Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (295)

Search Parameters:
Keywords = electron-trapping materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1589 KB  
Article
Tuning the Structure and Photoluminescence of [SbCl5]2−-Based Halides via Modification of Imidazolium-Based Cations
by Guoyang Chen, Xinping Guo, Haowei Lin, Zhizhuan Zhang, Abdusalam Ablez, Yuwei Ren, Kezhao Du and Xiaoying Huang
Molecules 2025, 30(16), 3431; https://doi.org/10.3390/molecules30163431 - 20 Aug 2025
Viewed by 349
Abstract
Structure–property relationships in imidazolium-based hybrid Sb(III) chlorides provide critical guidance for designing high-performance materials. Three zero-dimensional metal halides, namely, [C3mmim]2SbCl5 (1, [C3mmim]+ = 1-propyl-2,3-dimethylimidazolium), [C5mmim]2SbCl5 (2, [...] Read more.
Structure–property relationships in imidazolium-based hybrid Sb(III) chlorides provide critical guidance for designing high-performance materials. Three zero-dimensional metal halides, namely, [C3mmim]2SbCl5 (1, [C3mmim]+ = 1-propyl-2,3-dimethylimidazolium), [C5mmim]2SbCl5 (2, [C5mmim]+ = 1-pentyl-2,3-dimethylimidazolium), and [C5mim]2SbCl5 (3, [C5mim]+ = 1-pentyl-3-methylimidazolium), are synthesized by ionothermal methods. These compounds exhibit markedly distinctly photophysical properties at their optimal excitation wavelengths. Structural analyses reveal that elongated alkyl chains in compounds 2 and 3 increase Sb–Sb distances compared to that in 1, effectively isolating [SbCl5]2− units, suppressing inter-center energy transfer, and reducing non-radiative transitions, thereby enhancing the photoluminescence quantum yield (PLQY). Furthermore, methyl substitution at the C2-position of the imidazolium ring in compounds 1 and 2 induces asymmetric coordination environments around the [SbCl5]2− emission centers, leading to pronounced structural distortion. This distortion promotes non-radiative decay pathways and diminishes luminescent efficiency. Furthermore, temperature-dependent spectroscopy analysis and fitting of the Huang–Rhys factor (S) reveal significant electron–phonon coupling in compounds 13, which effectively promotes the formation of self-trapped excitons (STEs). However, compound 1 exhibits extremely high S, which significantly enhances phonon-mediated non-radiative decay and ultimately reduces its PLQY. Overall, compound 3 has the highest PLQYs. Full article
(This article belongs to the Special Issue Organic and Inorganic Luminescent Materials, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 4886 KB  
Article
Fabrication of Diffractive Optical Elements to Generate Square Focal Spots via Direct Laser Lithography and Machine Learning
by Hieu Tran Doan Trung, Young-Sik Ghim and Hyug-Gyo Rhee
Photonics 2025, 12(8), 794; https://doi.org/10.3390/photonics12080794 - 6 Aug 2025
Viewed by 366
Abstract
Recently, diffractive optics systems have garnered increasing attention due to their myriad benefits in various applications, such as creating vortex beams, Bessel beams, or optical traps, while refractive optics systems still exhibit some disadvantages related to materials, substrates, and intensity shapes. The manufacturing [...] Read more.
Recently, diffractive optics systems have garnered increasing attention due to their myriad benefits in various applications, such as creating vortex beams, Bessel beams, or optical traps, while refractive optics systems still exhibit some disadvantages related to materials, substrates, and intensity shapes. The manufacturing of diffractive optical elements has become easier due to the development of lithography techniques such as direct laser writing, photo lithography, and electron beam lithography. In this paper, we improve the results from previous research and propose a new methodology to design and fabricate advanced binary diffractive optical elements that achieve a square focal spot independently, reducing reliance on additional components. By integrating a binary square zone plate with an axicon zone plate of the same scale, we employ machine learning for laser path optimization and direct laser lithography for manufacturing. This streamlined approach enhances simplicity, accuracy, efficiency, and cost effectiveness. Our upgraded binary diffractive optical elements are ready for real-world applications, marking a significant improvement in optical capabilities. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

34 pages, 6142 KB  
Review
Grain Boundary Engineering for High-Mobility Organic Semiconductors
by Zhengran He, Kyeiwaa Asare-Yeboah and Sheng Bi
Electronics 2025, 14(15), 3042; https://doi.org/10.3390/electronics14153042 - 30 Jul 2025
Cited by 1 | Viewed by 385
Abstract
Grain boundaries are among the most influential structural features that control the charge transport in polycrystalline organic semiconductors. Acting as both charge trapping sites and electrostatic barriers, they disrupt molecular packing and introduce energetic disorder, thereby limiting carrier mobility, increasing threshold voltage, and [...] Read more.
Grain boundaries are among the most influential structural features that control the charge transport in polycrystalline organic semiconductors. Acting as both charge trapping sites and electrostatic barriers, they disrupt molecular packing and introduce energetic disorder, thereby limiting carrier mobility, increasing threshold voltage, and degrading the stability of organic thin-film transistors (OTFTs). This review presents a detailed discussion of grain boundary formation, their impact on charge transport, and experimental strategies for engineering their structure and distribution across several high-mobility small-molecule semiconductors, including pentacene, TIPS pentacene, diF-TES-ADT, and rubrene. We explore grain boundary engineering approaches through solvent design, polymer additives, and external alignment methods that modulate crystallization dynamics and domain morphology. Then various case studies are discussed to demonstrate that optimized processing can yield larger, well-aligned grains with reduced boundary effects, leading to great mobility enhancements and improved device stability. By offering insights from structural characterization, device physics, and materials processing, this review outlines key directions for grain boundary control, which is essential for advancing the performance and stability of organic electronic devices. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Materials)
Show Figures

Figure 1

17 pages, 3396 KB  
Article
Morphological Regulation of Bi5O7I for Enhanced Efficiency of Rhodamine B Degradation Under Visible-Light
by Xi Yang, Jiahuali Lu, Lei Zhou, Qin Wang, Fan Wu, Yuwei Pan, Ming Zhang and Guangyu Wu
Catalysts 2025, 15(8), 714; https://doi.org/10.3390/catal15080714 - 26 Jul 2025
Viewed by 464
Abstract
Photocatalysis is considered to be a very promising method for the degradation of organic matter, because its process of degrading organic matter is safe. However, some problems such as weak absorption of visible light and electronic-hole recombination easily are obviously drawbacks. In this [...] Read more.
Photocatalysis is considered to be a very promising method for the degradation of organic matter, because its process of degrading organic matter is safe. However, some problems such as weak absorption of visible light and electronic-hole recombination easily are obviously drawbacks. In this paper, three different morphologies of Bi5O7I (nanoball, nanosheet, and nanotube) were successfully prepared by solvothermal method, which was used for the degradation of Rhodamine B (RhB). Comparing the photocatalytic effect of three different morphologies and concluding that the optimal morphology was the Bi5O7I nanoball (97.8% RhB degradation within 100 min), which was analysed by the characterisation tests. Free radical trapping experiments were tested, which revealed that the main roles in the degradation process were singlet oxygen (1O2) and holes (h+). The degradation pathways of RhB were analyzed in detail. The photo/electrochemical parts of the three materials were analysed and explained the degradation mechanism of RhB degradation. This investigate provides a very valuable guide for the development of multiple morphologies of bismuth-based photocatalysts for removing organic dyes in aquatic environment. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

13 pages, 2686 KB  
Article
Synergistic Energy Level Alignment and Light-Trapping Engineering for Optimized Perovskite Solar Cells
by Li Liu, Wenfeng Liu, Qiyu Liu, Yongheng Chen, Xing Yang, Yong Zhang and Zao Yi
Coatings 2025, 15(7), 856; https://doi.org/10.3390/coatings15070856 - 20 Jul 2025
Cited by 2 | Viewed by 463
Abstract
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of [...] Read more.
Perovskite solar cells (PSCs) leverage the exceptional photoelectric properties of perovskite materials, yet interfacial energy level mismatches limit carrier extraction efficiency. In this work, energy level alignment was exploited to reduce the charge transport barrier, which can be conducive to the transmission of photo-generated carriers and reduce the probability of electron–hole recombination. We designed a dual-transition perovskite solar cell (PSC) with the structure of FTO/TiO2/Nb2O5/CH3NH3PbI3/MoO3/Spiro-OMeTAD/Au by finite element analysis methods. Compared with the pristine device (FTO/TiO2/CH3NH3PbI3/Spiro-OMeTAD/Au), the open-circuit voltage of the optimized cell increases from 0.98 V to 1.06 V. Furthermore, the design of a circular platform light-trapping structure makes up for the light loss caused by the transition at the interface. The short-circuit current density of the optimized device increases from 19.81 mA/cm2 to 20.36 mA/cm2, and the champion device’s power conversion efficiency (PCE) reaches 17.83%, which is an 18.47% improvement over the planar device. This model provides new insight for the optimization of perovskite devices. Full article
Show Figures

Figure 1

22 pages, 10488 KB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 1299
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

20 pages, 24228 KB  
Article
Surface Treatments on Cobalt–Chromium Alloys for Layering Ceramic Paint Coatings in Dental Prosthetics
by Willi-Andrei Uriciuc, Maria Suciu, Lucian Barbu-Tudoran, Adrian-Ioan Botean, Horea Florin Chicinaș, Miruna-Andreea Anghel, Cătălin Ovidiu Popa and Aranka Ilea
Coatings 2025, 15(7), 833; https://doi.org/10.3390/coatings15070833 - 17 Jul 2025
Viewed by 882
Abstract
Ceramic dental prosthetics with internal metal structures are made from a cobalt–chromium alloy that is coated with ceramic. This study aims to validate surface treatments for the metal that enhance the adhesion of the ceramic coating under masticatory forces. Surface conditioning is performed [...] Read more.
Ceramic dental prosthetics with internal metal structures are made from a cobalt–chromium alloy that is coated with ceramic. This study aims to validate surface treatments for the metal that enhance the adhesion of the ceramic coating under masticatory forces. Surface conditioning is performed using mechanical methods, like sandblasting (SB), and thermal methods, such as oxidation (O). The ceramic coating is applied to the metal component following the conditioning process, which can be conducted using either a single method or a combination of methods. Each conditioned sample undergoes characterization through various techniques, including drop shape analysis (DSA), scanning electron microscopy (SEM), X-ray diffraction (EDX), and atomic force microscopy (AFM). After the ceramic coating is applied and subjected to thermal sintering, the metal–ceramic samples are mechanically tested to assess the adhesion of the ceramic layer. The research findings, illustrated by scanning electron microscopy (SEM) images of the metal structures’ surfaces, indicate that alloy powder particles ranging from 10 to 50 µm were either adhered to the surfaces or present as discrete dots. Particles that exceed the initial design specifications of the structure can be smoothed out using sandblasting or mechanical finishing techniques. The energy-dispersive spectroscopy (EDS) results show that, after sandblasting, fragments of aluminum oxide remain trapped on the surface of the metal structures. These remnants are considered impurities, which can negatively impact the adhesion of the ceramic to the metal substrate. The analysis focuses on the exfoliation of the ceramic material from the deformed metal surfaces. The results emphasize the significant role of the sandblasting method and the micro-topography it creates, as well as the importance of the oxidation temperature in the treatment process. Drawing on 25 years of experience in dental prosthetics and the findings from this study, this publication aims to serve as a guide for applying the ceramic bonding layer to metal surfaces and for conditioning methods. These practices are essential for enhancing the adhesion of ceramic materials to metal substrates. Full article
(This article belongs to the Special Issue Corrosion and Corrosion Prevention in Extreme Environments)
Show Figures

Figure 1

11 pages, 2045 KB  
Article
Modulating the Afterglow Time of Mn2+ Doped Metal Halides and Applications in Advanced Optical Information Encryption
by Yu-Lin Hu, Yi-Lin Zhu, Shi-Ying Gu, Jia-Qing Xu, Zhi-Xing Gan and Chuan-Guo Shi
Nanomaterials 2025, 15(13), 1002; https://doi.org/10.3390/nano15131002 - 28 Jun 2025
Viewed by 350
Abstract
Mn2+ doped metal halide that can be grown by a facile solution reaction is a promising low-cost afterglow material. However, the afterglow mechanism is still elusive. Using a facile method to modulate afterglow time is still to be explored. In this work, [...] Read more.
Mn2+ doped metal halide that can be grown by a facile solution reaction is a promising low-cost afterglow material. However, the afterglow mechanism is still elusive. Using a facile method to modulate afterglow time is still to be explored. In this work, we reveal that the afterglow of Cs2Na0.2Ag0.8InCl6:y%Mn can be significantly modulated by Mn2+ concentration. We propose that replacing Ag+ with Mn2+ leads to the appearance of interstitial Ag+, which temporally store the photogenerated electrons (Ag++eAg). After the removal of excitation, the gradual recombination between residual holes and stored electrons [h++Ag++ehν+Ag+] explains the afterglow. However, excessive Mn2+ doping at interstitial sites does not bring about more interstitial Ag+ but instead introduces nonradiative traps. Therefore, as the Mn2+ concentration increases, the afterglow time increases from 350 s to 530 s and then decreases to 230 s, reaching a maximum at y = 40. Thus, a dynamic optical information storage and encryption application is demonstrated based on the modulated afterglow time. Full article
(This article belongs to the Special Issue Photofunctional Nanomaterials and Nanostructure, Second Edition)
Show Figures

Figure 1

17 pages, 23135 KB  
Article
The Pore Evolution and Pattern of Sweet-Spot Reservoir Development of the Ultra-Tight Sandstone in the Second Member of the Xujiahe Formation in the Eastern Slope of the Western Sichuan Depression
by Bingjie Cheng, Xin Luo, Zhiqiang Qiu, Cheng Xie, Yuanhua Qing, Zhengxiang Lv, Zheyuan Liao, Yanjun Liu and Feng Li
Minerals 2025, 15(7), 681; https://doi.org/10.3390/min15070681 - 25 Jun 2025
Viewed by 298
Abstract
In order to clarify the pore evolution and coupling characteristics with hydrocarbon charging in the deep-buried ultra-tight sandstone reservoirs of the second member of Xujiahe Formation (hereinafter referred to as the Xu 2 Member) on the eastern slope of the Western Sichuan Depression, [...] Read more.
In order to clarify the pore evolution and coupling characteristics with hydrocarbon charging in the deep-buried ultra-tight sandstone reservoirs of the second member of Xujiahe Formation (hereinafter referred to as the Xu 2 Member) on the eastern slope of the Western Sichuan Depression, this study integrates burial history and thermal history with analytical methods including core observation, cast thin section analysis, scanning electron microscopy, carbon-oxygen isotope analysis, and fluid inclusion homogenization temperature measurements. The Xu 2 Member reservoirs are predominantly composed of lithic sandstones and quartz-rich sandstones, with authigenic quartz and carbonates as the main cementing materials. The reservoir spaces are dominated by intragranular dissolution pores. The timing of reservoir densification varies among different submembers. The upper submember underwent compaction during the Middle-Late Jurassic period due to the high ductility of mudstone clasts and other compaction-resistant components. The middle-lower submembers experienced densification in the Late Jurassic period. Late Cretaceous tectonic uplift induced fracture development, which enhanced dissolution in the middle-lower submembers, increasing reservoir porosity to approximately 5%. Two distinct phases of hydrocarbon charging are identified in the Xu 2 Member. The earlier densification of the upper submember created unfavorable conditions for hydrocarbon accumulation. In contrast, the middle-lower submembers received hydrocarbon charging prior to reservoir densification, providing favorable conditions for natural gas enrichment and reservoir formation. Three sweet-spot reservoir development patterns are recognized: paleo-structural trap + (internal source rock) + source-connected fracture assemblage type, paleo-structural trap + internal source rock + late-stage fracture assemblage type, and paleo-structural trap + (internal source rock) + source-connected fracture + late-stage fracture assemblage type. Full article
(This article belongs to the Special Issue Deep Sandstone Reservoirs Characterization)
Show Figures

Figure 1

13 pages, 2607 KB  
Article
Defect-Induced Modulation of Electronic and Optical Properties in Monolayer CsPb2Br5: Implications for Fiber-Optic Sensing Applications
by Meiqi An, Wenxuan Fan, Shengsheng Wei and Junqiang Wang
Photonics 2025, 12(7), 638; https://doi.org/10.3390/photonics12070638 - 24 Jun 2025
Viewed by 374
Abstract
Two−dimensional halide perovskites have emerged as promising optoelectronic materials, yet the uncontrolled defect formation during synthesis remains a critical challenge for their practical applications. In this work, we systematically investigate the structural, electronic, and optical properties of monolayer CsPb2Br5 in [...] Read more.
Two−dimensional halide perovskites have emerged as promising optoelectronic materials, yet the uncontrolled defect formation during synthesis remains a critical challenge for their practical applications. In this work, we systematically investigate the structural, electronic, and optical properties of monolayer CsPb2Br5 in two representative configurations: ds−CsPb2Br5 and ss−CsPb2Br5. By introducing four types of vacancy defects—VBr−c, VBr−b, VCs, and VPb, we analyze their structural distortions, formation energies, and their impact on band structure and optical response using first−principles calculations. Our results reveal that Br−related vacancies are energetically most favorable and induce shallow defect levels and absorption edge redshifts in the ds−CsPb2Br5 structure, while in the ss−CsPb2Br5 configuration, only VBr−b forms a defect state. VPb and VCs lead to significant sub−bandgap absorption enhancement and dielectric response due to band−edge reorganization, despite not introducing in−gap states. Notably, VBr−c exhibits distinct infrared absorption in the ss−CsPb2Br5 model without electronic trap formation. These findings underscore the critical influence of defect type and slab asymmetry on the optoelectronic behavior of CsPb2Br5, providing guidance for defect engineering in perovskite−based optoelectronic applications. Full article
(This article belongs to the Special Issue Advanced Fiber Laser Technology and Its Application)
Show Figures

Figure 1

13 pages, 2287 KB  
Article
Damage Mechanism Analysis of High Field Stress on Cascode GaN HEMT Power Devices
by Shuo Su, Yanrong Cao, Weiwei Zhang, Xinxiang Zhang, Chuan Chen, Linshan Wu, Zhixian Zhang, Miaofen Li, Ling Lv, Xuefeng Zheng, Wenchao Tian, Xiaohua Ma and Yue Hao
Micromachines 2025, 16(7), 729; https://doi.org/10.3390/mi16070729 - 22 Jun 2025
Viewed by 2671
Abstract
A series of problems, such as material damage and charge trap, can be caused when GaN HEMT power devices are subjected to high field stress in the off-state. The reliability of GaN HEMT power devices affects the safe operation of the entire power [...] Read more.
A series of problems, such as material damage and charge trap, can be caused when GaN HEMT power devices are subjected to high field stress in the off-state. The reliability of GaN HEMT power devices affects the safe operation of the entire power electronic system and seriously threatens the stability of the equipment. Therefore, it is particularly important to study the damage mechanism of GaN HEMT power devices under high field conditions. This work studies the degradation of Cascode GaN HEMT power devices under off-state high-field stress and analyzes the related damage mechanism. It is found that the high field stress in the off-state will generate a positive charge trap in the oxide layer of the MOS device in the cascade structure. Moreover, defects occur in the barrier layer and buffer layer of GaN HEMT devices, and the threshold voltage of Cascode GaN HEMT power devices is negatively shifted, and the transconductance is reduced. This study provides an important theoretical basis for the reliability of GaN HEMT power devices in complex and harsh environments. Full article
Show Figures

Figure 1

15 pages, 1742 KB  
Article
Modeling of Phototransistors Based on Quasi-Two-Dimensional Transition Metal Dichalcogenides
by Sergey D. Lavrov and Andrey A. Guskov
Modelling 2025, 6(2), 47; https://doi.org/10.3390/modelling6020047 - 11 Jun 2025
Viewed by 655
Abstract
This study introduces a comprehensive physical modeling framework for phototransistors based on quasi-two-dimensional transition metal dichalcogenides, with a particular emphasis on MoS2. By integrating electromagnetic simulations of optical absorption with semiconductor transport calculations, the model captures both dark and photocurrent behaviors [...] Read more.
This study introduces a comprehensive physical modeling framework for phototransistors based on quasi-two-dimensional transition metal dichalcogenides, with a particular emphasis on MoS2. By integrating electromagnetic simulations of optical absorption with semiconductor transport calculations, the model captures both dark and photocurrent behaviors across diverse operating conditions. For 20 nm MoS2 films, the model reproduces the experimental transfer characteristics with a threshold voltage accuracy better than 0.1 V and achieves quantitative agreement with photocurrent and dark current values across the full range of gate voltages, with the worst-case deviation not exceeding a factor of seven. Additionally, the model captures a three-order-of-magnitude increase in the photocurrent as the MoS2 thickness varies from 4 nm to 40 nm, reflecting the strong thickness dependence observed experimentally. A key insight from the study is the critical role of defect states, including traps, impurities, and interfacial imperfections, in governing the dark current and photocurrent under channel pinch-off conditions (Vg < −1.0 V). The model successfully replicates the qualitative trends observed in experimental devices, highlighting how small variations in film thickness, doping levels, and contact geometries can significantly influence device performance, in agreement with published experimental data. These findings underscore the importance of precise defect characterization and optimization of material and structural parameters for 2D-material-based phototransistors. The proposed modeling framework serves as a powerful tool for the design and optimization of next-generation phototransistors, facilitating the integration of 2D materials into practical electronic and optoelectronic applications. Full article
Show Figures

Figure 1

63 pages, 12842 KB  
Review
Advances in One-Dimensional Metal Sulfide Nanostructure-Based Photodetectors with Different Compositions
by Jing Chen, Mingxuan Li, Haowei Lin, Chenchen Zhou, Wenbo Chen, Zhenling Wang and Huiying Li
J. Compos. Sci. 2025, 9(6), 262; https://doi.org/10.3390/jcs9060262 - 26 May 2025
Cited by 1 | Viewed by 1202
Abstract
One-dimensional (1D) nanomaterials have attracted considerable attention in the fabrication of nano-scale optoelectronic devices owing to their large specific surface areas, high surface-to-volume ratios, and directional electron transport channels. Compared to 1D metal oxide nanostructures, 1D metal sulfides have emerged as promising candidates [...] Read more.
One-dimensional (1D) nanomaterials have attracted considerable attention in the fabrication of nano-scale optoelectronic devices owing to their large specific surface areas, high surface-to-volume ratios, and directional electron transport channels. Compared to 1D metal oxide nanostructures, 1D metal sulfides have emerged as promising candidates for high-efficiency photodetectors due to their abundant surface vacancies and trap states, which facilitate oxygen adsorption and dissociation on their surfaces, thereby suppressing intrinsic carrier recombination while achieving enhanced optoelectronic performance. This review focuses on recent advancements in the performance of photodetectors fabricated using 1D binary metal sulfides as primary photosensitive layers, including nanowires, nanorods, nanotubes, and their heterostructures. Initially, the working principles of photodetectors are outlined, along with the key parameters and device types that influence their performance. Subsequently, the synthesis methods, device fabrication, and photoelectric properties of several extensively studied 1D metal sulfides and their composites, such as ZnS, CdS, SnS, Bi2S3, Sb2S3, WS2, and SnS2, are examined. Additionally, the current research status of 1D nanostructures of MoS2, TiS3, ReS2, and In2S3, which are predominantly utilized as 2D materials, is explored and summarized. For systematic performance evaluation, standardized metrics encompassing responsivity, detectivity, external quantum efficiency, and response speed are comprehensively tabulated in dedicated sub-sections. The review culminates in proposing targeted research trajectories for advancing photodetection systems employing 1D binary metal sulfides. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

16 pages, 4820 KB  
Article
Triple-Band Warm White-Light Emission from Type II Band-Aligned Aggregation-Induced Enhanced Emission Organic Cation-Incorporated Two-Dimensional Lead Iodide Perovskite
by Almaz R. Beisenbayev, Igor Ivanov-Prianichnikov, Anatoly Peshkov, Tangsulu Adil, Davit Hayrapetyan and Chang-Keun Lim
Int. J. Mol. Sci. 2025, 26(11), 5054; https://doi.org/10.3390/ijms26115054 - 24 May 2025
Viewed by 473
Abstract
Single-phase white-light-emitting materials, particularly 2D hybrid organic–inorganic halide perovskites, have garnered significant attention due to their strong electron–phonon interactions, which lead to broad luminescence and a notable Stokes shift resulting from self-trapped exciton recombination. However, 2D lead iodide perovskites typically display these characteristics [...] Read more.
Single-phase white-light-emitting materials, particularly 2D hybrid organic–inorganic halide perovskites, have garnered significant attention due to their strong electron–phonon interactions, which lead to broad luminescence and a notable Stokes shift resulting from self-trapped exciton recombination. However, 2D lead iodide perovskites typically display these characteristics poorly, restricting their efficiency as white-light emitters. This study presents a 2D lead iodide perovskite that incorporates a fluorinated π-conjugated aggregation-induced enhanced emission luminophore, FPCSA, as a bulky organic cation to create a quasi-2D perovskite. The FPCSA cation establishes a Type II energy level alignment with the lead iodide layer in the 2D perovskite, and a significant energy offset effectively suppresses charge transfer, enabling independent emission from both the organic and inorganic layers while facilitating self-trapped exciton formation. Under 315 nm UV excitation, this material demonstrates warm white-light emission with RGB triple-band photoluminescence stemming from the electronically decoupled FPCSA and perovskite layers. These findings provide a promising new method for designing efficient single-phase white-light-emitting materials for optoelectronic applications. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

13 pages, 4928 KB  
Article
Research on Surface Charge Migration Characteristics of Two-Layered Polymer Film Based on Bipolar Charge Transport Model
by Yuqi Liu and Xinjing Cai
Energies 2025, 18(10), 2552; https://doi.org/10.3390/en18102552 - 14 May 2025
Viewed by 415
Abstract
A cable accessory is a critical component in constructing high-voltage direct current (HVDC) power grids, and it is typically composed of multiple materials. Due to the discontinuity of the insulation medium, it is prone to failure. This study focuses on a two-layered composite [...] Read more.
A cable accessory is a critical component in constructing high-voltage direct current (HVDC) power grids, and it is typically composed of multiple materials. Due to the discontinuity of the insulation medium, it is prone to failure. This study focuses on a two-layered composite insulation medium simplified from HVDC cable accessories, and its surface potential decay (SPD) characteristics are related to the space charge transport characteristics. Previous studies on surface charge migration have been limited and primarily focused on single-layered insulation materials. However, the actual insulation structure is mostly composite. Therefore, it is of great practical significance to explore the surface charge migration characteristics of two-layered structures. This study presents a bipolar charge transport model after pre-depositing surface charges to investigate the surface charge migration characteristics of an ethylene–propylene–diene monomer (EPDM)/polyethylene (PE) two-layered polymer film. The effects of charge injection and trap related to nano-doping, local defects, and thermal aging on the surface potential decay (SPD) and space charge distribution in EPDM/PE were analyzed. The results show that the increase in the electron injection barrier slows surface charge dissipation and inhibits charge accumulation at the interface. An increase in the trapping coefficient leads to a higher surface potential in the stable state and a greater space charge density. During the early depolarization stage, the SPD rate is weakly dependent on the trap depth, with charge migration primarily governed by the external electric field. Full article
Show Figures

Figure 1

Back to TopTop