Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (693)

Search Parameters:
Keywords = ecological corridors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2958 KiB  
Article
Political Ecology as an Analytical Tool in the Mezquital Valley, Mexico: A Permanent Struggle
by Jesús Guerrero Morales, Brisa Violeta Carrasco Gallegos, Raquel Hinojosa Reyes, Juan Campos Alanis and Edel Cadena Vargas
Soc. Sci. 2025, 14(9), 509; https://doi.org/10.3390/socsci14090509 - 24 Aug 2025
Abstract
Solid waste for incineration and wastewater from the country’s largest city, Mexico City (CDMX), is transported to the southern region of Valle del Mezquital (MV). This area also hosts an oil refinery, a thermoelectric plant (PEMEX-CFE), cement factories, industrial corridors, and mining operations, [...] Read more.
Solid waste for incineration and wastewater from the country’s largest city, Mexico City (CDMX), is transported to the southern region of Valle del Mezquital (MV). This area also hosts an oil refinery, a thermoelectric plant (PEMEX-CFE), cement factories, industrial corridors, and mining operations, all of which harm environmental and public health. From a Political Ecology (PE) perspective, we examine the mechanisms of accumulation, emphasizing the allocation of property titles and the extraction of rent as an environmental reservoir. We also explore the power of socio-environmental movements to provide a comprehensive understanding of environmental conflict. Based on economic power structures, we identify a geopolitical configuration that deepens the spatial divisions between labor in the MV and consumption in CDMX, exacerbating health disparities. We conclude that an unequal geography has been built that has produced capitalist and rentier landowners who are exempt from the externalities that have produced a sacrifice zone. The Mexican State is a key stakeholder, collaborating with the industrial elite in both legal and illegal spheres. Within this sacrifice zone, the inhabitants of the MV have resisted pollution and industrial accidents for over 50 years. Despite publicizing their struggle internationally and collaborating with academics, members of the movement have been assassinated. Full article
Show Figures

Figure 1

24 pages, 45531 KiB  
Article
An Evaluation Framework for Regional Ecological Security Pattern Quality: A Case Study of the Taihang–Qinling Intersection Zone, China
by Yihao Chen, Jiwei Li, Qingqing Ye, Shuai Zhang, Xiaojiao Meng, Weiqiang Chen, Guangxing Ji, Weikang He, Hejie Wei and Long Guo
Land 2025, 14(9), 1706; https://doi.org/10.3390/land14091706 - 23 Aug 2025
Abstract
Scientific evaluation of ecological security pattern (ESP) quality provides a crucial foundation for regional ecological protection and spatial planning. Addressing the problem that current research on ESP quality generally lacks a systematic evaluation framework and excessively relies on qualitative descriptions, this study aims [...] Read more.
Scientific evaluation of ecological security pattern (ESP) quality provides a crucial foundation for regional ecological protection and spatial planning. Addressing the problem that current research on ESP quality generally lacks a systematic evaluation framework and excessively relies on qualitative descriptions, this study aims to explore a scientific and quantitative evaluation method for ESP quality. By combining landscape pattern and ecological network analysis, this study develops an evaluation framework for regional ESP quality that encompasses 12 key factors and utilizes parallel coordinate plots for visualization. Applying this framework, this study quantified the spatiotemporal evolution characteristics of ESP quality in the Taihang–Qinling intersection zone, China, from 2000 to 2020. The findings were as follows: (1) Both the number and total area of ecological sources increased markedly, accompanied by heightened spatial heterogeneity of the ecological resistance surface. The number of ecological corridors rose, although their total length decreased. Ecological strategic points increased substantially. (2) Despite the increase in the scale of ecological sources and the number of corridors, considering the comprehensive impact of multiple evaluation factors, the overall ESP quality declined across the region. In particular, the Taihang and Qinling Mountain regions experienced degradation, whereas the Songji Mountains region showed improvement. (3) This study discussed an ecological protection and restoration scheme comprising the Taihang ecological barrier region, the Songji ecological restoration region, and the Qinling ecological conservation region, and formulated region-specific optimization strategies. Overall, the proposed evaluation framework and local quality analysis methods of ESP in this study offer new perspectives for advancing ecological planning research. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

21 pages, 4010 KiB  
Article
Headwater Systems as Green Infrastructure: Prioritising Restoration Hotspots for Sustainable Rural Landscapes
by Selma B. Pena
Land 2025, 14(9), 1704; https://doi.org/10.3390/land14091704 - 23 Aug 2025
Abstract
This study aims to assess the role of headwater systems (HS) in enhancing ecological connectivity and supporting Green Infrastructure in the Centre Region of Portugal. Specifically, it identifies restoration opportunity areas within HS by analysing land-use changes over the past 70 years, modelling [...] Read more.
This study aims to assess the role of headwater systems (HS) in enhancing ecological connectivity and supporting Green Infrastructure in the Centre Region of Portugal. Specifically, it identifies restoration opportunity areas within HS by analysing land-use changes over the past 70 years, modelling land-use scenarios to promote ecological resilience, and evaluating connectivity between HS and Natura 2000 sites. The methodology integrates spatial analysis of historical land-use data with connectivity modelling using least-cost path approaches. Results show substantial transformation in HS areas, notably the expansion of eucalyptus plantations and a decline in agricultural land. Approximately 58% of the HS are identified as requiring restoration, including areas within the Natura 2000 network. The connectivity assessment reveals that HS can function as effective ecological corridors, contributing to improved water regulation, soil conservation, gene flow, and wildfire mitigation. A total of 61 potential ecological linkages between Natura 2000 sites were identified. These findings highlight the strategic importance of integrating HS into regional and national Green Infrastructure planning and supporting the implementation of the EU Biodiversity Strategy for 2030. The study recommends prioritising headwater restoration through multi-scale planning approaches and active involvement of local stakeholders to ensure sustainable land-use management. Full article
(This article belongs to the Special Issue Efficient Land Use and Sustainable Development in European Countries)
Show Figures

Figure 1

19 pages, 4704 KiB  
Article
Impacts of Climate Change on Habitat Suitability and Landscape Connectivity of the Amur Tiger in the Sino-Russian Transboundary Region
by Die Wang, Wen Li, Nichun Guo and Chunwang Li
Animals 2025, 15(17), 2466; https://doi.org/10.3390/ani15172466 - 22 Aug 2025
Viewed by 46
Abstract
The Amur tiger (Panthera tigris altaica) is a flagship and umbrella species of forest ecosystems in northeastern Asia. Climate change is profoundly and irreversibly affecting wildlife habitat suitability, especially for large mammals. To effectively protect the Amur tiger, it is necessary [...] Read more.
The Amur tiger (Panthera tigris altaica) is a flagship and umbrella species of forest ecosystems in northeastern Asia. Climate change is profoundly and irreversibly affecting wildlife habitat suitability, especially for large mammals. To effectively protect the Amur tiger, it is necessary to understand the impact of climate change on the quality and the connectivity of its habitat. We used the species distribution models combined with the latest Shared Socioeconomic Pathway (SSP) climate scenarios to predict current and future changes in habitats and corridors. We found the following: (1) The total area of the Amur tiger’s suitable habitat currently amounts to approximately 4941.94 km2, accounting for 27.64% of the study area represented by two adjacent national parks. Among these habitats, the highly suitable areas are mainly located on the both sides of the Sino-Russian border. The landscape connectivity remains relatively stable, and the degree of fragmentation in highly suitable habitats is low. (2) Although the suitable habitat of the Amur tiger shows an expansion trend under most climate scenarios (excluding SSP3-7.0), the area of suitable habitat within the entire study region does not increase significantly. Therefore, we should implement conservation measures to facilitate the continued expansion of suitable habitat for the Amur tiger. The quantity and length of landscape connectivity corridors are expected to vary in response to changes in core habitat patches, while the centroid of highly suitable habitats is also expected to shift to different extents. In such circumstances, new ecological corridors need to be constructed, while existing natural ecological corridors should be preserved. Full article
(This article belongs to the Special Issue Embracing Nature's Guidance: Conservation in Wildlife)
Show Figures

Figure 1

21 pages, 1096 KiB  
Article
Integrating Linear Programming and CLUE-S Modeling for Scenario-Based Land Use Optimization Under Eco-Economic Trade-Offs in Rapidly Urbanizing Regions
by Mufeng Zhang, Qinghua Gong, Bowen Liu, Shengli Yu, Linyuan Yan, Yanqiao Chen and Jianping Wu
Land 2025, 14(8), 1690; https://doi.org/10.3390/land14081690 - 21 Aug 2025
Viewed by 118
Abstract
Rapid urbanization has intensified eco-economic trade-offs, necessitating integrated optimization frameworks that balance development with environmental conservation in land use planning. Traditional methods often fail to optimize both objectives simultaneously, highlighting the need for systematic approaches addressing competing demands. This study develops an integrated [...] Read more.
Rapid urbanization has intensified eco-economic trade-offs, necessitating integrated optimization frameworks that balance development with environmental conservation in land use planning. Traditional methods often fail to optimize both objectives simultaneously, highlighting the need for systematic approaches addressing competing demands. This study develops an integrated linear programming (LP) and CLUE-S modeling framework using Guangzhou, a rapidly urbanizing megacity in China, as a case study. The methodology combines LP quantitative optimization with CLUE-S spatial allocation under dual objectives: maximizing ecosystem service value and economic benefits across four policy scenarios: ecological protection, cultivated protection, economic development, and balanced development. Data inputs include the 2020 land-use database, 12 socio-economic and biophysical driving factors, and territorial planning constraints. Results show that the coupled framework effectively balances urban expansion with ecological protection, reducing habitat fragmentation and preserving key ecological corridors compared with business-as-usual scenarios. Accuracy assessments further confirm the robustness and reliability of the framework. The integrated LP-CLUE-S framework captures land use dynamics and spatial constraints, providing a robust tool for territorial spatial planning. This approach offers actionable insights for reconciling development pressures with environmental conservation, contributing a replicable methodology for sustainable land resource management with strong transferability potential for other rapidly urbanizing regions facing similar eco-economic challenges. Full article
Show Figures

Figure 1

21 pages, 4146 KiB  
Article
Analysis of Spatiotemporal Distribution Trends of Aerosol Optical Depth and Meteorological Influences in Gansu Province, Northwest China
by Fangfang Huang, Chongshui Gong, Weiqiang Ma, Hao Liu, Binbin Zhong, Cuiwen Jing, Jie Fu, Chunyan Zhang and Xinghua Zhang
Remote Sens. 2025, 17(16), 2874; https://doi.org/10.3390/rs17162874 - 18 Aug 2025
Viewed by 285
Abstract
Atmospheric pollution constitutes one of the key environmental challenges hindering Atmospheric pollution is a key environmental challenge constraining the sustainable development of Gansu Province’s land-based Belt and Road corridor and its regional ecological barrier function. The spatiotemporal heterogeneity of aerosol optical depth (AOD) [...] Read more.
Atmospheric pollution constitutes one of the key environmental challenges hindering Atmospheric pollution is a key environmental challenge constraining the sustainable development of Gansu Province’s land-based Belt and Road corridor and its regional ecological barrier function. The spatiotemporal heterogeneity of aerosol optical depth (AOD) profoundly impacts regional environmental quality. Based on MODIS AOD, NCEP reanalysis, and emission data, this study employed trend analysis (Mann–Kendall test) and attribution analysis (multiple linear regression combined with LMG and Spearman correlation) to investigate the spatiotemporal evolution of AOD over Gansu Province during 2009–2019 and its meteorological and emission drivers. Key findings include the following: (1) AOD exhibited significant spatial heterogeneity, with high values concentrated in the Hexi Corridor and central regions; monthly variation showed a unimodal pattern (peak value of 0.293 in April); and AOD generally declined slowly province-wide during 2009–2019 (52.8% of the area showed significant decreases). (2) Following the implementation of the Air Pollution Prevention and Control Action Plan in 2013 (2014–2019), AOD trends stabilized or declined in 99.8% of the area, indicating significant improvement. (3) Meteorological influences displayed distinct regional-seasonal specificity—the Hexi Corridor (arid zone) was characterized by strong negative correlations with relative humidity (RH2) and wind speed (WS) year-round, and positive correlations with temperature (T2) in spring but negative in summer in the north; the Hedong region (industrial zone) featured strong positive correlations with planetary boundary layer height (PBLH) in summer (r > 0.6) and with T2 in spring/summer; and the Gannan Plateau (alpine zone) showed positive WS correlations in spring and weak positive RH2 correlations in spring/autumn, highlighting the decisive regulatory role of underlying surface properties. (4) Emission factors (PM2.5, SO42, NO3, NH4+, OM, and BC) dominated (>50% relative contribution) in 80% of seasonal scenarios, prevailing in most regions (Hexi: 71–95% year-round; Hedong: 68–80% year-round; and Gannan: 69–72% in spring/summer). Key components included BC (contributing > 30% in 11 seasons, e.g., 52.5% in Hedong summer), NO3 + NH4+ (>57% in Hexi summer/autumn), and OM (20.3% in Gannan summer, 19.0% province-wide spring). Meteorological factors were the primary driver exclusively in Gannan winter (82%, T2-dominated) and province-wide summer (67%, RH2 + WS-dominated). In conclusion, Gansu’s AOD evolution is co-driven by emission factors (dominant province-wide) and meteorological factors (regionally and seasonally specific). Post-2013 environmental policies effectively promoted regional air quality improvement, providing a scientific basis for differentiated aerosol pollution control in arid, industrial, and alpine zones. Full article
Show Figures

Figure 1

19 pages, 14441 KiB  
Article
Study on Forest Extraction and Ecological Network Construction of Remote Sensing Images Combined with Dynamic Large Kernel Convolution
by Feiyue Wang, Fan Yang, Xinyue Chang and Yang Ye
Forests 2025, 16(8), 1342; https://doi.org/10.3390/f16081342 - 18 Aug 2025
Viewed by 238
Abstract
As an important input parameter of the ecological network, the accuracy and detail with which forest cover is extracted directly constrain the accuracy of forest ecological network construction. The development of medium- and high-resolution remote sensing technology has provided an opportunity to obtain [...] Read more.
As an important input parameter of the ecological network, the accuracy and detail with which forest cover is extracted directly constrain the accuracy of forest ecological network construction. The development of medium- and high-resolution remote sensing technology has provided an opportunity to obtain accurate and high-resolution forest coverage data. As forests have diverse contours and complex scenes on remote sensing images, a model of them will be disturbed by the natural distribution characteristics of complex forests, which in turn will affect the extraction accuracy. In this study, we first constructed a rather large, complex, diverse, and scene-rich forest extraction dataset based on Sentinel-2 multispectral images, comprising 20,962 labeled images with a spatial resolution of 10 m, in a manually and accurately labeled manner. At the same time, this paper proposes the Dynamic Large Kernel Segformer and conducts forest extraction experiments in Liaoning Province, China. We then used forest coverage as an input parameter and classified the forest landscape patterns in the study area using a landscape spatial pattern characterization method, based on which a forest ecological network was constructed. The results show that the Dynamic Large Kernel Segformer obtains 80.58% IoU, 89.29% precision, 88.63% recall, and a 88.96% F1 Score in extraction accuracy, which is 4.02% higher than that of the Segformer network, and achieves large-scale forest extraction in the study area. The forest area in Liaoning Province increased during the 5-year period from 2019 to 2023. With respect to the overall spatial pattern change, the Core area of Liaoning Province saw an increase in 2019–2023, and the overall quality of the forest landscape improved. Finally, we constructed the forest ecological network for Liaoning Province in 2023, which consists of ecological sources, ecological nodes, and ecological corridors based on circuit theory. This method can be used to extract large areas of forest based on remote sensing images, which is helpful for constructing forest ecological networks and achieving coordinated regional, ecological, and economic development. Full article
(This article belongs to the Special Issue Long-Term Monitoring and Driving Forces of Forest Cover)
Show Figures

Figure 1

17 pages, 2863 KiB  
Article
Remote Observation of the Impacts of Land Use on Rainfall Variability in the Triângulo Mineiro (Brazilian Cerrado Region)
by Ana Carolina Durigon Boldrin, Bruno Enrique Fuzzo, João Alberto Fischer Filho and Daniela Fernanda da Silva Fuzzo
Remote Sens. 2025, 17(16), 2866; https://doi.org/10.3390/rs17162866 - 17 Aug 2025
Viewed by 681
Abstract
Throughout history, humans have modified the environment, transforming natural biomes into agricultural areas. In the 1990s, economic policies accelerated the expansion of agricultural frontiers in Brazil, including the Triângulo Mineiro and Alto Paranaíba regions. This study analyzes rainfall variability from 1990 to 2021 [...] Read more.
Throughout history, humans have modified the environment, transforming natural biomes into agricultural areas. In the 1990s, economic policies accelerated the expansion of agricultural frontiers in Brazil, including the Triângulo Mineiro and Alto Paranaíba regions. This study analyzes rainfall variability from 1990 to 2021 and its relationship with land use. For this purpose, satellite data from MapBiomas, ERA5, and NASA POWER were processed using Google Earth Engine and QGIS. Statistical methods included the Spearman correlation and the Mann–Kendall trend test. The results revealed that average annual precipitation decreased from 1663.35 mm in 1991 to 1128.94 mm in 2022—a 32.14% reduction. Simultaneously, agricultural and urban areas increased by 365% and 237.59%, respectively. Spearman analysis showed negative correlations between precipitation and agriculture (ρ = −0.51) and urbanization (ρ = −0.51), and positive correlations with pasture (ρ = +0.52) and water bodies (ρ = +0.46). These trends suggest that land use intensification significantly affects regional rainfall patterns. Unlike studies focusing mainly on Amazon deforestation, this research emphasizes the Cerrado biome’s climatic vulnerability. The use of long-term, high-resolution remote sensing data allows a robust analysis of land use impacts. By highlighting a clear link between land transformation and precipitation decline, this study offers insights for policymaking aimed at balancing agricultural development and water resource preservation. This research underscores the importance of sustainable land management practices, such as agroecology, reforestation, and ecological corridors, for regional climate resilience. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

33 pages, 22477 KiB  
Article
Spatial Synergy Between Carbon Storage and Emissions in Coastal China: Insights from PLUS-InVEST and OPGD Models
by Chunlin Li, Jinhong Huang, Yibo Luo and Junjie Wang
Remote Sens. 2025, 17(16), 2859; https://doi.org/10.3390/rs17162859 - 16 Aug 2025
Viewed by 364
Abstract
Coastal zones face mounting pressures from rapid urban expansion and ecological degradation, posing significant challenges to achieving synergistic carbon storage and emissions reduction under China’s “dual carbon” goals. Yet, the identification of spatially explicit zones of carbon synergy (high storage–low emissions) and conflict [...] Read more.
Coastal zones face mounting pressures from rapid urban expansion and ecological degradation, posing significant challenges to achieving synergistic carbon storage and emissions reduction under China’s “dual carbon” goals. Yet, the identification of spatially explicit zones of carbon synergy (high storage–low emissions) and conflict (high emissions–low storage) in these regions remains limited. This study integrates the PLUS (Patch-generating Land Use Simulation), InVEST (Integrated Valuation of Ecosystem Services and Trade-offs), and OPGD (optimal parameter-based GeoDetector) models to evaluate the impacts of land-use/cover change (LUCC) on coastal carbon dynamics in China from 2000 to 2030. Four contrasting land-use scenarios (natural development, economic development, ecological protection, and farmland protection) were simulated to project carbon trajectories by 2030. From 2000 to 2020, rapid urbanization resulted in a 29,929 km2 loss of farmland and a 43,711 km2 increase in construction land, leading to a net carbon storage loss of 278.39 Tg. Scenario analysis showed that by 2030, ecological and farmland protection strategies could increase carbon storage by 110.77 Tg and 110.02 Tg, respectively, while economic development may further exacerbate carbon loss. Spatial analysis reveals that carbon conflict zones were concentrated in major urban agglomerations, whereas spatial synergy zones were primarily located in forest-rich regions such as the Zhejiang–Fujian and Guangdong–Guangxi corridors. The OPGD results demonstrate that carbon synergy was driven largely by interactions between socioeconomic factors (e.g., population density and nighttime light index) and natural variables (e.g., mean annual temperature, precipitation, and elevation). These findings emphasize the need to harmonize urban development with ecological conservation through farmland protection, reforestation, and low-emission planning. This study, for the first time, based on the PLUS-Invest-OPGD framework, proposes the concepts of “carbon synergy” and “carbon conflict” regions and their operational procedures. Compared with the single analysis of the spatial distribution and driving mechanisms of carbon stocks or carbon emissions, this method integrates both aspects, providing a transferable approach for assessing the carbon dynamic processes in coastal areas and guiding global sustainable planning. Full article
(This article belongs to the Special Issue Carbon Sink Pattern and Land Spatial Optimization in Coastal Areas)
Show Figures

Figure 1

12 pages, 446 KiB  
Systematic Review
The Role of Urban Ecological Networks on Health from a One Health Perspective: A Systematic Review
by Luigi Cofone, Maria Assunta Donato, Marise Sabato, Carolina Di Paolo, Livia Maria Salvatori, Stefano Di Giovanni and Lorenzo Paglione
Green Health 2025, 1(2), 9; https://doi.org/10.3390/greenhealth1020009 - 15 Aug 2025
Viewed by 280
Abstract
Introduction: Ecological networks (ENs) are critical frameworks designed to protect biodiversity, enhance habitat connectivity, and provide ecosystem services in fragmented landscapes. Urban ecological networks (UENs) adapt this concept to address the challenges posed by urbanization, habitat fragmentation, and climate change. Methods: [...] Read more.
Introduction: Ecological networks (ENs) are critical frameworks designed to protect biodiversity, enhance habitat connectivity, and provide ecosystem services in fragmented landscapes. Urban ecological networks (UENs) adapt this concept to address the challenges posed by urbanization, habitat fragmentation, and climate change. Methods: This systematic review follows the PRISMA methodology, with the search strategy applied across PubMed, Scopus, and Web of Science. Articles published until 29 July 2025, were evaluated based on their alignment with One Health domains: human, animal, and ecosystem health. The included studies underwent independent review and quality assessment using the Newcastle–Ottawa Scale. Results: Only nine of the 228 articles that were found satisfied the requirements for inclusion. These studies examined UENs’ effects on biodiversity, species migration, and climate resilience but lacked direct evaluation of human health impacts. Key findings highlighted the role of ecological corridors in improving habitat connectivity, promoting biodiversity, and mitigating climate-related fragmentation. Conclusions: While UENs show significant potential to enhance biodiversity and urban resilience, their direct impacts on human health remain underexplored. Future interdisciplinary research should focus on quantifying these links and integrating UENs into urban planning to address ecological and Public Health challenges under a One Health framework. Full article
Show Figures

Figure 1

22 pages, 5363 KiB  
Article
Forecasting Northward Range Expansion of Switchgrass in China via Multi-Scenario MaxEnt Simulations
by Yangzhou Xiang, Suhang Li, Qiong Yang, Jun Ren, Ying Liu, Yang Luo, Ling Zhao, Xuqiang Luo, Bin Yao and Xinzhao Guo
Biology 2025, 14(8), 1061; https://doi.org/10.3390/biology14081061 - 15 Aug 2025
Viewed by 301
Abstract
Global warming is accelerating the poleward and upward shifts in climatically suitable ranges of species. Panicum virgatum (switchgrass) is recognized for its dual value in China’s dual-carbon strategy: mitigating food–energy land competition and restoring marginal ecosystems. However, the accuracy of habitat projections is [...] Read more.
Global warming is accelerating the poleward and upward shifts in climatically suitable ranges of species. Panicum virgatum (switchgrass) is recognized for its dual value in China’s dual-carbon strategy: mitigating food–energy land competition and restoring marginal ecosystems. However, the accuracy of habitat projections is constrained by three limitations: reliance on North American provenance data, uncalibrated model parameters, and insufficient scenario coverage. To address these, 48 switchgrass occurrence records and 22 climatic–topographic variables were integrated. The MaxEnt model was optimized with ENMeval (RM = 4.0, FC = LQH) and coupled with three SSP scenarios (SSP1-2.6, SSP3-7.0, SSP5-8.5) to quantify habitat area changes and centroid shifts across China. The key findings were as follows: (1) The mean temperature of the coldest quarter (Bio11) and elevation were identified as the key limiting factors for the suitable distribution of switchgrass, with their corresponding optimal thresholds determined as −8.79 to 8.11 °C and 0 to 2893 m, respectively. (2) The current suitable habitat covers 583.58 × 104 km2, concentrated in the North China Plain. (3) Under SSP5-8.5, the high-suitability habitat is projected to reach 229.44 × 104 km2 by the 2090s, with the centroid migrating 305 km northwestward to the Inner Mongolia–Jilin belt. This study highlights the climate–topography coupling that drives northward migration and proposes cold-tolerant cultivar development, priority zoning of marginal lands, and ecological corridor establishment to inform climate-smart biomass energy planning in China. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

18 pages, 3989 KiB  
Article
Multifunctional Greenway Approach for Landscape Planning and Reclamation of a Post-Mining District: Cartagena-La Unión, SE Spain
by Angel Faz, Sebla Kabas, Raul Zornoza, Silvia Martínez-Martínez and Jose A. Acosta
Land 2025, 14(8), 1657; https://doi.org/10.3390/land14081657 - 15 Aug 2025
Viewed by 184
Abstract
Establishing a sustainable framework for remediating environmental degradation caused by historical mining operations in the Sierra Minera of Cartagena-La Unión, southeastern Spain, is a critical imperative. When the reclamation requirements of the post-mining district are considered in the context of its critical location, [...] Read more.
Establishing a sustainable framework for remediating environmental degradation caused by historical mining operations in the Sierra Minera of Cartagena-La Unión, southeastern Spain, is a critical imperative. When the reclamation requirements of the post-mining district are considered in the context of its critical location, nested among conflicting land uses, the development of practical solutions to restore ecological and cultural functions emerge as a landscape planning challenge. The greenway approach emphasizes the primary ecological and functional corridors that sustain the vitality of the region; therefore, it is essential to preserve and enhance these critical lifelines. This study aimed to design a localized greenway network to support the conservation of key ecological, agricultural, and cultural resources within the area, while simultaneously promoting reclamation activities in degraded zones. The greenway corridor is built upon key elements: conservation areas, post-mining cultural resources, dry riverbeds, and agricultural zones. In the light of greenway approach, planners and land managers can make their decisions more judiciously by considering the priority zones. The protection, leveraging, and reclamation of significant resources can be provided through a multifunctional greenway approach as seen in the case of Cartagena-La Unión Post-Mining District. Full article
(This article belongs to the Special Issue Landscapes Across the Mediterranean)
Show Figures

Figure 1

24 pages, 21284 KiB  
Article
Optimizing the Ecological Network to Construct an Ecological Security Pattern in a Metropolitan Area: A Case Study of the Jinan Metropolitan Area, China
by Xinlong Liu, Fangyuan Zhang, Qingrui Gao, Tianlu Li, Renhe Zhang and Yanyan Jia
Sustainability 2025, 17(16), 7342; https://doi.org/10.3390/su17167342 - 14 Aug 2025
Viewed by 309
Abstract
Constructing an ecological security pattern (ESP) represents an effective strategy for alleviating regional landscape fragmentation, which is crucial for maintaining regional ecological health. This study focuses on the Jinan metropolitan area as a case study, employing morphological spatial pattern analysis (MSPA), ecosystem services [...] Read more.
Constructing an ecological security pattern (ESP) represents an effective strategy for alleviating regional landscape fragmentation, which is crucial for maintaining regional ecological health. This study focuses on the Jinan metropolitan area as a case study, employing morphological spatial pattern analysis (MSPA), ecosystem services evaluation, and circuit theory to construct the ecological network (EN). This study optimizes the EN by considering connectivity and spatial distribution, with reference to priority areas and ecological protection red lines (EPRLs). Additionally, the robustness of the EN was evaluated, and the ESP for the Jinan metropolitan area was constructed. The results show the following: (1) The initial EN of the study area comprises 40 ecological sources (ESs) and 84 ecological corridors (ECs). Four types of priority areas were identified. There is a noticeable imbalance in the spatial distribution of ESs and ECs across the Jinan metropolitan area. (2) During the optimization process, 10 new ESs were extracted based on priority areas, which weakened the obstacle effect of problem areas in ECs, and 7 new ESs were extracted based on EPRL, which solved the problem of uneven distribution of ESs to a certain extent. (3) The optimized EN consists of 57 ESs and 124 ECs. Robustness analysis reveals that this multi-perspective optimization method enhances the connectivity and stability of the EN. An ESP of “One Belt, Two Axes, Two Zones, and Five Cores” has been established for the Jinan metropolitan area. This study provides a valuable reference for sustainable development in the Jinan metropolitan area and offers a scientific basis for similar metropolitan areas. Full article
Show Figures

Figure 1

33 pages, 7985 KiB  
Article
Spatiotemporal Characteristics of Land Use Carbon Budget and Carbon Balance Capacity in Karst Mountainous Areas: A Case Study Using Social Network Analysis
by Bo Chen, Jiayi Zhao, Yongli Yao and Wenjin Chen
Systems 2025, 13(8), 686; https://doi.org/10.3390/systems13080686 - 12 Aug 2025
Viewed by 295
Abstract
Collaborative carbon regulation in Karst mountains critically reconciles socio-ecological conflicts. While intercity linkages drive spatial carbon heterogeneity, prior studies have focused on administrative-scale accounting, neglecting systematic spatial association network (SAN) analysis. Integrating SAN and geospatial detector models, we reveal county-level carbon balance dynamics [...] Read more.
Collaborative carbon regulation in Karst mountains critically reconciles socio-ecological conflicts. While intercity linkages drive spatial carbon heterogeneity, prior studies have focused on administrative-scale accounting, neglecting systematic spatial association network (SAN) analysis. Integrating SAN and geospatial detector models, we reveal county-level carbon balance dynamics in Guizhou, China (2000–2020). The key findings show the following: provincial carbon emissions rose 53% (0.96 to 1.47 × 108 t) against a 15% sequestration decline (0.67 to 0.57 × 108 t); emission networks shifted from single-core clustering to the axial Liupanshui–Guiyang–Tongren corridor, while sequestration networks retained peripheral ecological dominance; carbon balance capacity (CBC) exhibited an inverted C-shaped pattern (higher in the southeast, lower in the central–west) with westward centroid migration; and electricity consumption dominated spatial heterogeneity, with synergistic nighttime light–PM2.5 interactions showing strongest nonlinear enhancement. Notably, Jianhe County maintained peak CBC (16.5) via forest carbon sinks, whereas Shiqian County suffered the steepest decline due to industrial encroachment. This work pioneers dynamic carbon coupling analysis in fragile ecosystems, offering transdisciplinary tools for global “dual-carbon” governance. Full article
Show Figures

Figure 1

34 pages, 8025 KiB  
Article
Impact of Urban Green Space Patterns on Carbon Emissions: A Gray BP Neural Network and Geo-Detector Analysis
by Yao Xiong, Yiyan Sun and Yunfeng Yang
Sustainability 2025, 17(16), 7245; https://doi.org/10.3390/su17167245 - 11 Aug 2025
Viewed by 451
Abstract
Rapid urbanization has altered the land use pattern, reducing urban green space and increasing carbon emissions, and it is critical to scientifically examine the interaction mechanism between green space and carbon emissions in order to drive low-carbon urban development. Using Nanjing as an [...] Read more.
Rapid urbanization has altered the land use pattern, reducing urban green space and increasing carbon emissions, and it is critical to scientifically examine the interaction mechanism between green space and carbon emissions in order to drive low-carbon urban development. Using Nanjing as an example, this study examined the spatiotemporal evolution characteristics of urban green space patterns and carbon emissions between 2000 and 2020. Carbon emissions at the city and county levels were estimated with great precision using a gray BP neural network model and a downscaling decomposition method. Using urban green space landscape pattern indices and geographic detectors, significant driving factors were discovered and their impact on carbon emissions examined. The results show the following: (1) Carbon emissions are mostly influenced by socioeconomic factors, and the gray BP neural network model (R2 = 0.9619, MAPE = 1.68%) can predict outcomes accurately. (2) Between 2000 and 2020, Nanjing’s overall carbon emissions increased by 118.9%, demonstrating a “core–periphery” pattern of spatial divergence, with significant emissions from industrial districts and emission reductions in the central urban region. (3) The urban green space exhibits “quantity decreasing and quality increasing” characteristics, with the total area falling by 4.84% but the structure optimized to form a networked pattern with huge ecological patches as the backbone. (4) The primary drivers are the LPI, COHESION, and AI. This study reveals the complex relationship mechanism between the spatial configuration of urban green space and carbon emissions and, based on the results, proposes a green space optimization framework with three dimensions, protection of core ecological patches, enhancement of connectivity through ecological corridors, and implementation of low-carbon maintenance measures, which will provide a scientific basis for the planning of urban green space and the construction of low-carbon cities in the Yangtze River Delta region. Full article
Show Figures

Figure 1

Back to TopTop