Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = electroconvective vortex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8786 KB  
Article
Efficient Anion-Exchange Membranes with Anti-Scaling Properties Obtained by Surface Modification of Commercial Membranes Using a Polyquaternium-22
by Dmitrii Y. Butylskii, Vasiliy A. Troitskiy, Maria A. Ponomar, Ilya A. Moroz, Konstantin G. Sabbatovskiy and Mikhail V. Sharafan
Membranes 2022, 12(11), 1065; https://doi.org/10.3390/membranes12111065 - 29 Oct 2022
Cited by 13 | Viewed by 2948
Abstract
Anion-exchange membranes modified with a polyquaternium-22 (PQ-22) polymer were studied for their use in electrodialysis. The use of PQ-22 for modification makes it possible to “replace” weakly basic amino groups on the membrane surface with quaternary amino groups. It was found that the [...] Read more.
Anion-exchange membranes modified with a polyquaternium-22 (PQ-22) polymer were studied for their use in electrodialysis. The use of PQ-22 for modification makes it possible to “replace” weakly basic amino groups on the membrane surface with quaternary amino groups. It was found that the content of quaternary amino groups in PQ-22 is higher than the content of carboxyl groups, which is the reason for the effectiveness of this polymer even when modifying Ralex AHM-PES membranes that initially contain only quaternary amino groups. In the case of membranes containing weakly basic amino groups, the PQ-22 polymer modification efficiency is even higher. The surface charge of the modified MA-41P membrane increased, while the limiting current density on the current-voltage curves increased by more than 1.5 times and the plateau length decreased by 2.5 times. These and other characteristics indicate that the rate of water splitting decreased and the electroconvective mixing at the membrane surface intensified, which was confirmed by direct visualization of vortex structures. Increasing the surface charge of the commercial MA-41P anion-exchange membrane, reducing the rate of water splitting, and enhancing electroconvection leads to mitigated scaling on its surface during electrodialysis. Full article
Show Figures

Graphical abstract

23 pages, 3373 KB  
Article
Influence of Electroconvection on Chronopotentiograms of an Anion-Exchange Membrane in Solutions of Weak Polybasic Acid Salts
by Natalia Pismenskaya, Olesya Rybalkina, Ilya Moroz, Semen Mareev and Victor Nikonenko
Int. J. Mol. Sci. 2021, 22(24), 13518; https://doi.org/10.3390/ijms222413518 - 16 Dec 2021
Cited by 16 | Viewed by 2703
Abstract
Visualization of electroconvective (EC) vortices at the undulated surface of an AMX anion-exchange membrane (Astom, Osaka, Japan) was carried out in parallel with the measurement of chronopotentiograms. Weak polybasic acid salts, including 0.02 M solutions of tartaric (NaHT), phosphoric (NaH2PO4 [...] Read more.
Visualization of electroconvective (EC) vortices at the undulated surface of an AMX anion-exchange membrane (Astom, Osaka, Japan) was carried out in parallel with the measurement of chronopotentiograms. Weak polybasic acid salts, including 0.02 M solutions of tartaric (NaHT), phosphoric (NaH2PO4), and citric (NaH2Cit) acids salts, and NaCl were investigated. It was shown that, for a given current density normalized to the theoretical limiting current calculated by the Leveque equation (i/ilimtheor), EC vortex zone thickness, dEC, decreases in the order NaCl > NaHT > NaH2PO4 > NaH2Cit. This order is inverse to the increase in the intensity of proton generation in the membrane systems under study. The higher the intensity of proton generation, the lower the electroconvection. This is due to the fact that protons released into the depleted solution reduce the space charge density, which is the driver of EC. In all studied systems, a region in chronopotentiograms between the rapid growth of the potential drop and the attainment of its stationary values corresponds to the appearance of EC vortex clusters. The amplitude of the potential drop oscillations in the chronopotentiograms is proportional to the size of the observed vortex clusters. Full article
(This article belongs to the Special Issue Ion and Molecule Transport in Membrane Systems 3.0)
Show Figures

Figure 1

12 pages, 4434 KB  
Article
Simulation and Experimental Study of Ion Concentration Polarization Induced Electroconvective Vortex and Particle Movement
by Junghyo Yoon, Youngkyu Cho, Jaehoon Kim, Hyunho Kim, Kyuhwan Na, Jeong Hoon Lee and Seok Chung
Micromachines 2021, 12(8), 903; https://doi.org/10.3390/mi12080903 - 29 Jul 2021
Cited by 4 | Viewed by 4352
Abstract
Ion concentration polarization (ICP) has been widely applied in microfluidic systems in pre-concentration, particle separation, and desalination applications. General ICP microfluidic systems have three components (i.e., source, ion-exchange, and buffer), which allow selective ion transport. Recently developed trials to eliminate one of the [...] Read more.
Ion concentration polarization (ICP) has been widely applied in microfluidic systems in pre-concentration, particle separation, and desalination applications. General ICP microfluidic systems have three components (i.e., source, ion-exchange, and buffer), which allow selective ion transport. Recently developed trials to eliminate one of the three components to simplify the system have suffered from decreased performance by the accumulation of unwanted ions. In this paper, we presented a new ICP microfluidic system with only an ion-exchange membrane-coated channel. Numerical investigation on hydrodynamic flow and electric fields with a series of coupled governing equations enabled a strong correlation to experimental investigations on electroconvective vortices and the trajectory of charged particles. This study has significant implications for the development and optimization of ICP microfluidic and electrochemical systems for biomarker concentration and separation to improve sensing reliability and detection limits in analytic chemistry. Full article
(This article belongs to the Special Issue State-of-the-Art Nanofluidics)
Show Figures

Figure 1

19 pages, 7016 KB  
Article
Potentiodynamic and Galvanodynamic Regimes of Mass Transfer in Flow-Through Electrodialysis Membrane Systems: Numerical Simulation of Electroconvection and Current-Voltage Curve
by Aminat Uzdenova and Makhamet Urtenov
Membranes 2020, 10(3), 49; https://doi.org/10.3390/membranes10030049 - 20 Mar 2020
Cited by 13 | Viewed by 4010
Abstract
Electromembrane devices are usually operated in two electrical regimes: potentiodynamic (PD), when a potential drop in the system is set, and galvanodynamic (GD), when the current density is set. This article theoretically investigates the current-voltage curves (CVCs) of flow-through electrodialysis membrane systems calculated [...] Read more.
Electromembrane devices are usually operated in two electrical regimes: potentiodynamic (PD), when a potential drop in the system is set, and galvanodynamic (GD), when the current density is set. This article theoretically investigates the current-voltage curves (CVCs) of flow-through electrodialysis membrane systems calculated in the PD and GD regimes and compares the parameters of the electroconvective vortex layer for these regimes. The study is based on numerical modelling using a basic model of overlimiting transfer enhanced by electroconvection with a modification of the boundary conditions. The Dankwerts’ boundary condition is used for the ion concentration at the inlet boundary of the membrane channel. The Dankwerts’ condition allows one to increase the accuracy of the numerical implementation of the boundary condition at the channel inlet. On the CVCs calculated for PD and DG regimes, four main current modes can be distinguished: underlimiting, limiting, overlimiting, and chaotic overlimiting. The effect of the electric field regime is manifested in overlimiting current modes, when a significant electroconvection vortex layer develops in the channel. Full article
(This article belongs to the Special Issue Electromembrane Processes: Experiments and Modelling)
Show Figures

Graphical abstract

21 pages, 4922 KB  
Article
A High-Throughput Electrokinetic Micromixer via AC Field-Effect Nonlinear Electroosmosis Control in 3D Electrode Configurations
by Kai Du, Weiyu Liu, Yukun Ren, Tianyi Jiang, Jingni Song, Qian Wu and Ye Tao
Micromachines 2018, 9(9), 432; https://doi.org/10.3390/mi9090432 - 26 Aug 2018
Cited by 17 | Viewed by 4283
Abstract
In this study, we make use of the AC field-effect flow control on induced-charge electroosmosis (ICEO), to develop an electrokinetic micromixer with 3D electrode layouts, greatly enhancing the device performance compared to its 2D counterpart of coplanar metal strips. A biased AC voltage [...] Read more.
In this study, we make use of the AC field-effect flow control on induced-charge electroosmosis (ICEO), to develop an electrokinetic micromixer with 3D electrode layouts, greatly enhancing the device performance compared to its 2D counterpart of coplanar metal strips. A biased AC voltage wave applied to the central gate terminal, i.e., AC field-effect control, endows flow field-effect-transistor of ICEO the capability to produce arbitrary symmetry breaking in the transverse electrokinetic vortex flow pattern, which makes it fascinating for microfluidic mixing. Using the Debye-Huckel approximation, a mathematical model is established to test the feasibility of the new device design in stirring nanoparticle samples carried by co-flowing laminar streams. The effect of various experimental parameters on constructing a viable micromixer is investigated, and an integrated microdevice with a series of gate electrode bars disposed along the centerline of the channel bottom surface is proposed for realizing high-flux mixing. Our physical demonstration on field-effect nonlinear electroosmosis control in 3D electrode configurations provides useful guidelines for electroconvective manipulation of nanoscale objects in modern microfluidic systems. Full article
(This article belongs to the Special Issue Micro/Nano-Chip Electrokinetics, Volume III)
Show Figures

Graphical abstract

24 pages, 9806 KB  
Article
On the Bipolar DC Flow Field-Effect-Transistor for Multifunctional Sample Handing in Microfluidics: A Theoretical Analysis under the Debye–Huckel Limit
by Weiyu Liu, Qisheng Wu, Yukun Ren, Peng Cui, Bobin Yao, Yanbo Li, Meng Hui, Tianyi Jiang and Lin Bai
Micromachines 2018, 9(2), 82; https://doi.org/10.3390/mi9020082 - 16 Feb 2018
Cited by 8 | Viewed by 4763
Abstract
We present herein a novel method of bipolar field-effect control on DC electroosmosis (DCEO) from a physical point of view, in the context of an intelligent and robust operation tool for stratified laminar streams in microscale systems. In this unique design of the [...] Read more.
We present herein a novel method of bipolar field-effect control on DC electroosmosis (DCEO) from a physical point of view, in the context of an intelligent and robust operation tool for stratified laminar streams in microscale systems. In this unique design of the DC flow field-effect-transistor (DC-FFET), a pair of face-to-face external gate terminals are imposed with opposite gate-voltage polarities. Diffuse-charge dynamics induces heteropolar Debye screening charge within the diffuse double layer adjacent to the face-to-face oppositely-polarized gates, respectively. A background electric field is applied across the source-drain terminal and forces the face-to-face counterionic charge of reversed polarities into induced-charge electroosmotic (ICEO) vortex flow in the lateral direction. The chaotic turbulence of the transverse ICEO whirlpool interacts actively with the conventional plug flow of DCEO, giving rise to twisted streamlines for simultaneous DCEO pumping and ICEO mixing of fluid samples along the channel length direction. A mathematical model in thin-layer approximation and the low-voltage limit is subsequently established to test the feasibility of the bipolar DC-FFET configuration in electrokinetic manipulation of fluids at the micrometer dimension. According to our simulation analysis, an integrated device design with two sets of side-by-side, but upside-down gate electrode pair exhibits outstanding performance in electroconvective pumping and mixing even without any externally-applied pressure difference. Moreover, a paradigm of a microdevice for fully electrokinetics-driven analyte treatment is established with an array of reversed bipolar gate-terminal pairs arranged on top of the dielectric membrane along the channel length direction, from which we can obtain almost a perfect liquid mixture by using a smaller magnitude of gate voltages for causing less detrimental effects at a small Dukhin number. Sustained by theoretical analysis, our physical demonstration on bipolar field-effect flow control for the microfluidic device of dual functionalities in simultaneous electroconvective pumping and mixing holds great potential in the development of fully-automated liquid-phase actuators in modern microfluidic systems. Full article
(This article belongs to the Special Issue Micro/Nano-Chip Electrokinetics, Volume II)
Show Figures

Figure 1

Back to TopTop