Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (218)

Search Parameters:
Keywords = electronic redistribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 10376 KB  
Article
Assessment of the Corrosion Rate of Maraging Steel M350 Produced by Additive Manufacturing Using the Laser Powder-Bed Fusion Method and Surface Finishing Techniques
by Krzysztof Żaba, Martyna Szczepańska, Maciej Balcerzak, Sławomir Kac and Piotr Żabinski
Materials 2025, 18(17), 4098; https://doi.org/10.3390/ma18174098 - 1 Sep 2025
Viewed by 173
Abstract
The objective of this study was to investigate the influence of additive manufacturing parameters, specifically using laser powder bed fusion (LPBF), and surface finishing methods on the corrosion rate and behavior of maraging steel M350 components. Samples were fabricated via LPBF employing varying [...] Read more.
The objective of this study was to investigate the influence of additive manufacturing parameters, specifically using laser powder bed fusion (LPBF), and surface finishing methods on the corrosion rate and behavior of maraging steel M350 components. Samples were fabricated via LPBF employing varying laser powers (80 W, 100 W, and 120 W) and subsequently subjected to mechanical polishing. Corrosion performance was evaluated through 450 h immersion tests in a 3.5% aqueous NaCl solution and potentiodynamic polarization measurements. Microstructural characterization and surface topography assessments were performed using optical microscopy, scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS), and profilometry. The results demonstrate a strong influence of temperature, manufacturing parameters, and polishing on corrosion processes. At room temperature, higher laser power reduced corrosion rates due to better powder consolidation and lower porosity, whereas at 45 °C, the trend reversed, with the highest corrosion rates observed for samples produced at 120 W. Mechanical polishing significantly reduced surface roughness (Ra from ~7–10 μm to ~0.6–1 μm) but did not improve corrosion resistance; in some cases, it increased corrosion rates, likely due to stress redistribution and exposure of subsurface defects. Potentiodynamic tests confirmed that higher laser power reduced corrosion current density for unpolished surfaces, but polishing increased current density at 80 W more than twofold. The findings indicate that optimizing LPBF process parameters is crucial for improving the corrosion resistance of M350 steel. High laser power (≥120 W) is beneficial at ambient conditions, while lower powers (80–100 W) perform better at elevated temperatures. Mechanical polishing alone is insufficient for enhancing resistance and should be combined with stress-relief and porosity-reduction treatments. These results provide guidelines for tailoring additive manufacturing strategies to ensure reliable performance of M350 steel in chloride-rich environments. Full article
Show Figures

Figure 1

11 pages, 3841 KB  
Article
Fluoride-Mediated Synthesis of Co(OH)F and Electronic Structure Optimization for Enhanced Water Oxidation Performance
by Qianqian Dong, Yuhao Li, Jihao Liu, Yaru Wen, Junjie Wang, Haining Mo, Qianqian Jin, Shaohui Zhang and Xiong He
Molecules 2025, 30(17), 3529; https://doi.org/10.3390/molecules30173529 - 29 Aug 2025
Viewed by 243
Abstract
This study deciphers the anionic modulation mechanism of halide ions (F/Cl) in cobalt-based hydroxides for oxygen evolution reaction (OER). Phase-pure Co(OH)2, Co(OH)F, and Co2(OH)3Cl were fabricated via substrate-independent hydrothermal synthesis to eliminate conductive [...] Read more.
This study deciphers the anionic modulation mechanism of halide ions (F/Cl) in cobalt-based hydroxides for oxygen evolution reaction (OER). Phase-pure Co(OH)2, Co(OH)F, and Co2(OH)3Cl were fabricated via substrate-independent hydrothermal synthesis to eliminate conductive support interference. Electrocatalytic evaluation on glassy carbon electrodes demonstrates fluoride’s superior regulatory capability over chloride. X-ray photoelectron spectroscopy (XPS) analyses revealed that F incorporation induces charge redistribution through Co → F electron transfer, optimizing the electronic configuration via ligand effects. F incorporation simultaneously guided the anisotropic growth of 1D nanorods and reduced surface energy, thereby enhancing the wettability of Co(OH)F. The engineered Co(OH)F catalyst delivers exceptional OER performance: 318 mV overpotential at 10 mA/cm2 in 1 M KOH with 94% current retention over 20 h operation. This study provides a synthetic strategy for preparing pure-phase Co(OH)F and compares halide ions’ effects on enhancing OER activity through electronic structure modulation and morphological control of basic cobalt salts. Full article
Show Figures

Figure 1

27 pages, 9202 KB  
Article
Enhancement in Corrosion and Wear Resistance of FeCoNiCrAl High-Entropy Alloy Coating Through Dual Heat Treatment with 3:1 N2/H2 Atmosphere
by Miqi Wang, Buxiang Li, Chi He, Jing Sun, Liyuan Li, Aihui Liu and Fang Shi
Coatings 2025, 15(9), 986; https://doi.org/10.3390/coatings15090986 - 23 Aug 2025
Viewed by 370
Abstract
This work investigated the effect of high-nitrogen/low-hydrogen mixed atmosphere heat treatment on the electrochemical corrosion and wear resistance of plasma-sprayed FeCoNiCrAl high-entropy alloy (HEA) coatings. The HEA coatings were sequentially prepared through annealing at 400, 600, and 800 °C for 6 h. The [...] Read more.
This work investigated the effect of high-nitrogen/low-hydrogen mixed atmosphere heat treatment on the electrochemical corrosion and wear resistance of plasma-sprayed FeCoNiCrAl high-entropy alloy (HEA) coatings. The HEA coatings were sequentially prepared through annealing at 400, 600, and 800 °C for 6 h. The heat treatment method was conducted in a vacuum tube furnace under 0.1 MPa total pressure, with gas flow rates set to 300 sccm N2 and 100 sccm H2. The XRD results indicated that the as-deposited coating exhibited α-Fe (BBC) and Al0.9Ni4.22 (FCC) phases, with an Fe0.64N0.36 nitride phase generated after 800 °C annealing. The electrochemical measurements suggested that an exceptional corrosion performance with higher thicknesses of passive film and double-layer capacitance can be detected based on the point defect model (PDM) and effective capacitance model. Wear tests revealed that the friction coefficient at 800 °C decreased by 3.84% compared to that in the as-sprayed state due to the formation of a dense nitride layer. Molecular orbital theory pointed out that the formation of bonding molecular orbitals, resulting from the overlap of valence electron orbitals of different atomic species in the HEA coating system, stabilized the structure by promoting atomic interactions. The wear mechanism associated with stress redistribution and energy balance from compositional synergy is proposed in this work. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

11 pages, 2034 KB  
Article
Te Vacancy Defect Engineering on Fe3GeTe2 (001) Basal Planes for Enhanced Oxygen Evolution Reaction: A First-Principles Study
by Yunjie Gao, Wei Su, Yuan Qiu, Dan Shan and Jing Pan
Nanomaterials 2025, 15(16), 1272; https://doi.org/10.3390/nano15161272 - 18 Aug 2025
Viewed by 399
Abstract
Photocatalytic water splitting for hydrogen production is an attractive renewable energy technology, but the oxygen evolution reaction (OER) at the anode is severely constrained by a high overpotential. The two-dimensional vdW ferromagnetic material Fe3GeTe2, with its good stability and [...] Read more.
Photocatalytic water splitting for hydrogen production is an attractive renewable energy technology, but the oxygen evolution reaction (OER) at the anode is severely constrained by a high overpotential. The two-dimensional vdW ferromagnetic material Fe3GeTe2, with its good stability and excellent metallic conductivity, has potential as an electrocatalyst, but its sluggish surface catalytic reactivity limits its large-scale application. In this work, we adapted DFT calculations to introduce surface Te vacancies to boost OER performance of the Fe3GeTe2 (001) surface. Te vacancies induce the charge redistribution of active sites, optimizing the adsorption and desorption of oxygen-containing intermediates. Consequently, the overpotential of the rate-determining step in the OER process of Fe3GeTe2 is reduced to 0.34 V, bringing the performance close to that of the benchmark IrO2 catalyst (0.56 V). Notably, the vacancies’ concentration and configuration significantly modify the electronic structure and thus influence OER activity. This study provides important theoretical evidence for defect engineering in OER catalysis and offers new design strategies for developing efficient and stable electrocatalysts for sustainable energy conversion. Full article
(This article belongs to the Topic Electrocatalytic Advances for Sustainable Energy)
Show Figures

Graphical abstract

16 pages, 7190 KB  
Article
The Influences of π-Conjugated Aliphatic Chains in Ionic Liquids of Antimony Pentachloride with Pyridine Imidazolium Hybrid Salts: A DFT Study
by Manuel Luque-Román, Jesús Baldenebro-López, José J. Campos-Gaxiola, Adriana Cruz-Enríquez, Carlos A. Peñuelas, Alberto Báez-Castro, Rody Soto-Rojo, Tomás Delgado-Montiel, Samuel Soto-Acosta and Daniel Glossman-Mitnik
Inorganics 2025, 13(8), 269; https://doi.org/10.3390/inorganics13080269 - 16 Aug 2025
Viewed by 418
Abstract
A theoretical study was performed using Density Functional Theory (DFT) to investigate the impact of π-conjugated aliphatic chain growth on the chemical and electronic properties of hybrid antimony pentachloride salts with pyridine- and imidazolium-based cations. Ten molecular systems were optimized to determine their [...] Read more.
A theoretical study was performed using Density Functional Theory (DFT) to investigate the impact of π-conjugated aliphatic chain growth on the chemical and electronic properties of hybrid antimony pentachloride salts with pyridine- and imidazolium-based cations. Ten molecular systems were optimized to determine their ground-state geometry. Using conceptual DFT, parameters such as chemical hardness, electrophilicity index, electroaccepting power, and electrodonating power were studied. The energy gap was obtained for all ten molecular systems, ranging from −4.038 to −3.706 eV as the chain length increased, favoring intramolecular charge transfer in long-chain systems. Natural bond orbital (NBO) analysis showed charge redistribution between anion and cation as the π-conjugated aliphatic chain grows. At the same time, non-covalent interaction (NCI) studies revealed key attractions and repulsive interactions, such as H···Cl and Cl···π, which are modulated by chain length. These results demonstrate that the structural modification of the cation allows for the fine-tuning of the electronic properties of ionic liquids (ILs). Increasing the conjugated aliphatic chain length was observed to reduce the chemical hardness and electrophilicity index, as well as affecting the Egap of the molecular systems. This work demonstrates that there is an optimal size for the inorganic ion, allowing it to form an optimal IL compound. Full article
(This article belongs to the Special Issue Advances in Metal Ion Research and Applications)
Show Figures

Figure 1

13 pages, 7489 KB  
Article
Interface Charge Transfer Engineering in NiFe Layered Double Hydroxide-Cs0.32WO3 Heterostructures for Enhanced Oxygen Evolution Reaction
by Ze Wang, Xinyu Song, Yue Liu, Zhiwang Sun, Xin Zhang, Yuanhao Wang and Shifeng Wang
Nanomaterials 2025, 15(16), 1255; https://doi.org/10.3390/nano15161255 - 14 Aug 2025
Viewed by 455
Abstract
Electrochemical water splitting for hydrogen production is considered a key pathway for achieving sustainable energy conversion. However, the sluggish reaction kinetics of the oxygen evolution reaction (OER) and high overpotentials severely hinder the large-scale application of water electrolysis technology. Nickel–iron layered double hydroxide [...] Read more.
Electrochemical water splitting for hydrogen production is considered a key pathway for achieving sustainable energy conversion. However, the sluggish reaction kinetics of the oxygen evolution reaction (OER) and high overpotentials severely hinder the large-scale application of water electrolysis technology. Nickel–iron layered double hydroxide (NiFe-LDH) has gained attention as a promising non-precious metal OER catalyst due to its abundant active sites and good intrinsic activity. However, its relatively low conductivity and charge transfer efficiency limit the improvement of catalytic performance. Therefore, this study used a simple hydrothermal method to generate a NiFe-LDH/Cs0.32WO3 heterojunction composite catalyst, relying on the excellent electronic conductivity of Cs0.32WO3 to improve overall charge transfer efficiency. According to electrochemical testing results, the modified NiFe-LDH/Cs0.32WO3-20 mg achieved a low overpotential of 349 mV at a current density of 10 mA cm−2, a Tafel slope of 67.0 mV dec−1, and a charge transfer resistance of 65.1 Ω, which represent decreases of 39 mV, 23.1%, and 40%, respectively, compared to pure NiFe-LDH. The key to performance improvement lies in the tightly bonded heterojunction interface between Cs0.32WO3 and NiFe-LDH. X-ray photoelectron spectroscopy (XPS) shows a distinct interfacial charge transfer phenomenon, with a notable negative shift of the W4f peak (0.85 eV), indicating the directional transfer of electrons from Cs0.32WO3 to NiFe-LDH. Under the influence of the built-in electric field within the heterojunction, this interfacial charge redistribution improved the electronic structure of NiFe-LDH, increased the proportion of high-valent metal ions, and significantly enhanced the OER reaction kinetics. This study provides new insights for the preparation of efficient heterojunction electrocatalysts. Full article
Show Figures

Figure 1

13 pages, 3474 KB  
Article
Energy Dispersion Relationship and Hofstadter Butterfly of Triangle and Rectangular Moiré Patterns in Tight Binding States
by Ziheng Li, Jiangwei Liu, Xiaoxiao Zheng, Yu Sun, Nan Han, Liang Wang, Muyang Li, Lei Han, Safia Khan, S. Hassan M. Jafri, Klaus Leifer, Yafei Ning and Hu Li
Physics 2025, 7(3), 34; https://doi.org/10.3390/physics7030034 - 5 Aug 2025
Viewed by 342
Abstract
Herein, the energy dispersion relationship and the density of states of triangular and rectangular moiré patterns are investigated using a tight binding model. Their characteristics of Hofstadter butterflies under different magnetic fields are also examined. The results indicate that, by analyzing different moiré [...] Read more.
Herein, the energy dispersion relationship and the density of states of triangular and rectangular moiré patterns are investigated using a tight binding model. Their characteristics of Hofstadter butterflies under different magnetic fields are also examined. The results indicate that, by analyzing different moiré superlattices, Hofstadter butterflies arising from different moiré pattern structures are obtained, exhibiting considerable fractal characteristics and self-similarities. Moreover, it is also observed that under an alternating magnetic field, the redistribution of electronic states leads to a significant change in the density of states curve, and the Van Hove peak changes with the increase in magnetic field intensity. This study enriches the understanding of the electronic behavior of moiré systems, but it also provides multiple potential application directions for future technological development. Full article
(This article belongs to the Section Statistical Physics and Nonlinear Phenomena)
Show Figures

Figure 1

10 pages, 1555 KB  
Article
Lithium-Decorated C26 Fullerene in DFT Investigation: Tuning Electronic Structures for Enhanced Hydrogen Storage
by Jiangang Yu, Lili Liu, Quansheng Li, Zhidong Xu, Yujia Shi and Cheng Lei
Molecules 2025, 30(15), 3223; https://doi.org/10.3390/molecules30153223 - 31 Jul 2025
Viewed by 340
Abstract
Hydrogen energy holds immense potential to address the global energy crisis and environmental challenges. However, its large-scale application is severely hindered by the lack of efficient hydrogen storage materials. This study systematically investigates the H2 adsorption properties of intrinsic C26 fullerene [...] Read more.
Hydrogen energy holds immense potential to address the global energy crisis and environmental challenges. However, its large-scale application is severely hindered by the lack of efficient hydrogen storage materials. This study systematically investigates the H2 adsorption properties of intrinsic C26 fullerene and Li-decorated C26 fullerene using density functional theory (DFT) calculations. The results reveal that Li atoms preferentially bind to the H5-5 site of C26, driven by significant electron transfer (0.90 |e|) from Li to C26. This electron redistribution modulates the electronic structure of C26, as evidenced by projected density of states (PDOS) analysis, where the p orbitals of C atoms near the Fermi level undergo hybridization with Li orbitals, enhancing the electrostatic environment for H2 adsorption. For Li-decorated C26, the average adsorption energy and consecutive adsorption energy decrease as more H2 molecules are adsorbed, indicating a gradual weakening of adsorption strength and signifying a saturation limit of three H2 molecules. Charge density difference and PDOS analyses further demonstrate that H2 adsorption induces synergistic electron transfer from both Li (0.89 |e| loss) and H2 (0.01 |e| loss) to C26 (0.90 |e| gain), with orbital hybridization between H s orbitals, C p orbitals, and Li orbitals stabilizing the adsorbed system. This study aimed to provide a comprehensive understanding of the microscopic mechanism underlying Li-enhanced H2 adsorption on C26 fullerene and offer insights into the rational design of metal-decorated fullerene-based systems for efficient hydrogen storage. Full article
Show Figures

Graphical abstract

16 pages, 2707 KB  
Article
Ultrasound-Activated BiOI/Ti3C2 Heterojunctions in 3D-Printed Piezocatalytic Antibacterial Scaffolds for Infected Bone Defects
by Juntao Xie, Zihao Zhang, Zhiheng Yu, Bingxin Sun, Yingxin Yang, Guoyong Wang and Cijun Shuai
Materials 2025, 18(15), 3533; https://doi.org/10.3390/ma18153533 - 28 Jul 2025
Viewed by 419
Abstract
Piezocatalytic therapy (PCT) is a promising strategy for combating implant-associated infections due to its high tissue penetration depth and non-invasive nature. However, its catalytic efficiency remains limited by inefficient electron–hole separation. In this work, an ultrasound-responsive heterojunction (BiOI/Ti3C2) was [...] Read more.
Piezocatalytic therapy (PCT) is a promising strategy for combating implant-associated infections due to its high tissue penetration depth and non-invasive nature. However, its catalytic efficiency remains limited by inefficient electron–hole separation. In this work, an ultrasound-responsive heterojunction (BiOI/Ti3C2) was fabricated through in situ growth of bismuth iodide oxide on titanium carbide nanosheets. Subsequently, we integrated BiOI/Ti3C2 into poly(e-caprolactone) (PCL) scaffolds using selective laser sintering. The synergistic effect between BiOI and Ti3C2 significantly facilitated the redistribution of piezo-induced charges under ultrasound irradiation, effectively suppressing electron–hole recombination. Furthermore, abundant oxygen vacancies in BiOI/Ti3C2 provide more active sites for piezocatalytic reactions. Therefore, it enables ultrahigh reactive oxygen species (ROS) yields under ultrasound irradiation, achieving eradication rates of 98.87% for Escherichia coli (E. coli) and 98.51% for Staphylococcus aureus (S. aureus) within 10 minutes while maintaining cytocompatibility for potential tissue integration. This study provides a novel strategy for the utilization of ultrasound-responsive heterojunctions in efficient PCT therapy and bone regeneration. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

19 pages, 11950 KB  
Article
Enhancing Tensile Performance of Cemented Tailings Backfill Through 3D-Printed Polymer Lattices: Mechanical Properties and Microstructural Investigation
by Junzhou Huang, Lan Deng, Haotian Gao, Cai Wu, Juan Li and Daopei Zhu
Materials 2025, 18(14), 3314; https://doi.org/10.3390/ma18143314 - 14 Jul 2025
Viewed by 410
Abstract
This study presents an innovative solution to improve the mechanical performance of traditional cemented tailings backfill (CTB) by incorporating 3D-printed polymer lattice (3DPPL) reinforcements. We systematically investigated three distinct 3DPPL configurations (four-column FC, six-column SC, and cross-shaped CO) through comprehensive experimental methods including [...] Read more.
This study presents an innovative solution to improve the mechanical performance of traditional cemented tailings backfill (CTB) by incorporating 3D-printed polymer lattice (3DPPL) reinforcements. We systematically investigated three distinct 3DPPL configurations (four-column FC, six-column SC, and cross-shaped CO) through comprehensive experimental methods including Brazilian splitting tests, digital image correlation (DIC), and scanning electron microscopy (SEM). The results show that the 3DPPL reinforcement significantly enhances the CTB’s tensile properties, with the CO structure demonstrating the most substantial improvement—increasing the tensile strength by 85.6% (to 0.386 MPa) at a cement-to-tailings ratio of 1:8. The 3DPPL-modified CTB exhibited superior ductility and progressive failure characteristics, as evidenced by multi-stage load-deflection behavior and a significantly higher strain capacity (41.698–51.765%) compared to unreinforced specimens (2.504–4.841%). The reinforcement mechanism involved synergistic effects of macroscopic truss behavior and microscopic interfacial bonding, which effectively redistributed the stress and dissipated energy. This multi-scale approach successfully transforms CTB’s failure mode from brittle to progressive while optimizing both strength and toughness, providing a promising advancement for mine backfill material design. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

13 pages, 2769 KB  
Article
Assessment of Vertical Redistribution of Electron Density in Ionosphere During an X-Class Solar Flare Using GNSS Data
by Susanna Bekker
Atmosphere 2025, 16(7), 825; https://doi.org/10.3390/atmos16070825 - 7 Jul 2025
Viewed by 348
Abstract
The impact of solar flares on the Earth’s ionosphere has been studied for many decades using both experimental and theoretical approaches. However, the accuracy of predicting ionospheric layer dynamics in response to variations in solar radiation remains limited. In particular, understanding the vertical [...] Read more.
The impact of solar flares on the Earth’s ionosphere has been studied for many decades using both experimental and theoretical approaches. However, the accuracy of predicting ionospheric layer dynamics in response to variations in solar radiation remains limited. In particular, understanding the vertical redistribution of charged particles in the ionosphere during flares with different spectral characteristics presents a significant challenge. In this study, a method is presented for reconstructing the temporal evolution of the vertical electron concentration (Ne) profile based on GNSS (Global Navigation Satellite Systems) measurements of total electron content along partially illuminated satellite-receiver paths. Using this method, vertical profiles of Ne were reconstructed during various phases of the X13.3-class solar flare that occurred on 6 September 2017. The resulting profiles correctly respond to the observed variations in solar extreme ultraviolet and X-ray radiation. This indicates that the method can be effectively applied to analyse other powerful solar events. Full article
(This article belongs to the Special Issue Feature Papers in Upper Atmosphere (2nd Edition))
Show Figures

Figure 1

12 pages, 1250 KB  
Article
Probing the Structural Order of Half-Heusler Phases in Sb-Doped (Ti,Zr,Hf)NiSn Thermoelectrics
by Fani Pinakidou, Andreas Delimitis and Maria Katsikini
Nanomaterials 2025, 15(13), 1037; https://doi.org/10.3390/nano15131037 - 3 Jul 2025
Cited by 1 | Viewed by 410
Abstract
The nanostructural features of a mechanically alloyed Sb-doped (Ti0.4Zr0.6)0.7Hf0.3NiSn thermoelectric (TE) Half-Heusler (HH) compound were addressed using Transmission Electron Microscopy (TEM) coupled with Energy Dispersive Spectroscopy measurements and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. [...] Read more.
The nanostructural features of a mechanically alloyed Sb-doped (Ti0.4Zr0.6)0.7Hf0.3NiSn thermoelectric (TE) Half-Heusler (HH) compound were addressed using Transmission Electron Microscopy (TEM) coupled with Energy Dispersive Spectroscopy measurements and Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. The EXAFS measurements at the Ni-K, Sn-K, Zr-K, and Hf-L3-edge were implemented in an effort to reveal the influence of Hf and Zr incorporation into the crystal with respect to their previously measured TE properties. The substitution of Ti by Hf and Zr is expected to yield local lattice distortions due to the different atomic sizes of the dopants or/and electronic charge redistribution amongst the cations. However, the material is characterised by a high degree of crystallinity in both the short and long-range order, on average, and the nominal stoichiometry is identified as (Zr0.42Hf0.30Ti0.28)NiSn0.98Sb0.02. The synergistic effect of minimization of extended structural defects or lattice distortions and considerable alloying-induced point defect population contributes to the improved TE properties and leads to the previously reported enhancement of the figure of merit of the mixed HHs. Full article
Show Figures

Figure 1

18 pages, 433 KB  
Article
Controlling the Ionization Dynamics of Argon Induced by Intense Laser Fields: From the Infrared Regime to the Two-Color Configuration
by Soumia Chqondi, Souhaila Chaddou, Ahmad Laghdas and Abdelkader Makhoute
Atoms 2025, 13(7), 63; https://doi.org/10.3390/atoms13070063 - 1 Jul 2025
Viewed by 425
Abstract
The current study presents the results of a methodical investigation into the ionization of rare gas atoms, specifically focusing on argon. In this study, two configurations are examined: ionization via a near-infrared (NIR) laser field alone, and ionization caused by extreme ultraviolet (XUV) [...] Read more.
The current study presents the results of a methodical investigation into the ionization of rare gas atoms, specifically focusing on argon. In this study, two configurations are examined: ionization via a near-infrared (NIR) laser field alone, and ionization caused by extreme ultraviolet (XUV) radiation in the presence of a strong, synchronized NIR pulse. The theoretical investigation is conducted using an ab initio method to solve the time-dependent Schrödinger equation within the single active electron (SAE) approximation. The simulation results show a sequence of above-threshold ionization (ATI) peaks that shift to lower energies with increasing laser intensity. This behavior reflects the onset of the Stark effect, which modifies atomic energy levels and increases the number of photons required for ionization. An examination of the two-color photoionization spectrum, which includes sideband structures and harmonic peaks, shows how the ionization probability is redistributed between the direct path (single XUV photon absorption) and sideband pathways (XUV ± n × IR) as the intensity of the infrared field increases. Quantum interference between continuum states is further revealed by the photoelectron angular distribution, clearly indicating the control of ionization dynamics by the IR field. Full article
Show Figures

Figure 1

20 pages, 7908 KB  
Article
DFT Study of PVA Biocomposite/Oyster Shell (CaCO3) for the Removal of Heavy Metals from Wastewater
by Jose Alfonso Prieto Palomo, Juan Esteban Herrera Zabala and Joaquín Alejandro Hernández Fernández
J. Compos. Sci. 2025, 9(7), 340; https://doi.org/10.3390/jcs9070340 - 1 Jul 2025
Viewed by 518
Abstract
The persistent contamination of aquatic environments by heavy metals, particularly Pb2+, Cd2+, and Cu2+, poses a serious global threat due to their toxicity, persistence, and bioaccumulative behavior. In response, low-cost and eco-friendly adsorbents are being explored, among which [...] Read more.
The persistent contamination of aquatic environments by heavy metals, particularly Pb2+, Cd2+, and Cu2+, poses a serious global threat due to their toxicity, persistence, and bioaccumulative behavior. In response, low-cost and eco-friendly adsorbents are being explored, among which CaCO3-based biocomposites derived from mollusk shells have shown exceptional performance. In this study, a hybrid biocomposite composed of poly(vinyl alcohol) (PVA) and oyster shell-derived CaCO3 was computationally investigated using Density Functional Theory (DFT) to elucidate the electronic and structural basis for its high metal-removal efficiency. Calculations were performed at the B3LYP/6-311++G(d,p), M05-2X/6-311+G(d,p), and M06-2X/6-311++G(d,p) levels using GAUSSIAN 16. Among them, B3LYP was identified as the most balanced in terms of accuracy and computational cost. The hybridization with CaCO3 reduced the HOMO-LUMO gap by 20% and doubled the dipole moment (7.65 Debye), increasing the composite’s polarity and reactivity. Upon chelation with metal ions, the gap further dropped to as low as 0.029 eV (Cd2+), while the dipole moment rose to 17.06 Debye (Pb2+), signaling enhanced charge separation and stronger electrostatic interactions. Electrostatic potential maps revealed high nucleophilicity at carbonate oxygens and reinforced electrophilic fields around the hydrated metal centers, correlating with the affinity trend Cu2+ > Cd2+ > Pb2+. Fukui function analysis indicated a redistribution of reactive sites, with carbonate oxygens acting as ambiphilic centers suitable for multidentate coordination. Natural Bond Orbital (NBO) analysis confirmed the presence of highly nucleophilic lone pairs and weakened bonding orbitals, enabling flexible adsorption dynamics. Furthermore, NCI/RDG analysis highlighted attractive noncovalent interactions with Cu2+ and Pb2+, while FT-IR simulations demonstrated the formation of hydrogen bonding (O–H···O=C) and Ca2+···O coordination bridges between phases. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

28 pages, 5469 KB  
Article
Mechanical Properties and Performance of CNT–Reinforced Mortars (CEM II/B–L and CEM I) for Crack Bridging and Protective Coating Applications
by Nikolaos Chousidis
Buildings 2025, 15(13), 2296; https://doi.org/10.3390/buildings15132296 - 30 Jun 2025
Viewed by 452
Abstract
Cement–based mortars are essential in both modern construction and heritage conservation, where balancing mechanical strength with material compatibility is crucial. Mortars containing ––binders with low hydraulic activity, such as CEM II/B–L, often exhibit increased porosity and diminished strength, limiting their suitability for structurally [...] Read more.
Cement–based mortars are essential in both modern construction and heritage conservation, where balancing mechanical strength with material compatibility is crucial. Mortars containing ––binders with low hydraulic activity, such as CEM II/B–L, often exhibit increased porosity and diminished strength, limiting their suitability for structurally demanding applications. This study investigates the potential of multiwalled carbon nanotubes (MWCNTs) to enhance the mechanical and microstructural properties of mortars formulated with both CEM II/B–L and CEM I binders. The influence of CNT incorporation was systematically assessed through compressive and flexural strength tests, vacuum saturation tests, mercury intrusion porosimetry (MIP), scanning electron microscopy (SEM), and differential thermal analysis (DTA). The results demonstrate significant mechanical improvements attributable to nanoscale mechanisms including crack bridging, pore–filling, and stress redistribution. Microstructural characterization revealed a refined pore network, increased densification of the matrix, and morphological modifications of hydration products. These findings underscore the effectiveness of CNT reinforcement in cementitious matrices and highlight the critical role of binder composition in influencing these effects. This work advances the development of high–performance mortar systems, optimized for enhanced structural integrity and long–term durability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop