Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,051)

Search Parameters:
Keywords = electrical power network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2977 KB  
Article
Load Characteristic Analysis and Load Forecasting Method Considering Extreme Weather Conditions
by Mingyi Sun, Dai Cui, Chenyang Zhao, Shubo Hu, Jiayi Li, Yiran Li, Gengfeng Li and Yiheng Bian
Electronics 2025, 14(20), 3978; https://doi.org/10.3390/electronics14203978 - 10 Oct 2025
Abstract
In the context of climate change and energy transition, the growing frequency of extreme weather events threatens the safety and stability of power systems. Given the limitations of existing research on load characteristic analysis and load forecasting during extreme weather events, this paper [...] Read more.
In the context of climate change and energy transition, the growing frequency of extreme weather events threatens the safety and stability of power systems. Given the limitations of existing research on load characteristic analysis and load forecasting during extreme weather events, this paper proposes a load-integrated forecasting model that accounts for extreme weather. First, an improved power load clustering method is proposed, combining Kernel PCA for nonlinear dimensionality reduction and an enhanced k-means algorithm, enabling both qualitative analysis and quantitative representation of load characteristics under extreme weather. Second, an optimal combination forecasting model is developed, integrating improved SVM and enhanced LSTM networks. Building upon the improved power load clustering algorithm, a load-integrated forecasting model considering extreme weather is established. Finally, based on the proposed load-integrated forecasting model, a time-series production simulation model considering extreme weather is constructed to quantitatively analyze the power and electricity balance risks of the system. Case studies demonstrate that the proposed integrated forecasting model can effectively analyze load characteristics under extreme weather and achieve more accurate load forecasting, which can provide guidance for the planning and operation of new power systems under extreme weather conditions. Full article
Show Figures

Figure 1

16 pages, 1122 KB  
Article
Optimal Power Flow of Unbalanced Distribution Networks Using a Novel Shrinking Net Algorithm
by Xun Xu, Liangli Xiong, Menghan Xiao, Haoming Liu and Jian Wang
Processes 2025, 13(10), 3226; https://doi.org/10.3390/pr13103226 - 10 Oct 2025
Abstract
The increasing penetration of distributed energy resources (DERs) in unbalanced distribution networks presents significant challenges for optimal operation, particularly concerning power loss minimization and voltage regulation. This paper proposes a comprehensive Optimal Power Flow (OPF) model that coordinates various assets, including on-load tap [...] Read more.
The increasing penetration of distributed energy resources (DERs) in unbalanced distribution networks presents significant challenges for optimal operation, particularly concerning power loss minimization and voltage regulation. This paper proposes a comprehensive Optimal Power Flow (OPF) model that coordinates various assets, including on-load tap changers (OLTCs), reactive power compensators, and controllable electric vehicles (EVs). To solve this complex and non-convex optimization problem, we developed the Shrinking Net Algorithm (SNA), a novel metaheuristic with mathematically proven convergence. The proposed framework was validated using the standard IEEE 123-bus test system. The results demonstrate significant operational improvements: total active power loss was reduced by 32.1%, from 96.103 kW to 65.208 kW. Furthermore, all node voltage violations were eliminated, with the minimum system voltage improving from 0.937 p.u. to a compliant 0.973 p.u. The findings confirm that the proposed SNA is an effective and robust tool for this application, highlighting the substantial economic and technical benefits of coordinated asset control for modern distribution system operators. Full article
Show Figures

Figure 1

21 pages, 17448 KB  
Article
Deep Reinforcement Learning-Based Optimization of Mobile Charging Station and Battery Recharging Under Grid Constraints
by Atefeh Alirezazadeh and Vahid Disfani
Energies 2025, 18(20), 5337; https://doi.org/10.3390/en18205337 - 10 Oct 2025
Abstract
With the rise in traffic congestion, time has become an increasingly critical factor for electric vehicle (EV) users, leading to a surge in demand for fast and convenient charging services at locations of their choosing. Mobile Charging Stations (MCSs) have emerged as a [...] Read more.
With the rise in traffic congestion, time has become an increasingly critical factor for electric vehicle (EV) users, leading to a surge in demand for fast and convenient charging services at locations of their choosing. Mobile Charging Stations (MCSs) have emerged as a new and practical solution to meet this growing need. However, the limited energy capacity of MCSs combined with the increasing volume of charging requests underscores the necessity for intelligent and efficient management. This study introduces a comprehensive mathematical framework aimed at optimizing both the deployment of MCSs and the scheduling of their battery recharging using battery swapping technology, while considering grid constraints, using the Deep Q-Network (DQN) algorithm. The proposed model is applied to real-world data from Chattanooga to evaluate its performance under practical conditions. The key goals of the proposed approach are to maximize the profit from fulfilling private EV charging requests, optimize the utilization of MCS battery packages, manage MCS scheduling without causing stress on the power grid, and manage recharging operations efficiently by incorporating photovoltaic (PV) sources at battery charging stations. Full article
Show Figures

Figure 1

13 pages, 1712 KB  
Article
Deep Learning-Driven Insights into Hardness and Electrical Conductivity of Low-Alloyed Copper Alloys
by Mihail Kolev, Juliana Javorova, Tatiana Simeonova, Yasen Hadjitodorov and Boyko Krastev
Alloys 2025, 4(4), 22; https://doi.org/10.3390/alloys4040022 - 10 Oct 2025
Abstract
Understanding the intricate relationship between composition, processing conditions, and material properties is essential for optimizing Cu-based alloys. Machine learning offers a powerful tool for decoding these complex interactions, enabling more efficient alloy design. This work introduces a comprehensive machine learning framework aimed at [...] Read more.
Understanding the intricate relationship between composition, processing conditions, and material properties is essential for optimizing Cu-based alloys. Machine learning offers a powerful tool for decoding these complex interactions, enabling more efficient alloy design. This work introduces a comprehensive machine learning framework aimed at accurately predicting key properties such as hardness and electrical conductivity of low-alloyed Cu-based alloys. By integrating various input parameters, including chemical composition and thermo-mechanical processing parameters, the study develops and validates multiple machine learning models, including Multi-Layer Perceptron with Production-Aware Deep Architecture (MLP-PADA), Deep Feedforward Network with Multi-Regularization Framework (DFF-MRF), Feedforward Network with Self-Adaptive Optimization (FFN-SAO), and Feedforward Network with Materials Mapping (FFN-TMM). On a held-out test set, DFF-MRF achieved the best generalization (R2_test = 0.9066; RMSE_test = 5.3644), followed by MLP-PADA (R2_test = 0.8953; RMSE_test = 5.7080) and FFN-TMM (R2_test = 0.8914; RMSE_test = 5.8126), with FFN-SAO slightly lower (R2_test = 0.8709). Additionally, a computational performance analysis was conducted to evaluate inference time, memory usage, energy consumption, and batch scalability across all models. Feature importance analysis was conducted, revealing that aging temperature, Cr, and aging duration were the most influential factors for hardness. In contrast, aging duration, aging temperature, solution treatment temperature, and Cu played key roles in electrical conductivity. The results demonstrate the effectiveness of these advanced machine learning models in predicting critical material properties, offering insightful advancements for materials science research. This study introduces the first controlled, statistically validated, multi-model benchmark that integrates composition and thermo-mechanical processing with deployment-grade profiling for property prediction of low-alloyed Cu alloys. Full article
Show Figures

Figure 1

22 pages, 4427 KB  
Article
Higher-Order Dynamic Mode Decomposition to Identify Harmonics in Power Systems
by Aboubacar Abdou Dango, Innocent Kamwa, Himanshu Grover, Alexia N’Dori and Alireza Masoom
Energies 2025, 18(19), 5327; https://doi.org/10.3390/en18195327 - 9 Oct 2025
Abstract
The proliferation of renewable energy sources and distributed generation systems interfaced to the grid by power electronics systems is forcing us to better understand the issues arising due to the quality of electrical signals generated through these devices. Understanding and monitoring these harmonics [...] Read more.
The proliferation of renewable energy sources and distributed generation systems interfaced to the grid by power electronics systems is forcing us to better understand the issues arising due to the quality of electrical signals generated through these devices. Understanding and monitoring these harmonics is crucial to ensure the smooth and seamless operation of these networks, as well as to protect and manage the renewable energy sources-based power system. In this paper, we propose an advanced method of dynamic modal decomposition, called Higher-Order Dynamic Mode Decomposition (HODMD), one of the recently proposed data-driven methods used to estimate the frequency/amplitude and phase with high resolution, to identify the harmonic spectrum in power systems dominated by renewable energy generation. In the proposed method, several time-shifted copies of the measured signals are integrated to create the initial data matrices. A hard thresholding technique based on singular value decomposition is applied to eliminate ambiguities in the measured signal. The proposed method is validated and compared to Synchrosqueezing Transform based on Short-Time Fourier Transform (SST-STFT) and the Concentration of Frequency and Time via Short-Time Fourier Transform (ConceFT-STFT) using synthetic signals and real measurements, demonstrating its practical effectiveness in identifying harmonics in emerging power networks. Finally, the effectiveness of the proposed methodology is analyzed on the energy storage-based laboratory-scale microgrid setup using an Opal-RT-based real-time simulator. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 4th Edition)
Show Figures

Figure 1

31 pages, 5080 KB  
Article
Deep Learning Models Applied Flowrate Estimation in Offshore Wells with Electric Submersible Pump
by Josenílson G. Araújo, Hellockston G. Brito, Marcus V. Galvão, Carla Wilza S. P. Maitelli and Adrião D. Doria Neto
Energies 2025, 18(19), 5311; https://doi.org/10.3390/en18195311 - 9 Oct 2025
Viewed by 177
Abstract
To address the persistent challenge of reliable real-time flowrate estimation in complex offshore oil production systems using Electric Submersible Pumps (ESPs), this study proposes a hybrid modeling approach that integrates a first-principles hydrodynamic model with Long Short-Term Memory (LSTM) neural networks. The aim [...] Read more.
To address the persistent challenge of reliable real-time flowrate estimation in complex offshore oil production systems using Electric Submersible Pumps (ESPs), this study proposes a hybrid modeling approach that integrates a first-principles hydrodynamic model with Long Short-Term Memory (LSTM) neural networks. The aim is to enhance prediction accuracy across five offshore wells (A through E) in Brazil, particularly under conditions of limited or noisy sensor data. The methodology encompasses exploratory data analysis, preprocessing, model development, training, and validation using high-frequency operational data, including active power, frequency, and pressure, all collected at one-minute intervals. The LSTM architectures were tailored to the operational stability of each well, ranging from simpler configurations for stable wells to more complex structures for transient systems. Results indicate that prediction accuracy is strongly correlated with operational stability: LSTM models achieved near-perfect forecasts in stable wells such as Well E, with minimal residuals, and effectively captured cyclical patterns in unstable wells such as Well B, albeit with greater error dispersion during abrupt transients. The model also demonstrated adaptability to planned interruptions, as observed in Well A. Statistical validation using ANOVA, Levene’s test, and Tukey’s HSD confirmed significant performance differences (α < 0.01) among the wells, underscoring the importance of well-specific model tuning. This study confirms that the LSTM-based hybrid approach is a robust and scalable solution for real-time flowrate forecasting in digital oilfields, supporting production optimization and fault detection, while laying the groundwork for future advances in adaptive and interpretable modeling of complex petroleum systems. Full article
(This article belongs to the Special Issue Modern Aspects of the Design and Operation of Electric Machines)
Show Figures

Figure 1

21 pages, 1094 KB  
Article
Dynamic Equivalence of Active Distribution Network: Multiscale and Multimodal Fusion Deep Learning Method with Automatic Parameter Tuning
by Wenhao Wang, Zhaoxi Liu, Fengzhe Dai and Huan Quan
Mathematics 2025, 13(19), 3213; https://doi.org/10.3390/math13193213 - 7 Oct 2025
Viewed by 209
Abstract
Dynamic equivalence of active distribution networks (ADNs) is emerging as one of the most important issues for the backbone network security analysis due to high penetration of distributed generations (DGs) and electricity vehicles (EVs). The multiscale and multimodal fusion deep learning (MMFDL) method [...] Read more.
Dynamic equivalence of active distribution networks (ADNs) is emerging as one of the most important issues for the backbone network security analysis due to high penetration of distributed generations (DGs) and electricity vehicles (EVs). The multiscale and multimodal fusion deep learning (MMFDL) method proposed in this paper contains two modalities, one of which is a CNN + attention module to simulate Newton Raphson power flow calculation (NRPFC) for the important feature extraction of a power system caused by disturbance, which is motivated by the similarities between NRPFC and convolution network computation. The other is a long short-term memory (LSTM) + fully connected (FC) module for load modeling based on the fact that LSTM + FC can represent a load′s differential algebraic equations (DAEs). Moreover, to better capture the relationship between voltage and power, the multiscale fusion method is used to aggregate load modeling models with different voltage input sizes and combined with CNN + attention, merging as MMFDL to represent the dynamic behaviors of ADNs. Then, the Kepler optimization algorithm (KOA) is applied to automatically tune the adjustable parameters of MMFLD (called KOA-MMFDL), especially the LSTM and FC hidden layer number, as they are important for load modeling and there is no human knowledge to set these parameters. The performance of the proposed method was evaluated by employing different electric power systems and various disturbance scenarios. The error analysis shows that the proposed method can accurately represent the dynamic response of ADNs. In addition, comparative experiments verified that the proposed method is more robust and generalizable than other advanced non-mechanism methods. Full article
(This article belongs to the Section C2: Dynamical Systems)
Show Figures

Figure 1

21 pages, 3511 KB  
Article
Seismic Performance Assessment of 170 kV Line Trap Systems Through Shake Table Testing and Finite Element Analysis
by Fezayil Sunca
Appl. Sci. 2025, 15(19), 10734; https://doi.org/10.3390/app151910734 - 5 Oct 2025
Viewed by 227
Abstract
Line traps are critical components of power line carrier systems, enabling remote control signaling, voice communication, and inter-substation control within electrical transmission and distribution networks. Despite their importance, limited research has addressed their seismic performance, particularly under near-fault and far-fault ground motions. This [...] Read more.
Line traps are critical components of power line carrier systems, enabling remote control signaling, voice communication, and inter-substation control within electrical transmission and distribution networks. Despite their importance, limited research has addressed their seismic performance, particularly under near-fault and far-fault ground motions. This study addresses this gap by experimentally and numerically evaluating a full-scale 170 kV line trap. Ambient Vibration Tests (AVTs), using Enhanced Frequency Domain Decomposition (EFDD), and shake table testing established its modal and seismic response characteristics. A finite element (FE) model was then developed and calibrated using the experimental results. Dynamic analyses were conducted to evaluate the structural response under both near-fault and far-fault ground motions. Experimental findings revealed that the seismic response of the line trap increased with height, with the upper segment experiencing over four times the base acceleration. Numerical analyses further demonstrated that near-fault ground motions induced significantly higher displacement and acceleration responses than far-fault records. These findings collectively constitute a detailed investigation into the seismic performance of a full-scale line trap, emphasizing the pivotal role of ground motion characteristics in the structural evaluation of substation apparatus. Full article
Show Figures

Figure 1

47 pages, 14121 KB  
Article
Systematic Development and Hardware-in-the-Loop Testing of an IEC 61850 Standard-Based Monitoring and Protection System for a Modern Power Grid Point of Common Coupling
by Sinawo Nomandela, Mkhululi E. S. Mnguni and Atanda K. Raji
Energies 2025, 18(19), 5281; https://doi.org/10.3390/en18195281 - 5 Oct 2025
Viewed by 399
Abstract
This paper presents a systematic approach to the development and validation of a monitoring and protection system based on the IEC 61850 standard, evaluated through hardware-in-the-loop (HIL) testing. The study utilized an already existing model of a modern power grid consisting of the [...] Read more.
This paper presents a systematic approach to the development and validation of a monitoring and protection system based on the IEC 61850 standard, evaluated through hardware-in-the-loop (HIL) testing. The study utilized an already existing model of a modern power grid consisting of the IEEE 9-bus power system integrated with a large-scale wind power plant (LSWPP). The SEL-487B Relay was configured to protect the PCC using a low-impedance busbar differential monitoring and protection system equipped with adaptive setting group logic that automatically transitions between Group 1 and Group 2 based on system loading conditions. Significant steps were followed for selecting and configuring instrument transformers and implementing relay logic in compliance with IEEE and IEC standards. Real-time digital simulation using Real-Time Digital Simulator (RTDS) hardware and its software, Real-time Simulation Computer-Aided Design (RSCAD), was used to assess the performance of the overall monitoring and protection system, focusing on the monitoring and publishing of the selected electrical and mechanical measurements from a selected wind turbine generator unit (WTGU) on the LSWPP side through the IEC 61850 standard network, and on the behavior of the monitoring and protection system under initial and increased load conditions through monitoring of differential and restraint currents. The overall monitoring and protection system was tested under both initial and increased load conditions, confirming its capability to reliably publish analog values from WTGU13 for availability on the IEC 61850 standard network while maintaining secure protection operation. Quantitatively, the measured differential (operate) and restraint currents were 0.32 PU and 4.38 PU under initial loading, and 1.96 PU and 6.20 PU under increased loading, while total fault clearance times were 606.667 ms and 706.667 ms for faults under initial load and increased load demand conditions, respectively. These results confirm that the developed framework provides accurate real-time monitoring and reliable operation for faults, while demonstrating a practical and replicable solution for monitoring and protection at transmission-level PCCs within renewable-integrated networks. Full article
(This article belongs to the Special Issue Planning, Operation, and Control of New Power Systems: 2nd Edition)
Show Figures

Figure 1

26 pages, 2280 KB  
Article
Day-Ahead Coordinated Scheduling of Distribution Networks Considering 5G Base Stations and Electric Vehicles
by Lin Peng, Aihua Zhou, Junfeng Qiao, Qinghe Sun, Zhonghao Qian, Min Xu and Sen Pan
Electronics 2025, 14(19), 3940; https://doi.org/10.3390/electronics14193940 - 4 Oct 2025
Viewed by 155
Abstract
The rapid growth of 5G base stations (BSs) and electric vehicles (EVs) introduces significant challenges for distribution network operation due to high energy consumption and variable loads. This paper proposes a coordinated day-ahead scheduling framework that integrates 5G BS task migration, storage utilization, [...] Read more.
The rapid growth of 5G base stations (BSs) and electric vehicles (EVs) introduces significant challenges for distribution network operation due to high energy consumption and variable loads. This paper proposes a coordinated day-ahead scheduling framework that integrates 5G BS task migration, storage utilization, and EV charging or discharging with mobility constraints. A mixed-integer second-order cone programming (MISOCP) model is formulated to optimize network efficiency while ensuring reliable power supply and maintaining service quality. The proposed approach enables dynamic load adjustment via 5G computing task migration and coordinated operation between 5G BSs and EVs. Case studies demonstrate that the proposed method can effectively generate an optimal day-ahead scheduling strategy for the distribution network. By employing the task migration strategy, the computational workloads of heavily loaded 5G BSs are dynamically redistributed to neighboring stations, thereby alleviating computational stress and reducing their associated power consumption. These results highlight the potential of leveraging the joint flexibility of 5G infrastructures and EVs to support more efficient and reliable distribution network operation. Full article
Show Figures

Figure 1

31 pages, 4177 KB  
Article
Techno-Economic Analysis of Peer-to-Peer Energy Trading Considering Different Distributed Energy Resources Characteristics
by Morsy Nour, Mona Zedan, Gaber Shabib, Loai Nasrat and Al-Attar Ali
Electricity 2025, 6(4), 57; https://doi.org/10.3390/electricity6040057 - 4 Oct 2025
Viewed by 192
Abstract
Peer-to-peer (P2P) energy trading has emerged as a novel approach to enhancing the coordination and utilization of distributed energy resources (DERs) within modern power distribution networks. This study presents a techno-economic analysis of different DER characteristics, focusing on the integration of photovoltaic [...] Read more.
Peer-to-peer (P2P) energy trading has emerged as a novel approach to enhancing the coordination and utilization of distributed energy resources (DERs) within modern power distribution networks. This study presents a techno-economic analysis of different DER characteristics, focusing on the integration of photovoltaic (PV) systems and energy storage systems (ESS) within a community-based P2P energy trading framework in Aswan, Egypt, under a time-of-use (ToU) electricity tariff. Eight distinct cases are evaluated to assess the impact of different DER characteristics on P2P energy trading performance and an unbalanced low-voltage (LV) distribution network by varying the PV capacity, ESS capacity, and ESS charging power. To the best of the authors’ knowledge, this is the first study to comprehensively examine the effects of different DER characteristics on P2P energy trading and the associated impacts on an unbalanced distribution network. The findings demonstrate that integrating PV and ESS can substantially reduce operational costs—by 37.19% to 68.22% across the analyzed cases—while enabling more effective energy exchanges among peers and with the distribution system operator (DSO). Moreover, DER integration reduced grid energy imports by 30.09% to 63.21% and improved self-sufficiency, with 30.10% to 63.21% of energy demand covered by community DERs. However, the analysis also reveals that specific DER characteristics—particularly those with low PV capacity (1.5 kWp) and high ESS charging rates (e.g., ESS 13.5 kWh with 2.5 kW inverter)—can significantly increase transformer and line loading, reaching up to 19.90% and 58.91%, respectively, in Case 2. These setups also lead to voltage quality issues, such as increased voltage unbalance factors (VUFs), peaking at 1.261%, and notable phase voltage deviations, with the minimum Vb dropping to 0.972 pu and maximum Vb reaching 1.083 pu. These findings highlight the importance of optimal DER sizing and characteristics to balance economic benefits with technical constraints in P2P energy trading frameworks. Full article
Show Figures

Figure 1

54 pages, 5812 KB  
Review
Advancing Renewable-Dominant Power Systems Through Internet of Things and Artificial Intelligence: A Comprehensive Review
by Temitope Adefarati, Gulshan Sharma, Pitshou N. Bokoro and Rajesh Kumar
Energies 2025, 18(19), 5243; https://doi.org/10.3390/en18195243 - 2 Oct 2025
Viewed by 418
Abstract
The sudden increase in global energy demand has prompted the integration of Artificial Intelligence and the Internet of Things into the utility grid. The synergy of Artificial Intelligence and the Internet of Things in renewable energy sources has emerged as a promising solution [...] Read more.
The sudden increase in global energy demand has prompted the integration of Artificial Intelligence and the Internet of Things into the utility grid. The synergy of Artificial Intelligence and the Internet of Things in renewable energy sources has emerged as a promising solution for the development of smart grids and a transformative catalyst that restructures centralized power systems into resilient and sustainable systems. The state-of-the-art of the Internet of Things and Artificial Intelligence is presented in this paper to support the design, planning, operation, management and optimization of renewable energy-based power systems. This paper outlines the benefits of smart and resilient energy systems and the contributions of the Internet of Things across several applications, devices and networks. Artificial Intelligence can be utilized for predictive maintenance, demand-side management, fault detection, forecasting and scheduling. This paper highlights crucial future research directions aimed at overcoming the challenges that are associated with the adoption of emerging technologies in the power system by focusing on market policy and regulation and the human-centric and ethical aspects of Artificial Intelligence and the Internet of Things. The outcomes of this study can be used by policymakers, researchers and development agencies to improve global access to electricity and accelerate the development of sustainable energy systems. Full article
Show Figures

Figure 1

18 pages, 1420 KB  
Review
Legislative, Social and Technical Frameworks for Supporting Electricity Grid Stability and Energy Sharing in Slovakia
by Viera Joklova, Henrich Pifko and Katarina Kristianová
Energies 2025, 18(19), 5233; https://doi.org/10.3390/en18195233 - 2 Oct 2025
Viewed by 384
Abstract
The equilibrium between electricity demand and consumption is vital to ensure the stability of the transmission and distribution systems grid (TS & DS) and to ensure the stable operation of the electrical system. The aim of this review study is to highlight the [...] Read more.
The equilibrium between electricity demand and consumption is vital to ensure the stability of the transmission and distribution systems grid (TS & DS) and to ensure the stable operation of the electrical system. The aim of this review study is to highlight the current legislative and technical situation and the possibilities for managing peak loads, decentralization, sharing, storage, and sale of electricity generated from renewable sources in Slovakia. The European Union′s (EU) goal of achieving carbon neutrality by 2050 and a minimum of 42.5% renewable energy consumption by 2030 brings with it obligations for individual member states. These are transposed into national strategies. The current share of renewable sources in Slovakia is approximately 24% and the EU target by 2030 is probably unrealistic. Water resources are practically exhausted; other possibilities for increasing the share of renewable energy sources (RES) are in photovoltaics, wind, and thermal sources. Due to long-term geographical and historical development, electricity production in Slovakia is based on large-scale solutions. The move towards decentralization requires legislative and technical support. The review article examines the possibilities of increasing the share of RES and energy sharing in Slovakia, and examines the legislative, economic, and social barriers to their wider application. At the same time as the share of renewable sources in electricity generation increases, the article examines and presents solutions capable of ensuring the stability of electricity networks across Europe. The study formulates diversified strategies at the distribution network level and the consumer and building levels, and identifies physical (various types of electricity storage, electromobility, electricity liquidators) and virtual (electricity sharing, energy communities, virtual batteries) solutions. In conclusion, it defines the necessary changes in the legislative, technical, social, and economic areas for the most optimal improvement of the situation in the area of increasing the share of RES, supporting the decentralization of the electric power industry, and sharing electricity in Slovakia, also based on experience and good examples from abroad. Full article
Show Figures

Figure 1

23 pages, 5971 KB  
Article
Improved MNet-Atten Electric Vehicle Charging Load Forecasting Based on Composite Decomposition and Evolutionary Predator–Prey and Strategy
by Xiaobin Wei, Qi Jiang, Huaitang Xia and Xianbo Kong
World Electr. Veh. J. 2025, 16(10), 564; https://doi.org/10.3390/wevj16100564 - 2 Oct 2025
Viewed by 266
Abstract
In the context of low carbon, achieving accurate forecasting of electrical energy is critical for power management with the continuous development of power systems. For the sake of improving the performance of load forecasting, an improved MNet-Atten electric vehicle charging load forecasting based [...] Read more.
In the context of low carbon, achieving accurate forecasting of electrical energy is critical for power management with the continuous development of power systems. For the sake of improving the performance of load forecasting, an improved MNet-Atten electric vehicle charging load forecasting based on composite decomposition and the evolutionary predator–prey and strategy model is proposed. In this light, through the data decomposition theory, each subsequence is processed using complementary ensemble empirical mode decomposition and filters out high-frequency white noise by using singular value decomposition based on matrix operation, which improves the anti-interference ability and computational efficiency of the model. In the model construction stage, the MNet-Atten prediction model is developed and constructed. The convolution module is used to mine the local dependencies of the sequences, and the long term and short-term features of the data are extracted through the loop and loop skip modules to improve the predictability of the data itself. Furthermore, the evolutionary predator and prey strategy is used to iteratively optimize the learning rate of the MNet-Atten for improving the forecasting performance and convergence speed of the model. The autoregressive module is used to enhance the ability of the neural network to identify linear features and improve the prediction performance of the model. Increasing temporal attention to give more weight to important features for global and local linkage capture. Additionally, the electric vehicle charging load data in a certain region, as an example, is verified, and the average value of 30 running times of the combined model proposed is 117.3231 s, and the correlation coefficient PCC of the CEEMD-SVD-EPPS-MNet-Atten model is closer to 1. Furthermore, the CEEMD-SVD-EPPS-MNet-Atten model has the lowest MAPE, RMSE, and PCC. The results show that the model in this paper can better extract the characteristics of the data, improve the modeling efficiency, and have a high data prediction accuracy. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Graphical abstract

17 pages, 1302 KB  
Article
Multi-Objective Collaborative Optimization of Distribution Networks with Energy Storage and Electric Vehicles Using an Improved NSGA-II Algorithm
by Runquan He, Jiayin Hao, Heng Zhou and Fei Chen
Energies 2025, 18(19), 5232; https://doi.org/10.3390/en18195232 - 2 Oct 2025
Viewed by 237
Abstract
Grid-based distribution networks represent an advanced form of smart grids that enable modular, region-specific optimization of power resource allocation. This paper presents a novel planning framework aimed at the coordinated deployment of distributed generation, electrical loads, and energy storage systems, including both dispatchable [...] Read more.
Grid-based distribution networks represent an advanced form of smart grids that enable modular, region-specific optimization of power resource allocation. This paper presents a novel planning framework aimed at the coordinated deployment of distributed generation, electrical loads, and energy storage systems, including both dispatchable and non-dispatchable electric vehicles. A three-dimensional objective system is constructed, incorporating investment cost, reliability metrics, and network loss indicators, forming a comprehensive multi-objective optimization model. To solve this complex planning problem, an improved version of the NSGA-II is employed, integrating hybrid encoding, feasibility constraints, and fuzzy decision-making for enhanced solution quality. The proposed method is applied to the IEEE 33-bus distribution system to validate its practicality. Simulation results demonstrate that the framework effectively addresses key challenges in modern distribution networks, including renewable intermittency, dynamic load variation, resource coordination, and computational tractability. It significantly enhances system operational efficiency and electric vehicles charging flexibility under varying conditions. In the IEEE 33-bus test, the coordinated optimization (Scheme 4) reduced the expected load loss from 100 × 10−4 yuan to 51 × 10−4 yuan. Network losses also dropped from 2.7 × 10−4 yuan to 2.5 × 10−4 yuan. The findings highlight the model’s capability to balance economic investment and reliability, offering a robust solution for future intelligent distribution network planning and integrated energy resource management. Full article
Show Figures

Figure 1

Back to TopTop