Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,962)

Search Parameters:
Keywords = electrical sizing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3738 KB  
Article
Novel Spinel Li–Cr Nano-Ferrites: Structure, Morphology, and Electrical/Dielectric Properties
by Mukhametkali Mataev, Altynai Madiyarova, Moldir Abdraimova, Marzhan Nurbekova, Karima Seibekova, Zhanar Tursyn, Assel Kezdykbayeva, Krishnamoorthy Ramachandran and Bahadir Keskin
Int. J. Mol. Sci. 2025, 26(21), 10409; https://doi.org/10.3390/ijms262110409 (registering DOI) - 26 Oct 2025
Abstract
This article reports on the synthesis and physicochemical characterization of a novel complex ferrite material, LiCr3.4Fe1.6O8, prepared via the sol-gel method. X-ray diffraction (XRD) analysis confirmed that the synthesized compound is a single-phase [...] Read more.
This article reports on the synthesis and physicochemical characterization of a novel complex ferrite material, LiCr3.4Fe1.6O8, prepared via the sol-gel method. X-ray diffraction (XRD) analysis confirmed that the synthesized compound is a single-phase material with a spinel-type structure and cubic symmetry. Raman spectroscopy was employed to investigate the vibrational modes, and the observed peaks corresponding to Fe–O and Cr–O bonds further validated the spinel-like structure of the compound. The microstructure and elemental composition were examined using scanning electron microscopy (SEM). Multiple regions of the LiCr3.4Fe1.6O8 crystals were analyzed, revealing a homogeneous phase and providing detailed insight into the morphology and chemical composition of the surface. The synthesized ferrite particles exhibited relatively large dimensions, with sizes measured at approximately 5, 30, 100, and 200 μm. The dielectric behavior was studied to assess the material’s response to an external electric field, demonstrating its capacity for electric charge polarization. Both capacitance and electrical conductivity were found to increase with rising temperature. Electrophysical measurements were conducted using the LCR-800 system over a temperature range of 293–483 K and at frequencies of 1.5 kHz and 10 kHz. An increase in frequency to 10 kHz resulted in a decrease in the dielectric constant (ε) across the entire temperature range. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

20 pages, 13277 KB  
Article
Dielectric Properties of Co-Doped TiO2 with Mg and Nb for Energy Storage Applications
by L. Ferchaud, J. P. F. Carvalho, S. R. Gavinho, F. Amaral, L. I. Toderascu, G. Socol, L. C. Costa, R. Benzerga and S. Soreto Teixeira
Nanomaterials 2025, 15(21), 1632; https://doi.org/10.3390/nano15211632 (registering DOI) - 26 Oct 2025
Abstract
Titanium dioxide is attractive for energy storage due to its abundance, stability, non-toxicity, low cost, and favorable electronic/optical properties. Colossal permittivity (CP) in co-doped TiO2 is mainly linked to defect structures rather than intrinsic bulk behavior. This work studies the dielectric properties [...] Read more.
Titanium dioxide is attractive for energy storage due to its abundance, stability, non-toxicity, low cost, and favorable electronic/optical properties. Colossal permittivity (CP) in co-doped TiO2 is mainly linked to defect structures rather than intrinsic bulk behavior. This work studies the dielectric properties of TiO2 co-doped with niobium and magnesium, synthesized by solid-state reaction. Grain size effects were examined by varying ball milling parameters of (½Mg½Nb)0.05Ti0.95O2 and then were correlated with structure, morphology, and dielectric response. X-ray diffraction (XRD), infrared spectroscopy (FTIR), scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), and impedance spectroscopy (IS) (40 Hz–106 Hz, 150–370 K) were employed for structural, morphological, and electrical characterization. XRD confirmed the rutile phase. For co-doped samples, larger grains yielded higher dielectric constants, reaching high permittivity (ε′ = 429, T = 300 K, f = 10 kHz at 500 rpm for 2 h). Lower loss tangent (tan δ = 0.11, T = 300 K, f = 10 kHz at 200 rpm for 2 h) is linked to Mg segregation at grain boundaries. The most conductive sample showed the highest dielectric constant, suggesting an IBLC polarization mechanism driven by grain boundary effects. XPS confirmed Nb and Mg incorporation, with Ti4+ dominant and minor Ti3+ from oxygen vacancies and surface hydroxylation/defects. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

9 pages, 204 KB  
Article
Predictors for Using Electricity During Hysteroscopic Removal of Retained Products of Conception
by Liat Mor, Tzvi Leibowitz, Emilie Ben-Ezry, Ram Kerner, Ran Keidar, Eran Weiner, Ron Sagiv and Ohad Gluck
J. Clin. Med. 2025, 14(21), 7587; https://doi.org/10.3390/jcm14217587 (registering DOI) - 26 Oct 2025
Abstract
Background: Retained products of conception (RPOC) can be managed via hysteroscopic removal using mechanical or electrosurgical techniques. Electrosurgery introduces greater technical complexity and may reflect more adherent or vascular tissue, yet preoperative predictors for its necessity remain poorly defined. Objective: The objective of [...] Read more.
Background: Retained products of conception (RPOC) can be managed via hysteroscopic removal using mechanical or electrosurgical techniques. Electrosurgery introduces greater technical complexity and may reflect more adherent or vascular tissue, yet preoperative predictors for its necessity remain poorly defined. Objective: The objective of this study was to evaluate clinical outcomes and identify preoperative predictors associated with the use of electrosurgery during hysteroscopic removal of RPOC. Methods: In this retrospective cohort study conducted at a single tertiary center, we reviewed 551 cases of hysteroscopic RPOC removal performed between January 2008 and December 2022. Patients were categorized based on intraoperative use of electrosurgical instruments. Clinical, sonographic, and operative data were compared between groups. Multivariate logistic regression was used to identify independent predictors of electrosurgical use. Results: Electrosurgical intervention was required in 84 patients (15.2%). Compared with those treated without electricity, these patients were older (33.2 ± 6.4 vs. 31.2 ± 5.8 years, p = 0.004), more likely to be smokers (15.4% vs. 8.1%, p = 0.033), and had higher rates of prior hysteroscopy (5.9% vs. 1.0%, p = 0.002). Electrosurgical use was more common following vaginal delivery than abortion (57.1% vs. 24.8%, p < 0.001), particularly when manual placental removal was performed (23.8% vs. 5.7%, p < 0.001). Larger RPOC size and positive Doppler flow were also associated with the use of electrosurgery. On multivariate analysis, maternal age, postpartum RPOC, manual placental removal, and Doppler vascularity remained independent predictors. No significant differences were observed in short-term postoperative complications. Conclusions: Older age, postpartum RPOC, manualysis, and vascularity on ultrasound are preoperative predictors for the need of electrosurgical intervention during hysteroscopic removal of RPOC. Identifying these factors may improve surgical planning and patient counseling. Future prospective studies incorporating advanced hysteroscopic technologies are warranted. Full article
21 pages, 5551 KB  
Article
Magnetically Coupled Free Piston Stirling Generator for Low Temperature Thermal Energy Extraction Using Ocean as Heat Sink
by Hao Tian, Zezhong Gao and Yongjun Gong
J. Mar. Sci. Eng. 2025, 13(11), 2046; https://doi.org/10.3390/jmse13112046 (registering DOI) - 25 Oct 2025
Abstract
The ocean, as one of the largest thermal energy storage bodies on earth, has great potential as a thermal-electric energy reserve. Application of the relatively fixed-temperature ocean as the heat sink, and using concentrated solar energy as the heat source, one may construct [...] Read more.
The ocean, as one of the largest thermal energy storage bodies on earth, has great potential as a thermal-electric energy reserve. Application of the relatively fixed-temperature ocean as the heat sink, and using concentrated solar energy as the heat source, one may construct a mobile power station on the ocean’s surface. However, a traditional solar-based heat source requires a large footprint to concentrate the light beam, resulting in bulky parabolic dishes, which are impractical under ocean engineering scenarios. For buoy-sized applications, the small form factor of the energy collector can only achieve limited temperature differential, and its energy quality is deemed to be unusable by traditional spring-loaded free piston Stirling engines. Facing these challenges, a low-temperature differential free piston Stirling engine is presented. The engine features a large displacer piston (ϕ136, 5 mm thick) made of corrugated board, and an aluminum power piston (ϕ10). Permanent magnets embedded in both pistons couple them through magnetic attraction rather than a mechanical spring. This magnetic “spring” delivers an inverse-exponential force–distance relation: weak attraction at large separations minimizes damping, while strong attraction at small separations efficiently transfers kinetic energy from the displacer to the power piston. Engine dynamics are captured by a lumped-parameter model implemented in Simulink, with key magnetic parameters extracted from finite-element analysis. Initial results have shown that the laboratory prototype can operate continuously across heater-to-cooler temperature differences of 58–84 K, sustaining flywheel speeds of 258–324 RPM. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

28 pages, 33891 KB  
Article
Influence of Substrate Preheating on Processing Dynamics and Microstructure of Alloy 718 Produced by Directed Energy Deposition Using a Laser Beam and Wire
by Atieh Sahraeidolatkhaneh, Achmad Ariaseta, Gökçe Aydin, Morgan Nilsen and Fredrik Sikström
Metals 2025, 15(11), 1184; https://doi.org/10.3390/met15111184 (registering DOI) - 25 Oct 2025
Abstract
Effective thermal management is essential in metal additive manufacturing to ensure process stability and desirable material properties. Directed energy deposition using a laser beam and wire (DED-LB/w) enables the production of large, high-performance components but remains sensitive to adverse thermal effects during multi-layer [...] Read more.
Effective thermal management is essential in metal additive manufacturing to ensure process stability and desirable material properties. Directed energy deposition using a laser beam and wire (DED-LB/w) enables the production of large, high-performance components but remains sensitive to adverse thermal effects during multi-layer deposition due to heat accumulation. While prior studies have investigated interlayer temperature control and substrate preheating in DED modalities, including laser-powder and arc-based systems, the influence of substrate preheating in DED-LB/w has not been thoroughly examined. This study employs substrate preheating to simulate heat accumulation and assess its effects on melt pool geometry, wire–melt pool interaction, and the microstructural evolution of Alloy 718. Experimental results demonstrate that increased substrate temperatures lead to a gradual expansion of the melt pool, with a notable transition occurring beyond 400 °C. Microstructural analysis reveals that elevated preheat temperatures promote coarser secondary dendrite arm spacing and the development of wider columnar grains. Moreover, Nb-rich secondary phases, including the Laves phase, exhibit increased size but relatively unchanged area fractions. Observations from electrical conductance measurements and coaxial visual imaging show that preheat temperature significantly affects the process dynamics and microstructural evolution, providing a basis for advanced process control strategies. Full article
Show Figures

Figure 1

21 pages, 3266 KB  
Article
Hydrogen Strategies Under Uncertainty: Risk-Averse Choices for Green Hydrogen Pathways
by Sara Khodaparasti, Antonio Cosma, Anna Pinnarelli and Maria Elena Bruni
Sustainability 2025, 17(21), 9475; https://doi.org/10.3390/su17219475 (registering DOI) - 24 Oct 2025
Abstract
The last decade has been characterized by a growing environmental awareness and the rise of climate change concerns. Continuous advancement of renewable energy technologies in this context has taken a central stage on the global agenda, leading to a diverse array of innovations, [...] Read more.
The last decade has been characterized by a growing environmental awareness and the rise of climate change concerns. Continuous advancement of renewable energy technologies in this context has taken a central stage on the global agenda, leading to a diverse array of innovations, ranging from cutting-edge green energy production technologies to advanced energy storage solutions. In this evolving context, ensuring the sustainability of energy systems—through the reduction of carbon emissions, enhancement of energy resilience, and responsible resource integration—has become a primary objective of modern energy planning. The integration of hydrogen technologies for power-to-gas (P2G) and power-to-power (P2P) and energy storage systems is one of the areas where the most remarkable progress is being made. However, real case implementations are lagging behind expectations due to large-scale investments needed, which, under high energy price uncertainty, act as a barrier to widespread adoption. This study proposes a risk-averse approach for sizing an Integrated Hybrid Energy System considering the uncertainty of electricity and gas prices. The problem is formulated as a mixed-integer program and tested on a real-world case study. The analysis sheds light on the value of synergies and innovative solutions that hold the promise of a cleaner, more sustainable future for generations to come. Full article
(This article belongs to the Section Energy Sustainability)
50 pages, 2576 KB  
Perspective
Bridging the AI–Energy Paradox: A Compute-Additionality Covenant for System Adequacy in Energy Transition
by George Kyriakarakos
Sustainability 2025, 17(21), 9444; https://doi.org/10.3390/su17219444 - 24 Oct 2025
Viewed by 117
Abstract
As grids decarbonize and end-use sectors electrify, the rapid penetration of artificial intelligence (AI) and hyperscale data centers reshapes the electrical load profile and power quality requirements. This leads not only to higher consumption but also coincident demand in constrained urban nodes, steeper [...] Read more.
As grids decarbonize and end-use sectors electrify, the rapid penetration of artificial intelligence (AI) and hyperscale data centers reshapes the electrical load profile and power quality requirements. This leads not only to higher consumption but also coincident demand in constrained urban nodes, steeper ramps and tighter power quality constraints. The article investigates to what extent a compute-additionality covenant can reduce resource inadequacy (LOLE) at an acceptable $/kW-yr under realistic grid constraints, tying interconnection/capacity releases to auditable contributions (ELCC-accredited firm-clean MW in-zone or verified PCC-level services such as FFR/VAR/black-start). Using two worked cases (mature market and EMDE context) the way in which tranche-gated interconnection, ELCC accreditation and PCC-level services can hold LOLE at the planning target while delivering auditable FFR/VAR/ride-through performance at acceptable normalized costs is illustrated. Enforcement relies on standards-based telemetry and cybersecurity (IEC 61850/62351/62443) and PCC compliance (e.g., IEEE/IEC). Supply and network-side options are screened with stage-gates and indicative ELCC/PCC contributions. In a representative mature case, adequacy at 0.1 day·yr−1 is maintained at ≈$200 per compute-kW-yr. A covenant term sheet (tranche sizing, benefit–risk sharing, compliance workflow) is developed along an integration roadmap. Taken together, this perspective outlines a governance mechanism that aligns rapid compute growth with system adequacy and decarbonization. Full article
Show Figures

Figure 1

18 pages, 3050 KB  
Article
Optimization of Gold Thin Films by DC Magnetron Sputtering: Structure, Morphology, and Conductivity
by Wojciech Bulowski, Katarzyna Skibińska, Piotr Żabiński and Marek Wojnicki
Coatings 2025, 15(11), 1240; https://doi.org/10.3390/coatings15111240 - 24 Oct 2025
Viewed by 80
Abstract
Gold thin films were deposited on quartz substrates by DC magnetron sputtering to fabricate electrodes for electrochemical and resistive sensing applications. The influence of sputtering parameters on film thickness, structure, and electrical properties was systematically investigated. XRD analysis revealed a predominant (111) crystallographic [...] Read more.
Gold thin films were deposited on quartz substrates by DC magnetron sputtering to fabricate electrodes for electrochemical and resistive sensing applications. The influence of sputtering parameters on film thickness, structure, and electrical properties was systematically investigated. XRD analysis revealed a predominant (111) crystallographic orientation. Microstrain values, determined via Williamson–Hall (W–H) analysis, were low (below 0.013) and closely correlated with surface roughness trends. AFM measurements showed that the surface roughness increased with film thickness. Electrical resistivity decreased linearly with increasing thickness and exhibited a critical grain size of approximately 25 nm, beyond which conductivity improved markedly. These results demonstrate the strong dependence of Au thin-film morphology and performance on deposition conditions, offering practical guidelines for optimizing their application in functional sensing devices. Full article
(This article belongs to the Special Issue Thin Films and Nanostructures for Electronics)
Show Figures

Figure 1

25 pages, 2395 KB  
Article
Eco-Tourism and Biodiversity Conservation in Aquaculture Lagoons: The Role of Operator Philosophy and Low-Vibration Pontoon Boats
by Po-Jen Chen, Chun-Han Shih, Yu-Chi Sung and Tang-Chung Kan
Water 2025, 17(21), 3047; https://doi.org/10.3390/w17213047 - 23 Oct 2025
Viewed by 214
Abstract
Aquaculture lagoons must reconcile visitor access with biodiversity protection. This study integrates results of a large survey of the attitudes of tour operators with field observations of fish populations to test whether operator choices can align tourism and conservation. Using data from 801 [...] Read more.
Aquaculture lagoons must reconcile visitor access with biodiversity protection. This study integrates results of a large survey of the attitudes of tour operators with field observations of fish populations to test whether operator choices can align tourism and conservation. Using data from 801 guided-tour participants in Taiwan’s Cigu Lagoon, a sequential experience hierarchy was validated whereby environmental knowledge enhanced attitudes, strengthened perceived guide professionalism, induced flow, and ultimately increased conservation intention (R2 = 0.523). Experiential service quality exerted stronger effects than functional quality (β = 0.287 vs. 0.156; both p < 0.001). Parallel underwater monitoring indicated that electric, low-vibration motors were associated with richer fish assemblages and larger fish body sizes; fish abundance is 61% higher and mean body length 38% greater, with community composition differing significantly by motor type (PERMANOVA, p < 0.001). Together, these results link training and technology adoption to measurable ecological gains and pro-conservation motivation, indicating that electrified propulsion and interpretive practice are mutually reinforcing levers for biodiversity-positive tourism. The framework offers directly actionable criteria—motor choice, guide development, and safety/facility context—for transitioning small-scale fisheries and recreation toward low-impact marine experiences. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

15 pages, 6332 KB  
Article
Titanium Modulated the Occurrence States and Strain Aging Resistance of Residual Element Nitrogen in Scrap-Based Low-Alloy Steels
by Yuhe Huang, Haisheng Yang, Jun Lu, Jing Wang, Bicao Peng, Junheng Gao, Haitao Zhao, Honghui Wu, Chaolei Zhang, Shuize Wang and Xinping Mao
Materials 2025, 18(21), 4842; https://doi.org/10.3390/ma18214842 - 23 Oct 2025
Viewed by 87
Abstract
The steel industry is responsible for 7–9% of global CO2 emissions. Shifting from primary iron ore to recycled scrap in electric arc furnace (EAF) steelmaking offers significant decarbonization potential, reducing carbon intensity by 60–70%. However, increased scrap use in EAF operations leads [...] Read more.
The steel industry is responsible for 7–9% of global CO2 emissions. Shifting from primary iron ore to recycled scrap in electric arc furnace (EAF) steelmaking offers significant decarbonization potential, reducing carbon intensity by 60–70%. However, increased scrap use in EAF operations leads to higher nitrogen absorption, which can degrade mechanical properties. Nitrogen dissolves into molten steel, where it forms Cottrell atmospheres at dislocations in the following processing steps, intensifying strain aging and reducing ductility. This study establishes a precipitation criterion based on the TiN solubility product to prevent harmful liquid TiN formation, enabling effective nitrogen fixation via fine TiN precipitates (5–20 nm). Multiscale characterization techniques, such as TEM and EBSD, show that Ti reduces the number of mobile N atoms by 60–70%, evidenced by a 50–65% decrease in Snoek/SKK peak intensities. Excessive titanium can refine ferrite grain size and prevents harmful TiN inclusions. Titanium microalloying presents a cost-effective, sustainable strategy to reduce strain aging in scrap-rich EAF steels, enabling more sustainable steel production without sacrificing material properties. Full article
Show Figures

Figure 1

44 pages, 1002 KB  
Review
The Heart’s Small Molecules: The Importance of MicroRNAs in Cardiovascular Health
by Mustafa Yildiz, Ugur Ozkan and Metin Budak
J. Clin. Med. 2025, 14(21), 7454; https://doi.org/10.3390/jcm14217454 - 22 Oct 2025
Viewed by 123
Abstract
This comprehensive review explores the critical roles of microRNAs (miRNAS) in cardiovascular diseases, emphasizing their regulatory functions in gene expression and their involvement in disease progression. miRNAS are small, evolutionarily conserved non-coding RNAs that regulate gene expression post-transcriptionally and play essential roles in [...] Read more.
This comprehensive review explores the critical roles of microRNAs (miRNAS) in cardiovascular diseases, emphasizing their regulatory functions in gene expression and their involvement in disease progression. miRNAS are small, evolutionarily conserved non-coding RNAs that regulate gene expression post-transcriptionally and play essential roles in various cardiac conditions, including fibrosis, cardiac remodeling, apoptosis, ischemia/reperfusion injury, hypertrophy, heart failure, arrhythmias, coronary artery disease (CAD), congenital heart diseases (CHDs), cardiomyopathies, and valvular heart disease (VHD). miRNAS are increasingly recognized as sensitive and specific biomarkers for early diagnosis, disease monitoring, and evaluation of therapeutic responses across the cardiovascular disease spectrum. Ischemia/reperfusion injury leads to significant cardiac damage through elevated oxidative stress, mitochondrial dysfunction, and apoptosis. CAD, a major contributor to global morbidity and mortality, is primarily driven by atherosclerosis and chronic inflammation. Cardiac hypertrophy is initially an adaptive response to stress but may progress to heart failure if sustained. Arrhythmias arise from electrical disturbances such as reentry, abnormal automaticity, and triggered activity. Heart failure is a complex and progressive syndrome marked by poor prognosis and increasing global prevalence. VHD involves intricate molecular alterations, including myocardial fibrosis and calcification, which contribute to disease progression and adverse outcomes. Cardiomyopathies—including hypertrophic, dilated, restrictive, and arrhythmogenic forms—are influenced by genetic mutations, systemic diseases, and disrupted molecular signaling. CHDs, the most common congenital malformations, stem from structural abnormalities in cardiac development and remain a major cause of infant morbidity and mortality. Novel therapeutic methods, such as antisense oligonucleotides, miR mimics, and exosome-based delivery mechanisms, demonstrate the translational promise of miRNAs in the realm of personalized cardiovascular medicine. However, issues such as small sample sizes, inconsistent results, interspecies differences, and delivery challenges restrict the clinical application of miRNA-based therapies. This review integrates mechanistic insights, critiques the quality of available evidence, and identifies translational shortcomings. It highlights the diagnostic, prognostic, and therapeutic potential of miRNAs in reshaping cardiovascular disease treatment. Full article
Show Figures

Figure 1

16 pages, 2711 KB  
Article
Study on the Passivation of Defect States in Wide-Bandgap Perovskite Solar Cells by the Dual Addition of KSCN and KCl
by Min Li, Zhaodong Peng, Xin Yao, Jie Huang and Dawei Zhang
Nanomaterials 2025, 15(20), 1602; https://doi.org/10.3390/nano15201602 - 21 Oct 2025
Viewed by 213
Abstract
Wide-bandgap (WBG) perovskite solar cells (PSCs) are critical for high-efficiency tandem photovoltaic devices, but their practical application is severely limited by phase separation and poor film quality. To address these challenges, this study proposes a dual-additive passivation strategy using potassium thiocyanate (KSCN) and [...] Read more.
Wide-bandgap (WBG) perovskite solar cells (PSCs) are critical for high-efficiency tandem photovoltaic devices, but their practical application is severely limited by phase separation and poor film quality. To address these challenges, this study proposes a dual-additive passivation strategy using potassium thiocyanate (KSCN) and potassium chloride (KCl) to synergistically optimize the crystallinity and defect state of WBG perovskite films. The selection of KSCN/KCl is based on their complementary functionalities: K+ ions occupy lattice vacancies to suppress ion migration, Cl ions promote oriented crystal growth, and SCN ions passivate surface defects via Lewis acid-base interactions. A series of KSCN/KCl concentrations (relative to Pb) were tested, and the effects of dual additives on film properties and device performance were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), space-charge-limited current (SCLC), current-voltage (J-V), and external quantum efficiency (EQE) measurements. Results show that the dual additives significantly enhance film crystallinity (average grain size increased by 27.0% vs. control), reduce surface roughness (from 86.50 nm to 24.06 nm), and passivate defects-suppressing non-radiative recombination and increasing electrical conductivity. For WBG PSCs, the champion device with KSCN (0.5 mol%) + KCl (1 mol%) exhibits a power conversion efficiency (PCE) of 16.85%, representing a 19.4% improvement over the control (14.11%), along with enhanced open-circuit voltage (Voc: +2.8%), short-circuit current density (Jsc: +6.7%), and fill factor (FF: +8.9%). Maximum power point (MPP) tracking confirms superior operational stability under illumination. This dual-inorganic-additive strategy provides a generalizable approach for the rational design of stable, high-efficiency WBG perovskite films. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

33 pages, 2631 KB  
Systematic Review
Battery Sizing and Composition in Energy Storage Systems for Domestic Renewable Energy Applications: A Systematic Review
by Ludovica Apa, Livio D’Alvia, Zaccaria Del Prete and Emanuele Rizzuto
Energies 2025, 18(20), 5536; https://doi.org/10.3390/en18205536 - 21 Oct 2025
Viewed by 308
Abstract
Renewable energy sources, such as photovoltaic panels and wind turbines, are increasingly integrated into domestic systems to address energy scarcity, rising demand, and climate change. However, their intermittent nature requires efficient energy storage systems (ESS) for stability and reliability. This systematic review, conducted [...] Read more.
Renewable energy sources, such as photovoltaic panels and wind turbines, are increasingly integrated into domestic systems to address energy scarcity, rising demand, and climate change. However, their intermittent nature requires efficient energy storage systems (ESS) for stability and reliability. This systematic review, conducted in accordance with PRISMA guidelines, aimed to evaluate the size and chemical composition of battery energy storage systems (BESS) in household renewable energy applications. A literature search was conducted in Scopus in August 2025 using predefined keywords, and studies published in English from 2015 onward were included. Exclusion criteria included book chapters, duplicate conference proceedings, geographically restricted case studies, systems without chemistry or size details, and those focusing solely on electric vehicle batteries. Of 308 initially retrieved records, 83 met the eligibility criteria and were included in the analysis. The majority (92%) employed simulation-based approaches, while 8% reported experimental setups. No formal risk-of-bias tool was applied, but a methodological quality check was conducted. Data were synthesized narratively and tabulated by chemistry, nominal voltage, capacity, and power. Lithium-ion batteries were the most prevalent (49%), followed by lead–acid (13%), vanadium redox flow (3.6%), and nickel–metal hydride (1.2%), with the remainder unspecified. Lithium-ion dominated due to high energy density, long cycle life, and efficiency. Limitations of the evidence include reliance on simulation studies, heterogeneity in reporting, and limited experimental validation. Overall, this review provides a framework for selecting and integrating appropriately sized and composed BESS into domestic renewable systems, offering implications for stability, efficiency, and household-level sustainability. The study was funded by the PNRR NEST project and Sapienza University of Rome Grant. Full article
Show Figures

Figure 1

17 pages, 2988 KB  
Article
Effect of Ba:Ti Molar Ratio and Sintering Temperature on the Structural and Electrical Properties of BaTiO3-Type Solid Solutions, Synthesized by the Hydrothermal Method
by José Agustin Palmas Léon, Leandro Ramajo, Rodrigo Parra, Miguel Pérez Labra, Francisco Raúl Barrientos Hernández, Alejandro Cruz Ramírez, Vanessa Acosta Sanchez, Aislinn Michelle Teja Ruiz and Sayra Ordoñez Hernández
Materials 2025, 18(20), 4797; https://doi.org/10.3390/ma18204797 - 21 Oct 2025
Viewed by 141
Abstract
The results of the effect of the three Ba:Ti molar ratios (MR) (1:1, 2:1, 4:1) and four sintering temperatures (1250, 1275, 1300, 1325 °C) on the structural and electrical properties of BaTiO3 (BT)-type ceramics synthesized by the hydrothermal method are shown. The [...] Read more.
The results of the effect of the three Ba:Ti molar ratios (MR) (1:1, 2:1, 4:1) and four sintering temperatures (1250, 1275, 1300, 1325 °C) on the structural and electrical properties of BaTiO3 (BT)-type ceramics synthesized by the hydrothermal method are shown. The BT phase formed was analyzed by x-ray diffraction (XRD), Raman spectroscopy (RS), dielectric and ferroelectric measurements and high-resolution scanning electron microscopy (HRSEM). For the samples synthesized using a Ba:Ti MR of 4:1 and at all sintering temperatures analyzed, XRD results confirmed the presence of the tetragonal ferroelectric phase, BT. In the same way, these results corroborated the results obtained by the RS technique. Dielectric properties measured at 100 kHz and 1 MHz over a temperature range of 30 °C–200 °C indicated a relative permittivity value of 4280 at 1 MHz and 4200 at 100 KHz at a Curie temperature of 110 °C in both cases for the sample synthesized at with a Ba:Ti MR ratio of 4:1 and sintered at 1300 °C. Ferroelectric measurements for the samples showed a best remnant polarization (Pr) of 3.5 µC/cm2 for the sample synthesized with a Ba:Ti MR ratio of 4:1 and sintered at 1325 °C. The HRSEM results showed grains composed of Ba, Ti, and O homogeneously distributed in the BT structure, and a trend of increasing average grain size with increasing sintering temperature was observed. Full article
Show Figures

Figure 1

24 pages, 1741 KB  
Article
Remaining Useful Life Estimation of Lithium-Ion Batteries Using Alpha Evolutionary Algorithm-Optimized Deep Learning
by Fei Li, Danfeng Yang, Jinghan Li, Shuzhen Wang, Chao Wu, Mingwei Li, Chuanfeng Li, Pengcheng Han and Huafei Qian
Batteries 2025, 11(10), 385; https://doi.org/10.3390/batteries11100385 - 20 Oct 2025
Viewed by 749
Abstract
The precise prediction of the remaining useful life (RUL) of lithium-ion batteries is of great significance for improving energy management efficiency and extending battery lifespan, and it is widely applied in the fields of new energy and electric vehicles. However, accurate RUL prediction [...] Read more.
The precise prediction of the remaining useful life (RUL) of lithium-ion batteries is of great significance for improving energy management efficiency and extending battery lifespan, and it is widely applied in the fields of new energy and electric vehicles. However, accurate RUL prediction still faces significant challenges. Although various methods based on deep learning have been proposed, the performance of their neural networks is strongly correlated with the hyperparameters. To overcome this limitation, this study proposes an innovative approach that combines the Alpha evolutionary (AE) algorithm with a deep learning model. Specifically, this hybrid deep learning architecture consists of convolutional neural network (CNN), time convolutional network (TCN), bidirectional long short-term memory (BiLSTM) and multi-scale attention mechanism, which extracts the spatial features, long-term temporal dependencies, and key degradation information of battery data, respectively. To optimize the model performance, the AE algorithm is introduced to automatically optimize the hyperparameters of the hybrid model, including the number and size of convolutional kernels in CNN, the dilation rate in TCN, the number of units in BiLSTM, and the parameters of the fusion layer in the attention mechanism. Experimental results demonstrate that our method significantly enhances prediction accuracy and model robustness compared to conventional deep learning techniques. This approach not only improves the accuracy and robustness of battery RUL prediction but also provides new ideas for solving the parameter tuning problem of neural networks. Full article
Show Figures

Figure 1

Back to TopTop