Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = dynamic opposite-based learning (DOL)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1040 KB  
Article
Hybrid Multilevel Thresholding Image Segmentation Approach for Brain MRI
by Suvita Rani Sharma, Samah Alshathri, Birmohan Singh, Manpreet Kaur, Reham R. Mostafa and Walid El-Shafai
Diagnostics 2023, 13(5), 925; https://doi.org/10.3390/diagnostics13050925 - 1 Mar 2023
Cited by 28 | Viewed by 4355
Abstract
A brain tumor is an abnormal growth of tissues inside the skull that can interfere with the normal functioning of the neurological system and the body, and it is responsible for the deaths of many individuals every year. Magnetic Resonance Imaging (MRI) techniques [...] Read more.
A brain tumor is an abnormal growth of tissues inside the skull that can interfere with the normal functioning of the neurological system and the body, and it is responsible for the deaths of many individuals every year. Magnetic Resonance Imaging (MRI) techniques are widely used for detection of brain cancers. Segmentation of brain MRI is a foundational process with numerous clinical applications in neurology, including quantitative analysis, operational planning, and functional imaging. The segmentation process classifies the pixel values of the image into different groups based on the intensity levels of the pixels and a selected threshold value. The quality of the medical image segmentation extensively depends on the method which selects the threshold values of the image for the segmentation process. The traditional multilevel thresholding methods are computationally expensive since these methods thoroughly search for the best threshold values to maximize the accuracy of the segmentation process. Metaheuristic optimization algorithms are widely used for solving such problems. However, these algorithms suffer from the problem of local optima stagnation and slow convergence speed. In this work, the original Bald Eagle Search (BES) algorithm problems are resolved in the proposed Dynamic Opposite Bald Eagle Search (DOBES) algorithm by employing Dynamic Opposition Learning (DOL) at the initial, as well as exploitation, phases. Using the DOBES algorithm, a hybrid multilevel thresholding image segmentation approach has been developed for MRI image segmentation. The hybrid approach is divided into two phases. In the first phase, the proposed DOBES optimization algorithm is used for the multilevel thresholding. After the selection of the thresholds for the image segmentation, the morphological operations have been utilized in the second phase to remove the unwanted area present in the segmented image. The performance efficiency of the proposed DOBES based multilevel thresholding algorithm with respect to BES has been verified using the five benchmark images. The proposed DOBES based multilevel thresholding algorithm attains higher Peak Signal-to-Noise ratio (PSNR) and Structured Similarity Index Measure (SSIM) value in comparison to the BES algorithm for the benchmark images. Additionally, the proposed hybrid multilevel thresholding segmentation approach has been compared with the existing segmentation algorithms to validate its significance. The results show that the proposed algorithm performs better for tumor segmentation in MRI images as the SSIM value attained using the proposed hybrid segmentation approach is nearer to 1 when compared with ground truth images. Full article
(This article belongs to the Special Issue Medical Image Processing and Analysis)
Show Figures

Figure 1

17 pages, 517 KB  
Article
Boosting Atomic Orbit Search Using Dynamic-Based Learning for Feature Selection
by Mohamed Abd Elaziz, Laith Abualigah, Dalia Yousri, Diego Oliva, Mohammed A. A. Al-Qaness, Mohammad H. Nadimi-Shahraki, Ahmed A. Ewees, Songfeng Lu and Rehab Ali Ibrahim
Mathematics 2021, 9(21), 2786; https://doi.org/10.3390/math9212786 - 3 Nov 2021
Cited by 15 | Viewed by 2439
Abstract
Feature selection (FS) is a well-known preprocess step in soft computing and machine learning algorithms. It plays a critical role in different real-world applications since it aims to determine the relevant features and remove other ones. This process (i.e., FS) reduces the time [...] Read more.
Feature selection (FS) is a well-known preprocess step in soft computing and machine learning algorithms. It plays a critical role in different real-world applications since it aims to determine the relevant features and remove other ones. This process (i.e., FS) reduces the time and space complexity of the learning technique used to handle the collected data. The feature selection methods based on metaheuristic (MH) techniques established their performance over all the conventional FS methods. So, in this paper, we presented a modified version of new MH techniques named Atomic Orbital Search (AOS) as FS technique. This is performed using the advances of dynamic opposite-based learning (DOL) strategy that is used to enhance the ability of AOS to explore the search domain. This is performed by increasing the diversity of the solutions during the searching process and updating the search domain. A set of eighteen datasets has been used to evaluate the efficiency of the developed FS approach, named AOSD, and the results of AOSD are compared with other MH methods. From the results, AOSD can reduce the number of features by preserving or increasing the classification accuracy better than other MH techniques. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

Back to TopTop