Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (918)

Search Parameters:
Keywords = electro-oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2404 KB  
Article
Strain Effect in PdCu Alloy Metallene for Enhanced Formic Acid Electrooxidation Reaction
by Kaili Wang, Zhen Cao and Jia He
Catalysts 2025, 15(10), 967; https://doi.org/10.3390/catal15100967 - 10 Oct 2025
Viewed by 197
Abstract
Developing high-activity and high-durability Pd-based electrocatalysts is an important strategy to promote their commercial application. Herein, a smaller particle size and ultrathin sheet-like PdCu alloy metallene (PdCuene) were successfully prepared by using a one-pot wet chemistry method for FAOR. Experimental measurements indicated that [...] Read more.
Developing high-activity and high-durability Pd-based electrocatalysts is an important strategy to promote their commercial application. Herein, a smaller particle size and ultrathin sheet-like PdCu alloy metallene (PdCuene) were successfully prepared by using a one-pot wet chemistry method for FAOR. Experimental measurements indicated that the introduction Cu into Pd lattice induces a significant compressive strain effect through lattice mismatch between Pd and Cu, and the strain effect optimizes the electronic structure of Pd, as well as the high electrochemical surface area, increased exposure of active sites, and appropriate lattice strain have been demonstrated as factors that influence the enhancement of intrinsic activity and the acceleration of kinetics, thereby improving FAOR performance. Moreover, the stronger lattice strain of 0.85% would facilitate surface adsorption and dissociation of formic acid. Specifically, the optimized PdCuene exhibits enhanced mass activity and specific activity with current densities of 2.31 A mgPd−1 and 4.09 mA cm−2, respectively, which transcend the activities of Pd metallene (1.44 A mgPd−1 and 2.73 mA cm−2) and commercial Pd/C (0.6 A mgPd−1 and 1.53 mA cm−2). Meanwhile, PdCuene displayed obvious enhanced durability. The work provides an approach to modulate the lattice strain engineering, which represents a highly promising strategy for designing efficient FAOR electrocatalysts. Full article
(This article belongs to the Special Issue Nanostructured Catalysts for Emerging Electrochemical Technologies)
Show Figures

Figure 1

13 pages, 2885 KB  
Article
Isopropanol Electro-Oxidation on PtCu Alloys for Aqueous Organic Redox Chemistry Toward Energy Storage
by Jinyao Tang, Xiaochen Shen, Laura Newsom, Rongxuan Xie, Parsa Pishva, Yanlin Zhu, Bin Liu and Zhenmeng Peng
Molecules 2025, 30(19), 4027; https://doi.org/10.3390/molecules30194027 - 9 Oct 2025
Viewed by 135
Abstract
Integration of renewable energy into modern power grids remains limited by intermittency and the need for reliable energy storage. Redox flow batteries (RFBs) are promising for large-scale energy storage, yet their widespread adoption is hindered by the high cost. In this study, we [...] Read more.
Integration of renewable energy into modern power grids remains limited by intermittency and the need for reliable energy storage. Redox flow batteries (RFBs) are promising for large-scale energy storage, yet their widespread adoption is hindered by the high cost. In this study, we investigate isopropanol as a redox-active species with Pt-Cu alloy electrocatalysts for aqueous-organic RFBs. A series of PtxCu catalysts with varying Pt:Cu ratios were synthesized and studied for isopropanol electro-oxidation reaction (IPAOR) performance. Among them, PtCu demonstrated the best performance, achieving a low activation energy of 14.4 kJ/mol at 0.45 V vs. RHE and excellent stability at 1 M isopropanol (IPA) concentration. Kinetic analysis and in situ attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy revealed significantly reduced acetone accumulation on PtCu compared to pure Pt, indicating enhanced resistance to catalyst poisoning. Density functional theory (DFT) calculations further identified the first proton-coupled electron transfer (PCET) as the rate-determining step (RDS) with C-H bond scission as the preferred pathway on PtCu. A proof-of-concept PtCu-catalyzed H-cell demonstrated stable cycling over 200 cycles, validating the feasibility of IPA as a low-cost, regenerable redox couple. These findings highlight PtCu-catalyzed IPA/acetone(ACE) chemistry as a promising platform for next-generation aqueous-organic RFBs. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Graphical abstract

24 pages, 1590 KB  
Article
Synthesis of NiCu–Polymeric Membranes for Electro-Oxidizing Ethylene Glycol Molecules in Alkaline Medium
by Ayman Yousef, R. M. Abdel Hameed, Ibrahim M. Maafa and Ahmed Abutaleb
Catalysts 2025, 15(10), 959; https://doi.org/10.3390/catal15100959 - 6 Oct 2025
Viewed by 429
Abstract
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was [...] Read more.
Binary metallic nickel–copper nanocatalysts were anchored onto a polyvinylidene fluoride-co-hexafluoropropylene membrane [NiCu/PVdF–HFP] using the electrospinning technique, followed by the chemical reduction of the relevant precursor salts by introducing sodium borohydride to the synthesis mixture. A series of varied Ni:Cu weight % proportions was developed in order to optimize the electroactivity of this binary nanocomposite towards the investigated oxidation process. A number of physicochemical tools were used to ascertain the morphology and chemical structure of the formed metallic species on polymeric films. Cyclic voltammetric studies revealed a satisfactory performance of altered NiCu/PVdF–HFP membranes in alkaline solution. Ethylene glycol molecules were successfully electro-oxidized at their surfaces, showing the highest current intensity [564.88 μA cm−2] at the one with Ni:Cu weight ratios of 5:5. The dependence of these metallic membranes’ behavior on the added alcohol concentration to the reaction electrolyte and the adjusted scan rate during the electrochemical measurement was carefully investigated. One hundred repeated scans did not significantly deteriorate the NiCu/PVdF–HFP nanostructures’ durability. Decay percentages of 76.90–87.95% were monitored at their surfaces, supporting the stabilized performance for prolonged periods. A much-decreased Rct value was estimated at Ni5Cu5/PVdF–HFP [392.6 Ohm cm2] as a consequence of the feasibility of the electron transfer step for the electro-catalyzing oxidation process of alcohol molecules. These enhanced study results will hopefully motivate the interested workers to explore the behavior of many binary and ternary combinations of metallic nanomaterials after their deposition onto convenient polymeric films for vital electrochemical reactions. Full article
Show Figures

Graphical abstract

15 pages, 9213 KB  
Article
Facile Engineering of Pt-Rh Nanoparticles over Carbon for Composition-Dependent Activity and Durability Toward Glycerol Electrooxidation
by Marta Venancia França Rodrigues, Wemerson Daniel Correia dos Santos, Fellipe dos Santos Pereira, Augusto César Azevedo Silva, Liying Liu, Mikele Candida Sant’Anna, Eliane D’Elia, Roberto Batista de Lima and Marco Aurélio Suller Garcia
Hydrogen 2025, 6(4), 78; https://doi.org/10.3390/hydrogen6040078 - 3 Oct 2025
Viewed by 237
Abstract
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction [...] Read more.
In this study, we report the synthesis, characterization, and performance evaluation of a series of bimetallic PtxRhy/C electrocatalysts with systematically varied Rh content for glycerol electrooxidation in acidic and alkaline media. The catalysts were prepared via a polyol reduction method using ethylene glycol as both a solvent and reducing agent, with prior functionalization of Vulcan XC-72 carbon to enhance nanoparticles (NPs) dispersion. High-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) analyses indicated the spatial co-location of Rh atoms alongside Pt atoms. Electrochemical studies revealed strong composition-dependent behavior, with Pt95Rh5/C exhibiting the highest activity toward glycerol oxidation. To elucidate the origin of raised results, density functional tight binding (DFTB) simulations were conducted to model atomic distributions and evaluate energetic parameters. The results showed that Rh atoms preferentially segregate to the surface at higher concentrations due to their lower surface energy, while at low concentrations, they remain confined within the Pt lattice. Among the series, Pt95Rh5/C exhibited a distinctively higher excess energy and less favorable binding energy, rationalizing its lower thermodynamic stability. These findings reveal a clear trade-off between catalytic activity and structural durability, highlighting the critical role of the composition and nanoscale architecture in optimizing Pt-based electrocatalysts for alcohol oxidation reactions. Full article
Show Figures

Figure 1

21 pages, 10742 KB  
Article
Polymer Films of 2-(Azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole: Surface Characterization and Electrochemical Sensing of Heavy Metals
by Cornelia Musina (Borsaru), Mihaela Cristea, Raluca Gavrilă, Oana Brincoveanu, Florin Constantin Comănescu, Veronica Anăstăsoaie, Gabriela Stanciu and Eleonora-Mihaela Ungureanu
Molecules 2025, 30(19), 3959; https://doi.org/10.3390/molecules30193959 - 2 Oct 2025
Viewed by 206
Abstract
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through [...] Read more.
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through oxidative electro polymerization on glassy carbon electrodes in L solutions in 0.1 M TBAP in acetonitrile. They were characterized through electrochemistry. The surface of chemically modified electrodes (CMEs) prepared through controlled potential electrolysis (CPE) at variable concentrations, potentials, and electric charges was characterized through scanning electron spectroscopy, atomic force microscopy, and Raman spectroscopy, which confirmed the films’ formation. Electrochemical sensing of the films deposited on these CMEs was tested with respect to heavy metal (HM) ion analysis in aqueous solutions to obtain sensors for HMs. The obtained CMEs presented the best characteristics for the recognition of Pb among the investigated HMs (Cd, Pb, Cu, and Hg). Calibration curves were obtained for the analysis of Pb(II) in aqueous solutions, which allowed for the estimation of a good detection limit of this cation (<10−8 M) for non-optimized CMEs. The resulting CMEs show promise for deployment in portable environmental monitoring systems, with implications for public health protection and environmental safety. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Applied Chemistry)
Show Figures

Figure 1

47 pages, 5360 KB  
Review
Current Progress in Advanced Functional Membranes for Water-Pollutant Removal: A Critical Review
by Manseeb M. Mannaf, Md. Mahbubur Rahman, Sonkorson Talukder Sabuj, Niladri Talukder and Eon Soo Lee
Membranes 2025, 15(10), 300; https://doi.org/10.3390/membranes15100300 - 2 Oct 2025
Viewed by 866
Abstract
As water pollution from dyes, pharmaceuticals, heavy metals, and other emerging contaminants continues to rise at an alarming rate, ensuring access to clean and safe water has become a pressing global challenge. Conventional water treatment methods, though widely used, often fall short in [...] Read more.
As water pollution from dyes, pharmaceuticals, heavy metals, and other emerging contaminants continues to rise at an alarming rate, ensuring access to clean and safe water has become a pressing global challenge. Conventional water treatment methods, though widely used, often fall short in effectively addressing these complex pollutants. In response, researchers have turned to Advanced Functional Membranes (AFMs) as promising alternatives, owing to their customizable structures and enhanced performance. Among the most explored AFMs are those based on metal–organic frameworks (MOFs), carbon nanotubes (CNTs), and electro–catalytic systems, each offering unique advantages such as high permeability, selective pollutant removal, and compatibility with advanced oxidation processes (AOPs). Notably, hybrid systems combining AFMs with electrochemical or photocatalytic technologies have demonstrated remarkable efficiency in laboratory settings. However, translating these successes to real-world applications remains a challenge due to issues related to cost, scalability, and long-term stability. This review explores the recent progress in AFM development, particularly MOF-based, CNT-based, and electro-Fenton (EF)-based membranes, highlighting their material aspects, pollutant filtration mechanisms, benefits, and limitations. It also offers insights into how these next-generation materials can contribute to more sustainable, practical, and economically viable water purification solutions in the near future. Full article
Show Figures

Figure 1

46 pages, 6024 KB  
Review
Recent Advances in Transition Metal Selenide-Based Catalysts for Organic Pollutant Degradation by Advanced Oxidation Processes
by Donatos Manos and Ioannis Konstantinou
Catalysts 2025, 15(10), 938; https://doi.org/10.3390/catal15100938 - 1 Oct 2025
Viewed by 483
Abstract
In recent years, one of the major problems facing humanity has been the contamination of the environment by various organic pollutants, with some of them exhibiting environmental persistence or pseudo-persistence. For this reason, it is necessary today, more than ever, to find new [...] Read more.
In recent years, one of the major problems facing humanity has been the contamination of the environment by various organic pollutants, with some of them exhibiting environmental persistence or pseudo-persistence. For this reason, it is necessary today, more than ever, to find new and effective methods for degrading these persistent pollutants. Transition metal selenides (TMSes) have emerged as a versatile and promising class of catalysts for the degradation of organic pollutants through various advanced oxidation processes (AOPs). The widespread use of these materials lies in the desirable characteristics they offer, such as unique electronic structures, narrow band gaps, high electrical conductivity, and multi-valent redox behavior. This review comprehensively examines recent progress in the design, synthesis, and application of these TMSes—including both single- and composite systems, such as TMSes/g-C3N4, TMSes/TiO2, and heterojunctions. The catalytic performance of these systems is being highlighted, regarding the degradation of organic pollutants such as dyes, pharmaceuticals, antibiotics, personal care products, etc. Further analysis of the mechanistic insights, structure–activity relationships, and operational parameter effects are critically discussed. Emerging trends, such as hybrid AOPs combining photocatalysis with PMS or electro-activation, and the challenges of stability, scalability, and real wastewater applicability are explored in depth. Finally, future directions emphasize the integration of multifunctional activation methods for the degradation of organic pollutants. This review aims to provide a comprehensive analysis and pave the way for the utilization of TMSe catalysts in sustainable and efficient wastewater remediation technologies. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Graphical abstract

16 pages, 12574 KB  
Article
Enhanced Performance of Gold Nanoparticle-Modified Nickel–Iron Coatings for Sodium Borohydride Electrooxidation
by Huma Amber, Aušrinė Zabielaitė, Aldona Balčiūnaitė, Antanas Nacys, Dmytro Shyshkin, Birutė Šimkūnaitė-Stanynienė, Zenius Mockus, Jūratė Vaičiūnienė, Loreta Tamašauskaitė-Tamašiūnaitė and Eugenijus Norkus
Crystals 2025, 15(9), 819; https://doi.org/10.3390/cryst15090819 - 19 Sep 2025
Viewed by 342
Abstract
The Ni-Fe coatings modified with AuNPs were deposited on the flexible copper-coated polyimide (Cu/PI) surface using electroless metal plating, while the galvanic displacement technique was applied to modify the surface of NiFe coatings by a small content of AuNPs in the range of [...] Read more.
The Ni-Fe coatings modified with AuNPs were deposited on the flexible copper-coated polyimide (Cu/PI) surface using electroless metal plating, while the galvanic displacement technique was applied to modify the surface of NiFe coatings by a small content of AuNPs in the range of 16.5 µgAu cm−2. AuNPs of a few nanometers in size were deposited on the NiFe/Cu/PI surface by immersing it in a solution containing AuCl4 ions. The electrooxidation of sodium borohydride was evaluated in a 1 M NaOH solution containing 0.05 M of sodium borohydride using cyclic voltammetry, chronoamperometry, and chronopotentiometry. In addition, the performance and stability of the NiFe/Cu/PI and AuNPs-NiFe/Cu/PI catalysts were evaluated for potential use in a direct NaBH4-H2O2 fuel cell. The NiFe coating modified with AuNPs demonstrated significantly higher electrocatalytic activity towards the oxidation of sodium borohydride as compared to bare Au or unmodified NiFe/Cu/PI. Furthermore, it exhibited a superior power density of 89.7 mW cm−2 at room temperature and operational stability under alkaline conditions, while the NiFe anode exhibited 73.1 mW cm−2. These results suggest that the AuNPs-modified NiFe coating has great potential as a material for use in direct borohydride fuel cells (DBFCs) applications involving the oxidation of sodium borohydride. Full article
(This article belongs to the Special Issue Advances and Perspectives in Noble Metal Nanoparticles)
Show Figures

Figure 1

17 pages, 5739 KB  
Article
Electrochemical and Optical Experiments and DFT Calculations of 1,4,6,8-Tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene
by Cornelia Musina (Borsaru), Alina-Giorgiana Brotea, Mihaela Cristea, Gabriela Stanciu, Amalia Stefaniu and Eleonora-Mihaela Ungureanu
Molecules 2025, 30(18), 3762; https://doi.org/10.3390/molecules30183762 - 16 Sep 2025
Viewed by 447
Abstract
Due to its conjugated structure, 1,4,6,8-tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene (L) has a high potential for nonlinear optics and coloring. This compound was studied electrochemically using cyclic voltammetry, pulse differential voltammetry and rotating disk voltammetry in organic electrolytes. The main processes occurring during oxidation and [...] Read more.
Due to its conjugated structure, 1,4,6,8-tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene (L) has a high potential for nonlinear optics and coloring. This compound was studied electrochemically using cyclic voltammetry, pulse differential voltammetry and rotating disk voltammetry in organic electrolytes. The main processes occurring during oxidation and reduction scans were highlighted and characterized. Density functional theory (DFT) calculations were conducted to assess the chemical reactivity of this compound. UV-Vis studies of L were performed in acetonitrile to establish the optical parameters in this solvent and its complexing power towards heavy metal (HM) ions. Chemically modified electrodes (CMEs) based on L were prepared by electrooxidation of L in organic electrolytes. To evaluate the electrochemical behavior of the CMEs, they were characterized with a ferrocene redox probe. They were also tested for the analysis of synthetic samples of heavy metal ions (HM): Cd(II), Pb(II), Cu(II) and Hg(II) by anodic stripping. Specific responses were obtained for Pb(II) and Cd(II) ions. The preparation conditions have an influence on the electrochemical responses. This study is relevant for the design and further development of advanced materials based on this azulene for the analysis of HMs in water samples. Electrochemical experiments and DFT calculations recommended L as a new ligand for modifying the electrode surface for the analysis of HMs. Full article
Show Figures

Figure 1

33 pages, 3271 KB  
Review
Electrocoagulation for the Removal of Antibiotics and Resistant Bacteria: Advances and Synergistic Technologies
by Laura Sol Pérez-Flores and Eduardo Torres
Processes 2025, 13(9), 2916; https://doi.org/10.3390/pr13092916 - 12 Sep 2025
Viewed by 452
Abstract
The persistence of antibiotics and antibiotic-resistant bacteria (ARB) in aquatic environments poses a significant risk to both the environment and public health. Conventional wastewater treatment systems are often inefficient in completely removing these emerging contaminants, highlighting the need for advanced and integrative treatment [...] Read more.
The persistence of antibiotics and antibiotic-resistant bacteria (ARB) in aquatic environments poses a significant risk to both the environment and public health. Conventional wastewater treatment systems are often inefficient in completely removing these emerging contaminants, highlighting the need for advanced and integrative treatment approaches. Electrocoagulation (EC) has emerged as a promising electrochemical method due to its operational simplicity, low chemical demand, and versatility in treating a wide range of wastewater types. This review critically analyzes the efficiency of EC, both as a standalone process and in combination with complementary technologies such as electrooxidation, membrane filtration, advanced oxidation processes (AOPs), and biological treatments. Emphasis is placed on the removal mechanisms, influencing parameters (pH, current density, electrode material), and the synergistic effects that enhance the degradation of antibiotics and the inactivation of ARB. Additionally, the review discusses the limitations of EC, including electrode passivation and energy consumption. The integration of EC with other technologies demonstrates improved pollutant removal and process robustness, offering a viable alternative for treating complex wastewater streams. This work provides a perspective on the current state and future potential of EC-based hybrid systems in mitigating the environmental impact of antibiotic pollutants and antimicrobial resistance. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes for Waste Treatment)
Show Figures

Figure 1

34 pages, 7771 KB  
Article
Improving Methanol Production from Carbon Dioxide Through Electrochemical Processes with Draining System
by Cristina Rincón and Carlos Armenta-Déu
Physchem 2025, 5(3), 37; https://doi.org/10.3390/physchem5030037 - 9 Sep 2025
Viewed by 626
Abstract
The paper describes the conversion of carbon dioxide into methanol in a chemical reactor under standard operating conditions. Electro-analytical techniques, cyclic voltammetry, and chrono-amperometry characterize the process. The electrochemical redox reaction develops using various catalyzers to evaluate the performance of the carbon dioxide [...] Read more.
The paper describes the conversion of carbon dioxide into methanol in a chemical reactor under standard operating conditions. Electro-analytical techniques, cyclic voltammetry, and chrono-amperometry characterize the process. The electrochemical redox reaction develops using various catalyzers to evaluate the performance of the carbon dioxide conversion into methanol process under variable chemical conditions. The results of the applied technique showed an incomplete redox reaction with an electronic change of z = 2.84 on average, below the ideal number, z = 6, that may be due to methanol decomposition (reverse reaction) because the system operates with a reaction constant above the equilibrium value. The methanol production may improve by draining the methanol/water solution from the chemical reactor to reduce the methanol concentration in the electrochemical cell, shifting the forward reaction towards the formation of methanol, increasing the electron change number, which approaches the ideal value, and improving the methanol production efficiency. The draining process shows a significant increase in methanol formation, which depends on the draining flow rate and the catalyzer type. A simulation process shows that if we operate in optimum conditions, with no methanol decomposition through a reverse reaction, the redox reaction fulfills the ideal condition of maximum electronic change. The experimental tests validate the simulation results, showing a relevant increase in the electron change number with values up to z = 4.2 for optimum draining flow rate conditions (0.2 L/s). The experimental results show a relative increase factor of 4.7 in methanol production, meaning we can produce more than four times more methanol compared with no draining techniques. The data analysis shows that the draining flow rate has a threshold of 0.2 L/s, beyond which the extent of the reaction reverses, reducing the methanol formation due to a chemical reaction disequilibrium. The paper concludes that using the draining method, the methanol production mass rate increases significantly from an average value of 20.9 kg/h for non-draining use, considering all catalyzer types, to a range between 91.9 kg/h and 104.3 kg/h, depending on the flow rate. Averaging all values for different flow rates and comparing with the non-draining case, we obtain an absolute methanol production mass rate of 77 kg/h, meaning an incremental percentage of 469.1%, more than four times the initial production. Although the proposed methodology looks promising, applying this procedure on an industrial scale may suffer from restrictions since the chemical reactions intervening in the methanol formation do not perform linearly. According to experimental tests, the best option among the six catalyzers used for methanol production is the plain copper, with copper oxides (Cu2O, CuO) and copper Sulphur (CuS) as feasible alternatives. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

16 pages, 2365 KB  
Article
Preparation of Pt/xMnO2-CNTs Catalyst and Its Electrooxidation Performance in Methanol
by Guang Chen, Zhijun Teng, Hanqiao Xu and Hongwei Li
Catalysts 2025, 15(9), 864; https://doi.org/10.3390/catal15090864 - 7 Sep 2025
Viewed by 530
Abstract
In this study, MnO2-CNTs composite support was prepared by citric acid reduction method, and then, Pt nanoparticles were loaded on the surface by ethylene glycol reduction method to obtain a series of Pt/xMnO2-CNTs catalysts. Structural characterization (TEM, XRD, HRTEM) [...] Read more.
In this study, MnO2-CNTs composite support was prepared by citric acid reduction method, and then, Pt nanoparticles were loaded on the surface by ethylene glycol reduction method to obtain a series of Pt/xMnO2-CNTs catalysts. Structural characterization (TEM, XRD, HRTEM) showed that Pt nanoparticles were uniformly dispersed on the surface of the catalyst with an average particle size of 3.6 nm. Electrochemical tests show that when the content of MnO2 is 20 wt.%, the Pt/20wt.%MnO2-CNTs catalyst has the best methanol oxidation performance, and its mass activity and long-term stability are 4.0 times and 5.41 times that of commercial Pt/C, respectively. The in situ FTIR results showed that MnO2 promoted the dissociation of water through synergistic effect, generated abundant OH species, accelerated the oxidation of CO intermediates, and inhibited the poisoning of Pt sites. In this study, it is clear that the excellent performance of Pt/xMnO2-CNTs is due to multiple synergistic effects. Modified carbon nanotubes facilitate proton conduction, Pt nanoparticles effectively activate methanol, and MnO2 modulates reaction intermediates via its bifunctional mechanism. This comprehensive mechanism understanding provides a theoretical basis for the design of high-performance catalysts for direct methanol fuel cells. Full article
Show Figures

Graphical abstract

17 pages, 3544 KB  
Article
A New Route to Tune the Electrical Properties of Graphene Oxide: A Simultaneous, One-Step N-Doping and Reduction as a Tool for Its Structural Transformation
by Andjela Stefanović, Muhammad Yasir, Gerard Tobías-Rossell, Stefania Sandoval Rojano, Dušan Sredojević, Dejan Kepić, Duška Kleut, Warda Saeed, Miloš Milović, Danica Bajuk-Bogdanović and Svetlana Jovanović
Molecules 2025, 30(17), 3579; https://doi.org/10.3390/molecules30173579 - 1 Sep 2025
Viewed by 1161
Abstract
The presence of secondary electromagnetic waves (EMWs) results in EMW pollution and a large need for EMW-shielding materials. Therefore, new, lightweight, flexible, chemically resistant, and durable EMW shielding materials are demanded, while graphene and its derivatives meet the above-mentioned requirements. Among graphene derivatives, [...] Read more.
The presence of secondary electromagnetic waves (EMWs) results in EMW pollution and a large need for EMW-shielding materials. Therefore, new, lightweight, flexible, chemically resistant, and durable EMW shielding materials are demanded, while graphene and its derivatives meet the above-mentioned requirements. Among graphene derivatives, N-doped graphene exhibits promising electrical properties for shielding applications, although achieving sufficient N-incorporation in the graphene sheets remains a challenge. Herein, we produced graphene oxide using the modified Hummers’ method (GO) and the electrochemical exfoliation of highly ordered pyrolytic graphite. These two GO samples were thermally treated at 500 °C and 800 °C under a pure NH3 gas for 1 h. UV-Vis, infrared, and Raman spectroscopies and X-ray diffraction, elemental, and thermogravimetric analyses were used to investigate the structural properties of modified GO. One of the highest levels of N-doping of GO was measured (11.25 ± 0.08 at%). The modification under a NH3 atmosphere leads to simultaneous N-doping and reduction of graphene, resulting in the formation of electrically conductive and EMW shielding materials. Density functional theory (DFT) revealed the effect of heteroatoms on the energy band gap of GO. The cluster corresponding to N-doped rGO had a reduced bandgap of 0.77 eV. Full article
Show Figures

Figure 1

15 pages, 5672 KB  
Article
Enhanced Electrocatalytic Performance for Selective Glycerol Oxidation to Formic Acid at a Multiphase AuCu-Ag/AgBr Interface
by Jianchuan Jin, Luyao Sun, Zhiqing Wang, Shiyu Li, Lingqin Shen and Hengbo Yin
Catalysts 2025, 15(9), 831; https://doi.org/10.3390/catal15090831 - 1 Sep 2025
Viewed by 729
Abstract
Electrochemical glycerol oxidation presents a sustainable and environmentally friendly pathway for formic acid production, addressing the significant carbon emissions and resource dependency associated with conventional industrial processes. However, the development of advanced electrocatalysts with high formic acid selectivity and durability remains challenging due [...] Read more.
Electrochemical glycerol oxidation presents a sustainable and environmentally friendly pathway for formic acid production, addressing the significant carbon emissions and resource dependency associated with conventional industrial processes. However, the development of advanced electrocatalysts with high formic acid selectivity and durability remains challenging due to the polyhydroxy structure and carbon chain complexity of glycerol, which lead to intricate oxidation pathways and a wide variety of products. To tackle this issue, we report a AuCu-Ag/AgBr catalyst with a multiphase interface, referring to the integrated boundaries among AuCu, Ag, and AgBr phases that interact with the liquid electrolyte, for high-rate and high-efficiency glycerol oxidation. Comprehensive characterizations reveal that the multiphase interface may effectively modulate the adsorption configurations of glycerol molecules and enhance charge transfer efficiency. Under ambient conditions, glycerol electro-oxidation at 1.43 V for 8 h yielded a conversion of 38% and a formic acid selectivity of 81%, and recycling tests confirmed its high stability under prolonged electrolysis. This synergistic catalytic effect provides a kinetically favorable pathway for formic acid production, demonstrating the potential of AuCu-Ag/AgBr catalysts in advancing sustainable glycerol valorization. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts for Biomass Conversions)
Show Figures

Graphical abstract

18 pages, 3285 KB  
Article
Capillary Electro-Osmosis Properties of Water Lubricants Under a Steel-on-Steel Sliding Interface
by Bohua Feng, Xiaomei Guo, Gaoan Zheng, Zeqi Tong, Chen Yang and Xuefeng Xu
Processes 2025, 13(9), 2791; https://doi.org/10.3390/pr13092791 - 31 Aug 2025
Viewed by 568
Abstract
The process of penetration of lubricants into the frictional interface in steel machining such as turning and milling is not well revealed, which has thus compromised their machining performance. In this paper, the penetration characteristics of deionized water (Di-water) containing different electro-osmosis additives [...] Read more.
The process of penetration of lubricants into the frictional interface in steel machining such as turning and milling is not well revealed, which has thus compromised their machining performance. In this paper, the penetration characteristics of deionized water (Di-water) containing different electro-osmosis additives were investigated using a steel-on-steel friction pair. The worn surface lubricated with water solutions were examined using advanced surface analysis techniques. The results indicate that water lubricants were electrically driven to the frictional interface for lubrication. The addition of positive electro-osmosis additives helped promote the penetration of water solutions, thus resulting in the formation of a thick lubricating film of iron oxide at the sliding surface. This reduced abrasion damage significantly, therefore producing a lower coefficient of friction (COF) and wear loss in comparison with pure water. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

Back to TopTop