffaella Colombo, Chiara Milanese and Adele Papetti
Foods 2025, 14(12), 2034; https://doi.org/10.3390/foods14122034 - 9 Jun 2025
Viewed by 683
Abstract
The generally very low bioaccessibility of polyphenols can be enhanced through several different strategies, especially when these metabolites are components of extracts used as food ingredients. This work explores the efficacy of pectin-zein beads as carriers for delivering p-coumaric acid), the main [...] Read more.
The generally very low bioaccessibility of polyphenols can be enhanced through several different strategies, especially when these metabolites are components of extracts used as food ingredients. This work explores the efficacy of pectin-zein beads as carriers for delivering p-coumaric acid), the main component of rice husk extract. Ten formulations were prepared using the ionic gelation technique, employing a Taghuci Design of Experiments to optimize zein, pectin, and CaCl2 concentrations. Zein content was found as the main parameter affecting the encapsulation efficiency. The highest value (51.77 ± 1.13%) was achieved using 10% zein, 3% pectin, and 4% CaCl2. p-coumaric acid bioaccessibility in the raw and encapsulated extracts was evaluated by adopting the Infogest digestion protocol and simulating a colon phase with Pectinex® Ultra SPL enzymes, evidencing that pectin-zein beads effectively improved p-coumaric acid stability in the extract. The encapsulation highly preserves p-coumaric acid during the gastric phase (bioaccessibility index 34%); conversely, an increased release was registered at the intestinal level, reaching approximately 80% and 100% during the duodenal and colon steps, respectively. Therefore, pectin-zein beads were demonstrated to be a promising tool for the development of active ingredients suitable for functional foods/food supplements aimed at enhancing health benefits through controlled intestinal delivery of bioactives. Full article
(This article belongs to the Special Issue Cereal By-Products, Starch, and Baked Products)
Show Figures

Figure 1

29 pages, 790 KB  
Article
Effect of Maternal Probiotic and Piglet Dietary Tryptophan Level on Performance and Piglet Intestinal Health Parameters Pre-Weaning
by Dillon P. Kiernan, John V. O’Doherty, Marion T. Ryan and Torres Sweeney
Microorganisms 2025, 13(6), 1264; https://doi.org/10.3390/microorganisms13061264 - 29 May 2025
Viewed by 853
Abstract
A 2 × 3 factorial design was used to examine the effects of maternal probiotic supplementation (Bacillus subtilis and Bacillus amyloliquefaciens) and/or piglet dietary Trp levels on sow performance and fecal microbiota composition, as well as offspring pre-weaning performance and intestinal [...] Read more.
A 2 × 3 factorial design was used to examine the effects of maternal probiotic supplementation (Bacillus subtilis and Bacillus amyloliquefaciens) and/or piglet dietary Trp levels on sow performance and fecal microbiota composition, as well as offspring pre-weaning performance and intestinal health parameters on the day of weaning. On day 83 of gestation, 48 sows were allocated to either: (1) control, or (2) control + probiotic (1.1 × 109 colony forming units/kg of feed). Their litters were assigned to 0.22, 0.27, or 0.33% standardized ileal digestible (SID) Trp diets (0.17, 0.21 and 0.25 SID ratio of Trp to lysine (Trp:Lys), SID lysine = 1.3%). At weaning, one piglet per litter was sacrificed for intestinal health analysis. Diet had no effect on sow reproductive or offspring growth performance pre-weaning (p > 0.05). Maternal probiotic supplementation led to distinct microbial communities in the sow feces on day 114 of gestation, increasing the relative abundance of Anaerocella and Sporobacter, while decreasing Lactobacillus, Ruminococcus, and Christensenella (p < 0.05). In the offspring colonic digesta, maternal probiotic supplementation increased Dorea, Sporobacter, and Anaerobacterium, while reducing the potentially harmful phylum Proteobacteria, specifically the family Enterobacteriaceae (p < 0.05), with a tendency for a reduction in the genus Escherichia (p < 0.1). Maternal probiotic supplementation enhanced duodenal morphology and modulated the expression of genes in the ileum, including a downregulation of certain immune and barrier defense genes (p < 0.05). Piglets from probiotic sows had reduced branch chain fatty acids (BCFA) in the cecal digesta and an increase in the total VFA and acetate in the colonic digesta (p < 0.05). There were limited effects of Trp level in the offspring’s creep diet or maternal × creep interactions, though this analysis was likely confounded by the low creep feed intake (total of ~0.83 kg/litter). Full article
(This article belongs to the Special Issue Probiotics, Prebiotics, and Gut Microbes—Second Edition)
Show Figures

Figure 1

20 pages, 6354 KB  
Article
Exploring Gastrointestinal Health in Diabetic Cats: Insights from Owner Surveys, Ultrasound, and Histopathological Analysis
by Marisa Esteves-Monteiro, Cláudia S. Baptista, Diogo Cardoso-Coutinho, Clara Landolt, Patrícia Dias-Pereira and Margarida Duarte-Araújo
Vet. Sci. 2025, 12(6), 529; https://doi.org/10.3390/vetsci12060529 - 29 May 2025
Viewed by 1027
Abstract
Diabetes is a metabolic disorder characterized by chronic hyperglycemia, affecting between 0.21% and 1.24% of cats. While gastrointestinal complications are well-documented in human diabetic patients—affecting up to 75%—similar data in cats remain scarce. This study explores gastrointestinal alterations in diabetic cats using ultrasound [...] Read more.
Diabetes is a metabolic disorder characterized by chronic hyperglycemia, affecting between 0.21% and 1.24% of cats. While gastrointestinal complications are well-documented in human diabetic patients—affecting up to 75%—similar data in cats remain scarce. This study explores gastrointestinal alterations in diabetic cats using ultrasound and histopathological evaluations, alongside assessing owners’ perceptions of digestive issues. A brief survey was conducted with the owners of diabetic cats to document diabetes symptoms and any gastrointestinal changes. Following the survey, each cat underwent abdominal US, focusing on the digestive tract including the stomach, duodenum, jejunum, ileum, and colon. Additionally, histopathological analysis was conducted on necropsied diabetic cats. Thirteen domestic spayed diabetic cats with no prior gastrointestinal disease were included, with 83% showing at least one gastrointestinal issue reported by owners. All cats exhibited increased gastric, duodenal, and jejunal wall thickness, while the ileum and colon showed normal thickness. Histopathological evaluation revealed increased thickness of the muscular layers, inflammatory infiltrate, and collagen deposits in the whole length of the gastrointestinal tract. These findings suggest that diabetic cats may experience gastrointestinal remodeling, a phenomenon that, while well recognized in human diabetes, has not been adequately studied in feline patients. Full article
Show Figures

Graphical abstract

27 pages, 940 KB  
Article
Bovine Milk Protein-Derived Preparations and Their Hydrolysates as Sources of ACE-Inhibitory, DPP-IV-Inhibitory, and Antioxidative Peptides Analyzed Using in Silico and in Vitro Protocols
by Anna Iwaniak, Piotr Minkiewicz, Damir Mogut, Justyna Borawska-Dziadkiewicz, Justyna Żulewska and Małgorzata Darewicz
Int. J. Mol. Sci. 2025, 26(9), 4323; https://doi.org/10.3390/ijms26094323 - 1 May 2025
Cited by 1 | Viewed by 1284
Abstract
Bovine milk protein preparations (MPPs), namely micellar casein concentrate (MCC), serum protein concentrate (SPC), and MCC with ultrafiltrated buttermilk permeate (MBP), were analyzed as sources of inhibitors of angiotensin-converting enzyme (i.e., ACE) and dipeptidylpeptidase IV (i.e., DPP-IV) as well as antioxidative peptides. The [...] Read more.
Bovine milk protein preparations (MPPs), namely micellar casein concentrate (MCC), serum protein concentrate (SPC), and MCC with ultrafiltrated buttermilk permeate (MBP), were analyzed as sources of inhibitors of angiotensin-converting enzyme (i.e., ACE) and dipeptidylpeptidase IV (i.e., DPP-IV) as well as antioxidative peptides. The studies involved in silico predictions of the release of biopeptides from bovine milk proteins. Then, all MPPs were subjected to the simulated gastrointestinal digestion using the INFOGEST protocol. Results using a BIOPEP-UWM database tool indicated that 59 biopeptides exhibiting the above-mentioned activities could be produced upon the action of pepsin, trypsin, and chymotrypsin. Thirty-six biopeptides were identified in at least one of the three MPPs subjected to the INFOGEST protocol. MCC before simulated digestion exhibited the strongest ACE-inhibiting activity among all MPPs (IC50 = 1.856 mg/mL). The weakest ACE inhibitory effect was demonstrated for MBP after duodenal digestion (i.e., MBP D; IC50 = 7.627 mg/mL). The above MPP showed the strongest DPP-IV-inhibiting activity (IC50 = 0.0067 mg/mL). All MPPs exhibited antioxidative activity, with the strongest ABTS•+ (i.e., 2,2′-azino-bis(3-ethylbenzotialozline-6-sulfonic acid) radical scavenging effect shown for MBP D (IC50 = 2.754 mg/mL), and the strongest DPPH (i.e., 2,2-diphenyl-β-picrylhydrazyl) radical scavenging activity (IC50 = 1.238 mg/mL) demonstrated for SPC D. Among all MPPs, SPC D also exhibited the highest FRAP (i.e., Ferric Reducing Antioxidant Power) bioactivity (IC50 = 13.720 mg/mL), whereas MBP D was the MPP with the lowest FRAP potential (IC50 = 20.140 mg/mL). The present study results show the potential of all MPPs as functional additives to support health-beneficial functions of dairy products. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

15 pages, 3226 KB  
Article
Effects of Adding Bacillus coagulans BCH0 to the Diet on Growth Performance, Tissue Structures, and Gut Microbiota in Broilers
by Zhili Niu, Linbao Ji, Yucheng Zhang, Zeyi Chen, Jiakun Shen, Zhaoyue Men, Chenlong Zhou, Peng Tan and Xi Ma
Animals 2025, 15(9), 1243; https://doi.org/10.3390/ani15091243 - 28 Apr 2025
Viewed by 2667
Abstract
Studies demonstrated that Bacillus coagulans (B. coagulans) as a dietary additive enhanced broiler growth performance, yet its mechanisms of action modulation remained unclear. Therefore, this study investigated effects of dietary B. coagulans BCH0 (1 × 109 CFU/kg) on growth performance, [...] Read more.
Studies demonstrated that Bacillus coagulans (B. coagulans) as a dietary additive enhanced broiler growth performance, yet its mechanisms of action modulation remained unclear. Therefore, this study investigated effects of dietary B. coagulans BCH0 (1 × 109 CFU/kg) on growth performance, intestinal morphology, gut microbiota, and ileal transcriptomics in Arbor Acres broilers using a completely randomized design. A total of 200 one-day-old broilers were allocated to control (Con, basal diet) and experimental (BCH0, basal diet + 1 × 109 CFU/kg B. coagulans BCH0) groups (10 replicates/group, 10 birds/replicate) over a 42-day trial. The results revealed that BCH0 significantly increased body weights (BW) at 21 and 42 days (p < 0.05), improved the average daily gain (ADG) during the starter (1–21 days) and overall phases (1–42 days), and reduced the ratio of feed intake to body weight gain (F/G) across all phases (p < 0.05). Duodenal morphology analysis indicated a BCH0 elevated villus height (+16.9%, p < 0.01) and villus height/crypt depth (V/C) (p < 0.01) and no significant differences in crypt depth (p = 0.46). In the ileum, the BCH0 group exhibited a significantly greater villus height (p < 0.01), crypt depth (p < 0.05), and V/C (p < 0.05) than the Con group. Microbiota analysis revealed no significant differences in α-diversity or β-diversity, but phylum-level shifts involved an increase in Firmicutes and a reduction in Actinobacteriota in the BCH0 group. At the genus level, dominance shifted from Romboutsia (Control group) to Lactobacillus (BCH0 group), accompanied by marked reductions in Turicibacter, Ldatus_arthromitus, and Rothia. Ileal transcriptomics identified 605 differentially expressed genes, with KEGG enrichment highlighting activated nutrient assimilation pathways (p < 0.05), including carbohydrate, mineral, fat, and protein digestion/absorption. These findings collectively demonstrated that B. coagulans BCH0 enhanced broiler growth through the synergistic modulation of beneficial microbiota, the upregulation of nutrient metabolism genes, and intestinal architectural optimization, supporting its role as a sustainable microbial additive for enhancing poultry productivity and gut health. Full article
(This article belongs to the Special Issue Feed Additives in Animal Nutrition)
Show Figures

Figure 1

18 pages, 3668 KB  
Article
Sustainable Farming: Nanofiber from the Pupunha Heart of Palm Sheath (Bactris gasipaes)-Enhanced Diets for Growing Rabbits and Their Health Impacts
by Geovane Rosa de Oliveira, Carla de Andrade, Celina Tie Nishimori Duque, Antonio Diego Brandão Melo, Cristina Santos Sotomaior, Washington Luiz Esteves Magalhães, Saulo Henrique Weber, Fernando Bittencourt Luciano and Leandro Batista Costa
Vet. Sci. 2025, 12(3), 263; https://doi.org/10.3390/vetsci12030263 - 12 Mar 2025
Viewed by 2819
Abstract
The use of nanofibers in farm animal diets can enhance nutrient absorption, minimize environmental problems, and generate a sustainable source of income. In this study, we investigated the effects of the partial inclusion of nanofibers produced from the pupunha heart of the palm [...] Read more.
The use of nanofibers in farm animal diets can enhance nutrient absorption, minimize environmental problems, and generate a sustainable source of income. In this study, we investigated the effects of the partial inclusion of nanofibers produced from the pupunha heart of the palm sheath (nanopupunha) in the diet of growing New Zealand White rabbits on zootechnical performance, organ morphometry, digestive content pH, intestinal histology, biochemical and immunological parameters, and cecum microbiota. Twenty-four male and female New Zealand White rabbits were distributed into the control group fed a basal diet with 14% crude fiber and treatment groups with the basal diet supplemented with 3.5% or 10.5% of nanopupunha, according to their initial weight. After euthanasia on day 42, we analyzed the pH of the stomach contents, jejunum, and cecum, and the relative weights of the digestive tract, liver, kidneys, and spleen. Duodenal and jejunal samples were collected for structural and ultrastructural analyses of the intestinal villi. Additionally, blood samples were collected to analyze blood glucose, cholesterol, triglycerides, and immunological analysis (IgG and IgM), and digesta samples from the cecum were collected to count enterobacteria and lactic acid bacteria. The inclusion of dietary nanopupunha did not affect the zootechnical performance of animals, but resulted in a linear decrease in the relative weight of the stomach and a linear increase in the relative weight of the spleen. No significant differences were observed in the pH of the digestive tract. Nanopupunha inclusion also resulted in a linear increase in the crypt depth of the duodenum, total mucosal thickness, and total cholesterol levels in growing rabbits. Including 10.5% of nanopupunha added to the diet showed the best results in terms of the intestinal health of the growing rabbits. Full article
(This article belongs to the Special Issue Effects of Diet on Small Animal Health—2nd Edition)
Show Figures

Graphical abstract

26 pages, 329 KB  
Article
Impact of Reduced Dietary Crude Protein and Propionic Acid Preservation on Intestinal Health and Growth Performance in Post-Weaned Pigs
by Kathryn Ruth Connolly, Torres Sweeney, Marion T. Ryan, Stafford Vigors and John V. O’Doherty
Animals 2025, 15(5), 702; https://doi.org/10.3390/ani15050702 - 27 Feb 2025
Cited by 1 | Viewed by 1064
Abstract
This study investigated whether organic acid (OA)-preserved grain could mitigate the negative effects of low crude protein (CP) diets on growth performance, intestinal health, and the coefficient of total tract digestibility (CATTD) of nutrients in weaned piglets. The grain was either conventionally dried [...] Read more.
This study investigated whether organic acid (OA)-preserved grain could mitigate the negative effects of low crude protein (CP) diets on growth performance, intestinal health, and the coefficient of total tract digestibility (CATTD) of nutrients in weaned piglets. The grain was either conventionally dried or preserved post-harvest with 4 kg of OA per tonne. Ninety-six piglets (28 days old) were assigned to one of four diets in a 2 × 2 factorial design: (1) dried standard CP diet, (2) OA-preserved standard CP diet, (3) dried low CP diet, and (4) OA-preserved low CP diet. Standard and low CP diets contained 20% and 19% CP during the first 15 days, reduced to 19% and 17% CP from days 15–35 post-weaning. Faecal scores (FS) were assessed twice a day while microbial composition, inflammatory markers, colonic volatile fatty acid concentrations, and intestinal morphology were measured on the 8th day post-weaning. Performance metrics were measured over the 35-day experimental period. Low CP diets consistently reduced FS (p < 0.05) and increased colonic molar butyrate proportions (p < 0.01) but increased duodenal IL1B expression compared to standard CP diets (p < 0.05). The OA-preserved grain enhanced beneficial microbial populations (Lactobacillus, Roseburia) while lowering pro-inflammatory cytokines (IL1A, IL17) (p < 0.05). While dried grain with low CP diets reduced average daily gain (ADG), colonic short-chain fatty acids (SCFA) concentrations, and nitrogen digestibility, OA-preserved grain with low CP maintained these parameters and improved final body weight (p < 0.05). Overall, OA-preserved grain mitigated the performance decline associated with low CP diets by enhancing gut health and nutrient digestibility and reducing inflammation, thus presenting a promising alternative nutritional strategy for post-weaned piglets. Full article
(This article belongs to the Special Issue Crude Protein in Pig Diets)
Back to TopTop