Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (602)

Search Parameters:
Keywords = ecological security evaluation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2759 KB  
Article
Exploring the Coordinated Development of Water-Land-Energy-Food System in the North China Plain: Spatio-Temporal Evolution and Influential Determinants
by Zihong Dai, Jie Wang, Wei Fu, Juanru Yang and Xiaoxi Xia
Land 2025, 14(9), 1782; https://doi.org/10.3390/land14091782 - 2 Sep 2025
Viewed by 25
Abstract
Water, land, energy, and food are fundamental resources for human survival and ecological stability, yet they face intensifying pressure from surging demands and spatial mismatches. Integrated governance of their interconnected nexus is pivotal to achieving sustainable development. In this study, we analyze the [...] Read more.
Water, land, energy, and food are fundamental resources for human survival and ecological stability, yet they face intensifying pressure from surging demands and spatial mismatches. Integrated governance of their interconnected nexus is pivotal to achieving sustainable development. In this study, we analyze the water-land-energy-food (WLEF) nexus synergies in China’s North China Plain, a vital grain base for China’s food security. We develop a city-level WLEF evaluation framework and employ a coupling coordination model to assess spatiotemporal patterns of the WLEF system from 2010 to 2022. Additionally, we diagnose critical internal and external influencing factors of the WLEF coupling system, using obstacle degree modeling and geographical detectors. The results indicate that during this period, the most critical internal factor was per capita water resource availability. The impact of the external factor—urbanization level—was characterized by fluctuation and a general upward trend, and by 2022, it had become the dominant influencing factor. Results indicated that the overall development of the WLEF system exhibited a fluctuating trend of initial increasing then decreasing during the study period, peaking at 0.426 in 2016. The coupling coordination level of the WLEF system averaged around 0.5, with the highest value (0.526) in 2016, indicating a marginally coordinated state. Regionally, a higher degree of coordination was presented in the southern regions of the North China Plain compared with the northern areas. Anhui province achieved the optimal coordination, while Beijing consistently ranked lowest. The primary difference lies in the abundant water resources in Anhui, in contrast to the water scarcity in Beijing. Internal diagnostic analysis identified per capita water availability as the primary constraint on system coordination. External factors, including urbanization rate, primary industry’s added value, regional population, and rural residents’ disposable income, exhibited growing influence on the system over time. This study provides a theoretical framework for WLEF system coordination and offers decision-making support for optimizing resource allocation and promoting sustainable development in comparable regions. Full article
(This article belongs to the Special Issue Connections Between Land Use, Land Policies, and Food Systems)
Show Figures

Figure 1

30 pages, 19973 KB  
Article
The Landscape Pattern Evolution and Ecological Security Pattern Construction Under the Interference of Transportation Network in National Park
by Letong Yang, Yuting Peng, Gaoru Zhu, Fuqing Yue, Xueyan Zhao and Jiliang Fu
Forests 2025, 16(9), 1393; https://doi.org/10.3390/f16091393 - 1 Sep 2025
Viewed by 119
Abstract
The rapid expansion of transportation infrastructure on Hainan Island has intensified ecological pressures such as landscape fragmentation and decreased connectivity, threatening the environmental integrity of Hainan Tropical Rainforest National Park. As China’s only tropical island national park, it is important to maintain biodiversity [...] Read more.
The rapid expansion of transportation infrastructure on Hainan Island has intensified ecological pressures such as landscape fragmentation and decreased connectivity, threatening the environmental integrity of Hainan Tropical Rainforest National Park. As China’s only tropical island national park, it is important to maintain biodiversity and ecological resilience. Therefore, this study attempts to examine the park and its 5 km buffer zone to assess how transport expansion from 2003 to 2023 has altered land use patterns and landscape connectivity. Through the analysis of multi-period land use data, the land use changes are tracked by using ArcGIS and Fragstats 4.3 software, and the landscape dynamics are quantified. We linked these patterns to ecological processes via a resistance-surface model, which is further refined by spatial structural indices to better reflect ecological realism. Ecological sources were subsequently identified through morphological analysis and ecosystem service evaluation, and circuit theory was applied to delineate potential corridors and construct an ecological security network. The results indicate that (1) transportation development has significantly increased landscape fragmentation and ecological resistance, particularly along major highways; (2) while core forest areas inside the park remain relatively intact, the buffer zones show accelerating degradation; and (3) Although there are many ecological conflict points between the transportation network and the ecological corridor, the construction of animal channels in combination with bridges, tunnels and culverts can effectively improve ecological connectivity and protect the integrity of animal habitat. These findings highlight the vulnerability of ecological integrity as the network expands. The proposed modeling framework provides a more realistic assessment of infrastructure impact and offers a scientific basis for coordinating ecological protection and transport planning in tropical island national parks. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

26 pages, 9860 KB  
Article
The Impact of Rural Population Shrinkage on Rural Functions—A Case Study of Northeast China
by Yichi Zhang, Zihong Dai, Yirui Chen, Zihan Li, Xinyu Shan, Xinyi Wang, Zhe Feng and Kening Wu
Land 2025, 14(9), 1772; https://doi.org/10.3390/land14091772 - 31 Aug 2025
Viewed by 123
Abstract
As industrial and urban growth advances, the challenge of rural population shrinkage has grown more pronounced, impacting rural functions. Northeast China is an example in this study, and a rural function evaluation index system is constructed based on four dimensions: agricultural production, economic [...] Read more.
As industrial and urban growth advances, the challenge of rural population shrinkage has grown more pronounced, impacting rural functions. Northeast China is an example in this study, and a rural function evaluation index system is constructed based on four dimensions: agricultural production, economic development, social security, and ecological conservation. The spatio-temporal heterogeneity of the impact of rural population shrinkage on rural functions is quantified in this study using bivariate spatial autocorrelation and geographically and temporally weighted regression (GTWR). The results show that from 2000 to 2020, the rural population in most counties in Northeast China declined, while agricultural production, economic development, social security, and ecological conservation functions generally trended upwards. According to the GTWR model, the positive effect of rural population density on agricultural production weakened over time, slightly promoting social security and continuing to inhibit ecological conservation. In contrast, the supporting effect of average rural population size on economic development strengthened, its inhibitory effect on ecology decreased, and it slightly inhibited social security. While rural population shrinkage generally promoted agricultural development, economic growth, social security, and ecological improvements, its positive impact on agricultural development declined over time, and the promotion effects on social security and ecological conservation partially turned into inhibition after 2020. Policy recommendations are presented in this paper, providing a solid scientific foundation for the sustainable development of rural areas in Northeast China. Full article
Show Figures

Figure 1

36 pages, 14784 KB  
Article
Analyzing Spatiotemporal Variations and Influencing Factors in Low-Carbon Green Agriculture Development: Empirical Evidence from 30 Chinese Districts
by Zhiyuan Ma, Jun Wen, Yanqi Huang and Peifen Zhuang
Agriculture 2025, 15(17), 1853; https://doi.org/10.3390/agriculture15171853 - 30 Aug 2025
Viewed by 270
Abstract
Agriculture is fundamental to food security and environmental sustainability. Advancing its holistic ecological transformation can stimulate socioeconomic progress while fostering human–nature harmony. Utilizing provincial data from mainland China (2013–2022), this research establishes a multidimensional evaluation framework across four pillars: agricultural ecology, low-carbon practices, [...] Read more.
Agriculture is fundamental to food security and environmental sustainability. Advancing its holistic ecological transformation can stimulate socioeconomic progress while fostering human–nature harmony. Utilizing provincial data from mainland China (2013–2022), this research establishes a multidimensional evaluation framework across four pillars: agricultural ecology, low-carbon practices, modernization, and productivity enhancement. Through comprehensive assessment, we quantify China’s low-carbon green agriculture (LGA) development trajectory and conduct comparative regional analysis across eastern, central, and western zones. As for methods, this study employs multiple econometric approaches: LGA was quantified using the TOPSIS entropy weight method at the first step. Moreover, multidimensional spatial–temporal patterns were characterized through ArcGIS spatial analysis, Dagum Gini coefficient decomposition, Kernel density estimation, and Markov chain techniques, revealing regional disparities, evolutionary trajectories, and state transition dynamics. Last but not least, Tobit regression modeling identified driving mechanisms, informing improvement strategies derived from empirical evidence. The key findings reveal the following: 1. From 2013 to 2022, LGA in China fluctuated significantly. However, the current growth rate is basically maintained between 0% and 10%. Meanwhile, LGA in the vast majority of provinces exceeds 0.3705, indicating that LGA in China is currently in a stable growth period. 2. After 2016, the growth momentum in the central and western regions continued. The growth rate peaked in 2020, with some provinces having a growth rate exceeding 20%. Then the growth rate slowed down, and the intra-regional differences in all regions remained stable at around 0.11. 3. Inter-regional differences are the main factor causing the differences in national LGA, with contribution rates ranging from 67.14% to 74.86%. 4. LGA has the characteristic of polarization. Some regions have developed rapidly, while others have lagged behind. At the end of our ten-year study period, LGA in Yunnan, Guizhou and Shanxi was still below 0.2430, remaining in the low-level range. 5. In the long term, the possibility of improvement in LGA in various regions of China is relatively high, but there is a possibility of maintaining the status quo or “deteriorating”. Even provinces with a high level of LGA may be downgraded, with possibilities ranging from 1.69% to 4.55%. 6. The analysis of driving factors indicates that the level of economic development has a significant positive impact on the level of urban development, while the influences of urbanization, agricultural scale operation, technological input, and industrialization level on the level of urban development show significant regional heterogeneity. In summary, during the period from 2013 to 2022, although China’s LGA showed polarization and experienced ups and downs, it generally entered a period of stable growth. Among them, the inter-regional differences were the main cause of the unbalanced development across the country, but there was also a risk of stagnation and decline. Economic development was the general driving force, while other driving factors showed significant regional heterogeneity. Finally, suggestions such as differentiated development strategies, regional cooperation and resource sharing, and coordinated policy allocation were put forward for the development of LGA. This research is conducive to providing references for future LGA, offering policy inspirations for LGA in other countries and regions, and also providing new empirical results for the academic community. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

19 pages, 8926 KB  
Article
GRACE/GRACE-FO Satellite Assessment of Sown Area Expansion Impacts on Groundwater Sustainability in Jilin Province
by Yang Liu, Changlei Dai, Yang Jing, Qing Ru, Feiyang Yan and Yiding Zhang
Sustainability 2025, 17(17), 7731; https://doi.org/10.3390/su17177731 - 27 Aug 2025
Viewed by 397
Abstract
Jilin Province, an important commodity grain base in China, relies on groundwater resources for its agricultural development. The implementation of a series of policies, including agricultural subsidies and food security policies, has led to a rapid expansion of the sowing area in recent [...] Read more.
Jilin Province, an important commodity grain base in China, relies on groundwater resources for its agricultural development. The implementation of a series of policies, including agricultural subsidies and food security policies, has led to a rapid expansion of the sowing area in recent decades, resulting in an increase in agricultural water demand. This has had a significant impact on the groundwater system. It is therefore imperative to understand the dynamics of the groundwater to ensure the security of water resources, ecological security, and food security. An evaluation of the sustainability of groundwater resources in Jilin Province was conducted through a quantitative analysis of the reliability, resilience, and vulnerability of groundwater. This analysis was informed by the inversion of changes in groundwater reserves over a period of 249 months, commencing from 2002-04 to 2022-12. The inversion process utilized data from the Gravity Recovery and Climate Experiment (GRACE) gravity satellite and Global Land Data Assimilation System (GLDAS), offering a comprehensive view of the temporal dynamics of groundwater reserves in the region. The results indicated the following: (1) Groundwater storage (total amount of water below the surface) in Jilin Province exhibited an overall decreasing trend, with the highest groundwater level recorded in June and the lowest in September on a monthly basis. (2) Prior to September 2010, groundwater reserves were in surplus most of the time. From October 2010 to August 2018, however, they began to fluctuate between surplus and deficit states. Since September 2018, the reserves have been in a long-term deficit, showing an overall downward trend. (3) Prior to 2005, the groundwater system was at a high/extremely high level of sustainability. However, following 2011, it fell to a very low level of sustainability and has continued to deteriorate. (4) The maximum information coefficient and correlation analysis indicate that the sown area is the most significant factor contributing to the decline in the sustainability of the groundwater system. This study reveals the spatial and temporal distribution pattern and evolution trend of groundwater resources sustainability in Jilin Province, and provides theoretical and data support for regional groundwater resources protection and management. Full article
(This article belongs to the Special Issue Sustainable Irrigation Technologies for Saving Water)
Show Figures

Figure 1

19 pages, 1516 KB  
Article
How to Recognize and Measure the Driving Forces of Tourism Ecological Security: A Case Study from Zhangjiajie Scenic Area in China
by Quanjin Li, Yuhuan Geng, Shu Fu, Yaping Zhang and Jianjun Zhang
Land 2025, 14(9), 1733; https://doi.org/10.3390/land14091733 - 27 Aug 2025
Viewed by 285
Abstract
Rapid regional development and intensified human activities increasingly disturb ecosystems, posing substantial threats to the integrity of large-scale ecological zones. As a World Natural Heritage site and a crucial national ecological zone, the Zhangjiajie Scenic Area plays a pivotal role in China’s environmental [...] Read more.
Rapid regional development and intensified human activities increasingly disturb ecosystems, posing substantial threats to the integrity of large-scale ecological zones. As a World Natural Heritage site and a crucial national ecological zone, the Zhangjiajie Scenic Area plays a pivotal role in China’s environmental conservation efforts. To comprehensively assess tourism ecological security in the Scenic Area and strengthen the scientific basis for resource management and policymaking, this study developed a multi-dimensional ecological security evaluation system covering 2010–2024, incorporating dynamic changes in perturbation, reaction, and governance. Using entropy weight–TOPSIS and coupling coordination models, combined with obstacle degree analysis, we examined the temporal trajectory of ecological security and analyzed its underlying driving mechanisms. The study also examined factors influencing the sustainable development of the ecosystem. The results indicate the following: (1) Tourism ecological security in the Scenic Area followed a V-shaped trajectory of “rapid degradation—steady recovery—impact and rebound.” It declined sharply to an unsafe level between 2010 and 2014, steadily recovered from 2015 to 2019, briefly dropped in 2020, and then rebounded, reaching a peak evaluation value of 0.519 in 2024. (2) The co-evolution of perturbation, reaction, and governance subsystems has matured: their coupling coordination degree has increased annually and has remained at the level of “intermediate coordination” since 2020. The reaction subsystem plays a central role, serving as a bridge between perturbation and governance. (3) The driving factors exhibit a phased evolutionary pattern of “elements—facilities—structure—function.” Cultivated land area, total road mileage, and artificial afforestation area constitute the main long-term constraints. This research provides important insights for strengthening ecological security and sustainability in the Scenic Area while advancing regional ecosystem development. It also offers valuable guidance for ecological security management and policymaking in similar nature reserves. Full article
Show Figures

Figure 1

53 pages, 14385 KB  
Review
Stimuli-Responsive Starch-Based Biopolymer Coatings for Smart and Sustainable Fertilizers
by Babar Azeem
Gels 2025, 11(9), 681; https://doi.org/10.3390/gels11090681 - 26 Aug 2025
Viewed by 514
Abstract
The quest for sustainable agriculture demands nutrient delivery systems that align productivity with environmental responsibility. This review critically evaluates stimuli-responsive starch-based biopolymer coatings for controlled-release fertilizers (CRFs), highlighting their structure, functionality, and agronomic relevance. Starch, an abundant and biodegradable polysaccharide, offers intrinsic advantages [...] Read more.
The quest for sustainable agriculture demands nutrient delivery systems that align productivity with environmental responsibility. This review critically evaluates stimuli-responsive starch-based biopolymer coatings for controlled-release fertilizers (CRFs), highlighting their structure, functionality, and agronomic relevance. Starch, an abundant and biodegradable polysaccharide, offers intrinsic advantages such as modifiability, film-forming ability, and compatibility with green chemistry. The paper discusses starch’s physicochemical characteristics, its functionalization to achieve responsiveness to environmental triggers (pH, moisture, temperature, ionic strength), and coating strategies like in situ polymerization, grafting, and nanocomposite integration. A comprehensive analysis of release kinetics, swelling behavior, biodegradability, and water retention is provided, followed by evaluations under simulated field conditions, encompassing various soil types, environmental stressors, and crop responses. Comparative insights with other smart biopolymers such as chitosan, alginate, and cellulose underscore starch’s unique position in CRF technology. Despite promising developments, the review identifies critical research gaps, including limitations in scalability, coordination of multi-stimuli responses, and the need for extensive field validation. This work serves as a consolidated platform for researchers, policy makers, and agro-industrial stakeholders aiming to design smart, eco-friendly fertilizers that address global food security while minimizing ecological footprints. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

24 pages, 45531 KB  
Article
An Evaluation Framework for Regional Ecological Security Pattern Quality: A Case Study of the Taihang–Qinling Intersection Zone, China
by Yihao Chen, Jiwei Li, Qingqing Ye, Shuai Zhang, Xiaojiao Meng, Weiqiang Chen, Guangxing Ji, Weikang He, Hejie Wei and Long Guo
Land 2025, 14(9), 1706; https://doi.org/10.3390/land14091706 - 23 Aug 2025
Viewed by 375
Abstract
Scientific evaluation of ecological security pattern (ESP) quality provides a crucial foundation for regional ecological protection and spatial planning. Addressing the problem that current research on ESP quality generally lacks a systematic evaluation framework and excessively relies on qualitative descriptions, this study aims [...] Read more.
Scientific evaluation of ecological security pattern (ESP) quality provides a crucial foundation for regional ecological protection and spatial planning. Addressing the problem that current research on ESP quality generally lacks a systematic evaluation framework and excessively relies on qualitative descriptions, this study aims to explore a scientific and quantitative evaluation method for ESP quality. By combining landscape pattern and ecological network analysis, this study develops an evaluation framework for regional ESP quality that encompasses 12 key factors and utilizes parallel coordinate plots for visualization. Applying this framework, this study quantified the spatiotemporal evolution characteristics of ESP quality in the Taihang–Qinling intersection zone, China, from 2000 to 2020. The findings were as follows: (1) Both the number and total area of ecological sources increased markedly, accompanied by heightened spatial heterogeneity of the ecological resistance surface. The number of ecological corridors rose, although their total length decreased. Ecological strategic points increased substantially. (2) Despite the increase in the scale of ecological sources and the number of corridors, considering the comprehensive impact of multiple evaluation factors, the overall ESP quality declined across the region. In particular, the Taihang and Qinling Mountain regions experienced degradation, whereas the Songji Mountains region showed improvement. (3) This study discussed an ecological protection and restoration scheme comprising the Taihang ecological barrier region, the Songji ecological restoration region, and the Qinling ecological conservation region, and formulated region-specific optimization strategies. Overall, the proposed evaluation framework and local quality analysis methods of ESP in this study offer new perspectives for advancing ecological planning research. Full article
(This article belongs to the Section Landscape Ecology)
Show Figures

Figure 1

29 pages, 37535 KB  
Article
Evolution of the Hydrological Regime at the Outlet of West Dongting Lake Since 1955
by Shuai Yuan, Changbo Jiang, Yuan Ma and Shanshan Li
Water 2025, 17(16), 2487; https://doi.org/10.3390/w17162487 - 21 Aug 2025
Viewed by 624
Abstract
To quantitatively evaluate the hydrological regime dynamics in West Dongting Lake over the past seven decades, this study utilizes daily average water level series (1955–2024) from key control stations (Nanzui and Xiaohezui) to analyze variations in water level and discharge through change-point detection [...] Read more.
To quantitatively evaluate the hydrological regime dynamics in West Dongting Lake over the past seven decades, this study utilizes daily average water level series (1955–2024) from key control stations (Nanzui and Xiaohezui) to analyze variations in water level and discharge through change-point detection methods, adopting the water level difference between Xiaohezui and Nanzui as a pivotal indicator of hydrological changes; the IHA–RVA framework is then applied to comprehensively assess the degree of alteration in hydrological indicators before and after identifying change points, demonstrating the following: (1) declining trends in water level/discharge at both stations—primarily attributable to reduced inflows from the Songzi and Hudu Rivers—underwent abrupt shifts in 1983 and 2003, while the water level difference displayed an increasing trend with a change point in 1991; (2) the overall degree of hydrologic alteration (DHA) was moderate, with enhanced variability during T2 (2003–2024) relative to T1 (1983–2003), notably for discharge at Nanzui and water level at Xiaohezui; (3) reduced discharge in the Songzi and Hudu Rivers primarily drives the decreased outflow from West Dongting Lake. In the Li and Yuan basins during period T1, anthropogenic factors dominated runoff alterations. During T2, anthropogenic contributions accounted for 76.27% and 48.67% of runoff changes, respectively, resulting in reduced runoff volumes under equivalent precipitation inputs. (4) Under fixed water level differences, a significant positive correlation exists between discharges at Xiaohezui and Nanzui stations. Greater discharge flows downstream through the flow channel adjacent to NZ at West Dongting Lake’s outlet. Collectively, these findings establish a technical foundation for assessing the impact of hydrological regimes and aquatic ecological security in Dongting Lake, thereby advancing sustainable water resource utilization across the basin. Full article
Show Figures

Figure 1

25 pages, 10506 KB  
Article
Spatial–Temporal Changes and Driving Forces of Sandy Desertification in Dengkou County, China, Based on Refined Interpretation and Validation
by Zeyu Zhao, Siyuan Zhang, Xin Du, Peng Bian, Lei Mao, Changyu Wang, Cha Ersi and Wenhui Zhou
Land 2025, 14(8), 1666; https://doi.org/10.3390/land14081666 - 18 Aug 2025
Viewed by 462
Abstract
Sandy desertification is a major ecological and environmental challenge worldwide, posing a severe threat to ecological security in arid regions. A systematic understanding of the spatial–temporal dynamics of sandy desertification and their driving forces enables effective support for ecological engineering in China. We [...] Read more.
Sandy desertification is a major ecological and environmental challenge worldwide, posing a severe threat to ecological security in arid regions. A systematic understanding of the spatial–temporal dynamics of sandy desertification and their driving forces enables effective support for ecological engineering in China. We visually interpreted five Landsat imaging periods (1986–2023) to map sandy desert areas (SDA), which were confirmed by 176 field samples. Driving forces were measured using the Geographical Detector model, and changes in the extent and intensity of SDA were evaluated using intensity analysis and center of gravity migration. The results indicate the following: (1) On the temporal scale, sandy desertification land in Dengkou County experienced a significant reversal over the past 40 years, with a total reduction of 1204.72 km2. On the spatial scale, the main areas of reduction were located in the central and southwestern regions. (2) Sandy desertification in Dengkou County underwent a process of initial reversal, followed by expansion, and then another reversal. The periods 1986–1995 and 2004–2023 were reversal phases, while 1995–2004 was a development phase. (3) Livestock density showed the strongest influence among anthropogenic factors (q = 0.224), suggesting a strong correlation with sandy desertification patterns. Among natural factors, geological conditions exert the most significant influence (q = 0.182). Every pair of driving factors, with the exception of slope aspect and soil moisture, showed either additive or synergistic effects, increasing their combined influence on desertification. The results provide a scientific basis for local ecological restoration and desertification control. Full article
Show Figures

Figure 1

26 pages, 5410 KB  
Article
Decoupling Natural and Anthropogenic Impacts on Ecosystem Services in the Yarlung Tsangpo River, Lhasa River, and Nianchu River Basin of Xizang
by Chunbo Su, Ziqin Wang, Shurong Yang, Haijuan Wei, Dong Yan, Haijun Ouyang, Xiaolu Tang, Longxi Cao, Peihao Peng and Jingji Li
Remote Sens. 2025, 17(16), 2872; https://doi.org/10.3390/rs17162872 - 18 Aug 2025
Viewed by 485
Abstract
Under the dual pressures of climate change and anthropogenic activities, the sustainability of the fragile ecosystem on the Qingzang Plateau has garnered considerable attention. This study, taking the Yarlung Tsangpo River, Lhasa River, and Nianchu River Basin (YNL) of Xizang as a case [...] Read more.
Under the dual pressures of climate change and anthropogenic activities, the sustainability of the fragile ecosystem on the Qingzang Plateau has garnered considerable attention. This study, taking the Yarlung Tsangpo River, Lhasa River, and Nianchu River Basin (YNL) of Xizang as a case study, systematically assesses the spatiotemporal evolution of its ecosystem services from 2000 to 2020. It reveals a critical dynamic: while regional ecosystem services have shown an overall improving trend over the past two decades, driven jointly by a warmer and wetter climate and ecological engineering projects, the adverse impacts of human activities have intensified significantly, posing an emerging and growing threat to regional ecological security. Based on the InVEST model, this research quantifies four key services and constructs a Comprehensive Ecosystem Service (CES) index to evaluate the overall ecosystem function. Subsequently, an integrated Principal Component Analysis and Partial Least Squares Structural Equation Modeling (PCA-PLS-SEM) analytical framework is employed to decouple the complex pathways driving CES successfully. The results confirm that climate and topography are the fundamental natural drivers determining the spatial pattern of ecosystem services, which is characterized as being high in the east and low in the west. The core contribution of this study lies in its quantitative identification of the coexisting reality of “ecological improvement” and “development pressure” in the region. It emphasizes that future management strategies must urgently shift from a static conservation approach to an integrated paradigm capable of proactively addressing human–land contradictions. This provides a critical scientific basis for safeguarding China’s national ecological security barrier. Full article
Show Figures

Figure 1

20 pages, 2992 KB  
Article
Multi-Scale Spatiotemporal Characteristics Assessment of Water and Land Resources Ecological Security in China’s Main Grain-Producing Areas
by Kun Cheng, Bao Zhu, Nan Sun and Xingyang Zhang
Agriculture 2025, 15(16), 1770; https://doi.org/10.3390/agriculture15161770 - 18 Aug 2025
Viewed by 303
Abstract
Water and land resources, as the material foundation of food production, are essential for national food security. Current research has not yet explored the spatiotemporal features of water and land resources ecological security (WLRES) at the urban scale. To fill this gap, this [...] Read more.
Water and land resources, as the material foundation of food production, are essential for national food security. Current research has not yet explored the spatiotemporal features of water and land resources ecological security (WLRES) at the urban scale. To fill this gap, this study evaluated WLRES across 180 cities in China’s main grain-producing areas (MGPAs) from 2005 to 2020. A WLRES evaluation system was developed based on the DPSIR framework and the CRITIC method. The Moran’s I and kernel density estimation were utilized to analyze the spatial distribution, variation trends, and spatial autocorrelation of WLRES from different scales. The results demonstrate the following: (1) WLRES in the MGPAs exhibited a fluctuating upward trend, transitioning from “relatively low ecological security” to “moderate ecological security.” (2) The spatial distribution of WLRES was characterized by higher values in the northeast and southwest regions and lower values in the central region, with spatial heterogeneity gradually intensifying. (3) From 2005 to 2016, WLRES exhibited significant positive spatial autocorrelation: cities with high ecological-security levels were concentrated in the northern region, whereas those with low ecological-security levels were clustered in the central and southern of Huang-Huai-Hai Basin. Over time, this positive spatial autocorrelation weakened and eventually vanished. Our research can provide feasible policy references for improving the sustainable development of WLRES in the MGPAs. Full article
(This article belongs to the Section Agricultural Water Management)
Show Figures

Figure 1

28 pages, 9712 KB  
Article
Spatiotemporal Dynamics and Driving Mechanisms of Soil Conservation Services (SCS) in Zhejiang Province, China: Insights from InVEST Modeling and Machine Learning
by Zhengyang Qiu, Daohong Gong, Mingxing Zhao and Dejin Dong
Remote Sens. 2025, 17(16), 2865; https://doi.org/10.3390/rs17162865 - 17 Aug 2025
Viewed by 642
Abstract
Zhejiang Province, as a key ecological region in southeastern China, plays a vital role in ensuring regional ecological security and sustainable development through its soil conservation services (SCS). Based on remote sensing data, this study employed the InVEST model to evaluate the characteristics [...] Read more.
Zhejiang Province, as a key ecological region in southeastern China, plays a vital role in ensuring regional ecological security and sustainable development through its soil conservation services (SCS). Based on remote sensing data, this study employed the InVEST model to evaluate the characteristics of SCS in Zhejiang from 2001 to 2020. Long-term trends were identified using Sen’s Slope and the Mann–Kendall test, spatial autocorrelation was assessed through Moran’s I, the contributions of driving factors were quantified using XGBoost combined with SHAP, and spatial heterogeneity was further explored using Geographically Weighted Regression (GWR). The results indicate that: (1) from 2001 to 2020, SCS exhibited a fluctuating trend of “decline followed by recovery,” with significantly higher values in the western mountainous areas than in the eastern coastal and plain regions; approximately 58% of the area remained stable, while 40% experienced degradation; (2) Spatial autocorrelation analysis showed that areas with strong SCS were concentrated in the western mountains, while low-value areas were mainly distributed in the eastern coastal and urban regions; (3) natural factors contributed the most, followed by climatic and human activity factors; and (4) the GWR model outperformed the OLS model in revealing the spatial variation in the effects of natural and anthropogenic drivers. These findings provide valuable scientific references and decision-making support for ecological conservation, watershed management, and sustainable land use in Zhejiang Province. Full article
(This article belongs to the Special Issue GeoAI and EO Big Data Driven Advances in Earth Environmental Science)
Show Figures

Figure 1

24 pages, 7566 KB  
Article
Deconstruction of the Crop Rotation Pattern for Saline-Alkaline Land Based on Geo-Information Tupu and Assessment of Its Regulatory Effects on Soil Fertility
by Hui Zhang, Wenhui Cheng and Guoming Du
Sustainability 2025, 17(16), 7430; https://doi.org/10.3390/su17167430 - 17 Aug 2025
Viewed by 408
Abstract
As an important reserve resource for cultivated land, the improvement and fertility enhancement of saline-alkali land are key to alleviating the pressure on cultivated land and ensuring the sustainable utilization of land resources. Studying the regulatory effect of rotation patterns on the soil [...] Read more.
As an important reserve resource for cultivated land, the improvement and fertility enhancement of saline-alkali land are key to alleviating the pressure on cultivated land and ensuring the sustainable utilization of land resources. Studying the regulatory effect of rotation patterns on the soil fertility of saline-alkali land is one of the core research contents in exploring low-cost and environmentally friendly comprehensive management strategies for saline-alkali land. This study focuses on Zhaoyuan County, a representative saline and alkaline area within the Songnen Plain. Utilizing remote sensing technology, crop information was systematically collected across 13 time periods spanning from 2008 to 2020. These data were employed to construct a comprehensive crop information change atlas. This atlas categorized crop rotation patterns based on crop combinations, rotation frequencies, and the number of consecutive years of planting. Using soil sampling data from 2008 and 2020, a soil fertility evaluation was conducted, and the changes in soil chemical properties and fertility under various crop rotation patterns were analyzed. The results of the study show that, during the study period, crop rotation patterns in Zhaoyuan County were dominated by paddy-upland rotations and upland crop rotations. Crop rotation patterns, categorized by crop combination, were dominated by soybean–maize–other crops rotation (S-M-O) and rice–soybean–maize–other crops rotation (R-S-M-O). The frequency of crop rotation is dominated by low- and medium-frequency crop rotation. Crop rotation significantly increased soil organic matter, total nitrogen content, and overall soil fertility in the study area, while simultaneously lowering soil pH levels. Crop rotation patterns with different crop combinations had significant effects on soil chemical properties, with smaller differences in the effects of different rotation frequencies and years of continuous cropping. Crop rotation patterns incorporating soybean demonstrate a significant positive regulatory impact on the soil fertility of saline-alkali land. Low-frequency crop rotation (with ≤5 crop changes) has a relatively better effect on improving soil fertility. This research provides important empirical support and decision-making references for establishing sustainable farming systems in ecologically fragile saline-alkali areas, ensuring regional food security, and promoting the long-term sustainable utilization of land resources. Full article
Show Figures

Figure 1

45 pages, 1602 KB  
Review
Mechanisms and Genetic Drivers of Resistance of Insect Pests to Insecticides and Approaches to Its Control
by Yahya Al Naggar, Nedal M. Fahmy, Abeer M. Alkhaibari, Rasha K. Al-Akeel, Hend M. Alharbi, Amr Mohamed, Ioannis Eleftherianos, Hesham R. El-Seedi, John P. Giesy and Hattan A. Alharbi
Toxics 2025, 13(8), 681; https://doi.org/10.3390/toxics13080681 - 16 Aug 2025
Viewed by 1075
Abstract
The escalating challenge of resistance to insecticides among agricultural and public health pests poses a significant threat to global food security and vector-borne disease control. This review synthesizes current understanding of the molecular mechanisms underpinning resistance, including well-characterized pathways such as target-site mutations [...] Read more.
The escalating challenge of resistance to insecticides among agricultural and public health pests poses a significant threat to global food security and vector-borne disease control. This review synthesizes current understanding of the molecular mechanisms underpinning resistance, including well-characterized pathways such as target-site mutations affecting nicotinic acetylcholine receptors (nAChRs), acetylcholinesterase (AChE), voltage-gated sodium channels (VGSCs), and γ-aminobutyric acid (GABA) receptors, and metabolic detoxification mediated by cytochrome P450 monooxygenases (CYPs), esterases, and glutathione S-transferases (GSTs). Emerging resistance mechanisms are also explored, including protein sequestration by odorant-binding proteins and post-transcriptional regulation via non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Focused case studies on Aedes aegypti and Spodoptera frugiperda illustrate the complex interplay of genetic and biochemical adaptations driving resistance. In Ae. aegypti, voltage-gated sodium channel (VGSCs) mutations (V410L, V1016I, F1534C) combined with metabolic enzyme amplification confer resistance to pyrethroids, accompanied by notable fitness costs and ecological impacts on vector populations. In S. frugiperda, multiple resistance mechanisms, including overexpression of cytochrome P450 genes (e.g., CYP6AE43, CYP321A8), target-site mutations in ryanodine receptors (e.g., I4790K), and behavioral avoidance, have rapidly evolved across global populations, undermining the efficacy of diamide, organophosphate, and pyrethroid insecticides. The review further evaluates integrated pest management (IPM) strategies, emphasizing the role of biopesticides, biological control agents, including entomopathogenic fungi and parasitoids, and molecular diagnostics for resistance management. Taken together, this analysis underscores the urgent need for continuous molecular surveillance, the development of resistance-breaking technologies, and the implementation of sustainable, multifaceted interventions to safeguard the long-term efficacy of insecticides in both agricultural and public health contexts. Full article
(This article belongs to the Special Issue Impacts of Agrochemicals on Insects and Soil Organisms)
Show Figures

Graphical abstract

Back to TopTop